Estimation of Photosynthetic Induction Is Significantly Affected by Light Environments of Local Leaves and Whole Plants in Oryza Genus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth
2.2. Gas Exchange Measurements
2.3. Analysis of Leaf Photosynthetic Induction
2.4. Stomatal Morphology Traits
2.5. Statistical Analysis
3. Results
3.1. Response of Gas Exchange Parameters to a Stepwise Increase in Light Intensity
3.2. Stomatal and Biochemical Limitations to Photosynthetic Induction
3.3. Differences of Photosynthetic Efficiency across Two Rice Genotypes
4. Discussion
4.1. IRGA Chamber Illumination and Whole Plant Illumination Significantly Enhanced Rice Photosynthetic Induction
4.2. Stomatal and Biochemical Processes Were Influenced by Variations in Both Inside and Outside Light Intensity
4.3. Effect of Stomatal Morphology on Steady- and Non-Steady-State gs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. How to Feed the World: Global Agriculture towards 2050. 2009. Available online: www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 4 May 2024).
- Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef] [PubMed]
- van Veen, H.; Mustroph, A.; Barding, G.A.; Eijk, M.V.-V.; Welschen-Evertman, R.A.M.; Pedersen, O.; Visser, E.J.; Larive, C.K.; Pierik, R.; Bailey-Serres, J.; et al. Two Rumex Species from Contrasting Hydrological Niches Regulate Flooding Tolerance through Distinct Mechanisms. Plant Cell 2013, 25, 4691–4707. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Change 2014, 4, 17–22. [Google Scholar] [CrossRef]
- IPCC. AR6 Climate change the physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; MassonDelmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Long, S.P.; Marshall-Colon, A.; Zhu, X.-G. Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential. Cell 2015, 161, 56–66. [Google Scholar] [CrossRef] [PubMed]
- VON Caemmerer, S. Steady-state models of photosynthesis. Plant Cell Environ. 2013, 36, 1617–1630. [Google Scholar] [CrossRef] [PubMed]
- Gago, J.; De Menezes Daloso, D.; Figueroa, C.M.; Flexas, J.; Fernie, A.R.; Nikoloski, Z. Relationships of Leaf Net Photosynthesis, Stomatal Conductance, and Mesophyll Conductance to Primary Metabolism: A Multispecies Meta-Analysis Approach. Plant Physiol. 2016, 171, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Flexas, J. From one side to two sides: The effects of stomatal distribution on photosynthesis. New Phytol. 2020, 228, 1754–1766. [Google Scholar] [CrossRef] [PubMed]
- Pearcy, R. Photosynthetic Utilisation of Lightflecks by Understory Plants. Funct. Plant Biol. 1988, 15, 223–238. [Google Scholar] [CrossRef]
- Pearcy, R.W. Sunflecks and Photosynthesis in Plant Canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1990, 41, 421–453. [Google Scholar] [CrossRef]
- Tanaka, Y.; Adachi, S.; Yamori, W. Natural genetic variation of the photosynthetic induction response to fluctuating light environment. Curr. Opin. Plant Biol. 2019, 49, 52–59. [Google Scholar] [CrossRef]
- Matthews, J.S.; Vialet-Chabrand, S.R.; Lawson, T. Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss. Plant Physiol. 2017, 174, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, E.; Morales, A.; Harbinson, J.; Kromdijk, J.; Heuvelink, E.; Marcelis, L.F.M. Dynamic photosynthesis in different environmental conditions. J. Exp. Bot. 2015, 66, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- McAusland, L.; Vialet-Chabrand, S.; Davey, P.; Baker, N.R.; Brendel, O.; Lawson, T. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol. 2016, 211, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Slattery, R.A.; Walker, B.J.; Weber, A.P.M.; Ort, D.R. The Impacts of Fluctuating Light on Crop Performance. Plant Physiol. 2018, 176, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Peng, S.; Li, Y. Increase rate of light-induced stomatal conductance is related to stomatal size in the genus Oryza. J. Exp. Bot. 2019, 70, 5259–5269. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Siaca, L.G.; Coe, R.; Wang, Y.; Kromdijk, J.; Quick, W.P.; Long, S.P. Variation in photosynthetic induction between rice accessions and its potential for improving productivity. New Phytol. 2020, 227, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kaiser, E.; Marcelis, L.F.M.; Yang, Q.; Li, T. Salt stress and fluctuating light have separate effects on photosynthetic acclimation, but interactively affect biomass. Plant, Cell Environ. 2020, 43, 2192–2206. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Luo, Q.; Xiong, D.; Cui, K.; Peng, S.; Huang, J. Speed of light-induced stomatal movement is not correlated to initial or final stomatal conductance in rice. Photosynthetica 2022, 60, 350–359. [Google Scholar] [CrossRef]
- Acevedo-Siaca, L.G.; Coe, R.; Quick, W.P.; Long, S.P. Variation between rice accessions in photosynthetic induction in flag leaves and underlying mechanisms. J. Exp. Bot. 2021, 72, eraa520. [Google Scholar] [CrossRef]
- Xiong, Z.; Dun, Z.; Wang, Y.; Yang, D.; Xiong, D.; Cui, K.; Peng, S.; Huang, J. Effect of Stomatal Morphology on Leaf Photosynthetic Induction Under Fluctuating Light in Rice. Front. Plant Sci. 2021, 12, 754790. [Google Scholar] [CrossRef]
- Adachi, S.; Tanaka, Y.; Miyagi, A.; Kashima, M.; Tezuka, A.; Toya, Y.; Kobayashi, S.; Ohkubo, S.; Shimizu, H.; Kawai-Yamada, M.; et al. High-yielding rice Takanari has superior photosynthetic response to a commercial rice Koshihikari under fluctuating light. J. Exp. Bot. 2019, 70, 5287–5297. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Hashimoto-Sugimoto, M.; Iba, K.; Terashima, I.; Yamori, W. Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light. J. Exp. Bot. 2020, 71, 2339–2350. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Masumoto, C.; Fukayama, H.; Makino, A. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. Plant J. 2012, 71, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Makino, A.; Shikanai, T. A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci. Rep. 2016, 6, 20147. [Google Scholar] [CrossRef] [PubMed]
- Sakoda, K.; Yamori, W.; Groszmann, M.; Evans, J.R. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. Plant Physiol. 2021, 185, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Barbour, M.M.; Yu, D.; Rao, S.; Song, X. Mesophyll conductance exerts a significant limitation on photosynthesis during light induction. New Phytol. 2021, 233, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Kusumi, K.; Iba, K.; Terashima, I. Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. Plant Cell Environ. 2020, 43, 1230–1240. [Google Scholar] [CrossRef] [PubMed]
- Monda, K.; Araki, H.; Kuhara, S.; Ishigaki, G.; Akashi, R.; Negi, J.; Kojima, M.; Sakakibara, H.; Takahashi, S.; Hashimoto-Sugimoto, M.; et al. Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture. Plant Physiol. 2016, 170, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Papanatsiou, M.; Petersen, J.; Henderson, L.; Wang, Y.; Christie, J.M.; Blatt, M.R. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 2019, 363, 1456–1459. [Google Scholar] [CrossRef] [PubMed]
- Lawson, T.; Matthews, J. Guard Cell Metabolism and Stomatal Function. Annu. Rev. Plant Biol. 2020, 71, 273–302. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.J.; Beerling, D.J. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc. Natl. Acad. Sci. USA 2009, 106, 10343–10347. [Google Scholar] [CrossRef] [PubMed]
- Drake, P.L.; Froend, R.H.; Franks, P.J. Smaller, faster stomata: Scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 2013, 64, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.L.; Cubas, L.A.; Gray, J.E.; Hepworth, C. The influence of stomatal morphology and distribution on photosynthetic gas exchange. Plant J. 2019, 101, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Hetherington, A.M.; Woodward, F.I. The role of stomata in sensing and driving environmental change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Lawson, T.; Blatt, M.R.; Yu, L.; Shi, D.; Li, J.; Kong, Y.; Yu, Y.; Chai, G.; Hu, R.; Wang, J.; et al. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 2014, 164, 1556–1570. [Google Scholar] [CrossRef] [PubMed]
- Sakoda, K.; Yamori, W.; Shimada, T.; Sugano, S.S.; Hara-Nishimura, I.; Tanaka, Y. Higher Stomatal Density Improves Photosynthetic Induction and Biomass Production in Arabidopsis Under Fluctuating Light. Front. Plant Sci. 2020, 11, 589603. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Flexas, J.; Yu, T.; Peng, S.; Huang, J. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. New Phytol. 2017, 213, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Eyland, D.; van Wesemael, J.; Lawson, T.; Carpentier, S. The impact of slow stomatal kinetics on photosynthesis and water use efficiency under fluctuating light. Plant Physiol. 2021, 186, 998–1012. [Google Scholar] [CrossRef] [PubMed]
- Vialet-Chabrand, S.R.; Matthews, J.S.; McAusland, L.; Blatt, M.R.; Griffiths, H.; Lawson, T. Temporal Dynamics of Stomatal Behavior: Modeling and Implications for Photosynthesis and Water Use. Plant Physiol. 2017, 174, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, E.; Kromdijk, J.; Harbinson, J.; Heuvelink, E.; Marcelis, L.F.M. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2partial pressure, temperature, air humidity and blue irradiance. Ann. Bot. 2017, 119, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, T.D.; Berry, J.A.; Raschke, K. Starch and Sucrose Synthesis in Phaseolus vulgaris as Affected by Light, CO2, and Abscisic Acid. Plant Physiol. 1985, 77, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Weyers, J.D.B.; Johansen, L.G. ACCURATE ESTIMATION OF STOMATAL APERTURE FROM SILICONE RUBBER IMPRESSIONS. New Phytol. 1985, 101, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.K.; Knapp, A.K.; Reiners, W.A. Penumbral Effects on Sunlight Penetration in Plant Communities. Ecology 1989, 70, 1603–1609. [Google Scholar] [CrossRef]
- Wu, A.; Hammer, G.L.; Doherty, A.; von Caemmerer, S.; Farquhar, G.D. Quantifying impacts of enhancing photosynthesis on crop yield. Nat. Plants 2019, 5, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wang, F.; Xiang, X.; Ahammed, G.J.; Wang, M.; Onac, E.; Zhou, J.; Xia, X.; Shi, K.; Yin, X.; et al. Systemic Induction of Photosynthesis via Illumination of the Shoot Apex Is Mediated Sequentially by Phytochrome B, Auxin and Hydrogen Peroxide in Tomato. Plant Physiol. 2016, 172, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Jin, L.; Zhang, Z.; Gao, H. Systemic signalling in photosynthetic induction of Rumex K-1 (Rumex patientia × Rumex tianschaious) leaves. Plant Cell Environ. 2015, 38, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Shimadzu, S.; Seo, M.; Terashima, I.; Yamori, W. Whole Irradiated Plant Leaves Showed Faster Photosynthetic Induction Than Individually Irradiated Leaves via Improved Stomatal Opening. Front. Plant Sci. 2019, 10, 1512. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.H.; Long, S.P. Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160543. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jin, Z.; Huang, R.; Zhou, J.; Song, F.; Yao, L.; Li, P.; Lu, W.; Xiao, L.; Quan, M.; et al. Leaf physiology variations are modulated by natural variations that underlie stomatal morphology in Populus. Plant Cell Environ. 2023, 46, 150–170. [Google Scholar] [CrossRef]
- Kardiman, R.; Ræbild, A. Relationship between stomatal density, size and speed of opening in Sumatran rainforest species. Tree Physiol. 2018, 38, 696–705. [Google Scholar] [CrossRef] [PubMed]
Treatments | Oryza australiensis | Oryza officinalis | ||||||
---|---|---|---|---|---|---|---|---|
P50g (s) | P90g (s) | P50A (s) | P90A (s) | P50g (s) | P90g (s) | P50A (s) | P90A (s) | |
WPI-ICI | 204 ± 39 bc | 444 ± 74 bc | 90 ± 5 b | 312 ± 5 b | 161 ± 34 bc | 357 ± 71 b | 98 ± 6 b | 279 ± 20 ab |
WPI-ICS | 288 ± 68 ab | 567 ± 88 ab | 149 ± 35 ab | 485 ± 61 a | 198 ± 28 ab | 432 ± 53 ab | 99 ± 8 b | 357 ± 18 a |
WPS-ICI | 168 ± 54 c | 372 ± 117 c | 74 ± 6 b | 258 ± 34 b | 116 ± 3 c | 218 ± 20 c | 93 ± 8 b | 230 ± 10 b |
WPS-ICS | 343 ± 105 a | 610 ± 84 a | 215 ± 107 a | 530 ± 84 a | 272 ± 88 a | 533 ± 136 a | 173 ± 42 a | 443 ± 65 a |
Treatments | Oryza australiensis | Oryza officinalis | ||||||
---|---|---|---|---|---|---|---|---|
gsi (mol m−2 s−1) | gsf (mol m−2 s−1) | Ai (µmol m−2 s−1) | Af (µmol m−2 s−1) | gsi (mol m−2 s−1) | gsf (mol m−2 s−1) | Ai (µmol m−2 s−1) | Af (µmol m−2 s−1) | |
WPI-ICI | 0.23 ± 0.07 a | 0.63 ± 0.09 a | 4.3 ± 0.2 a | 30.9 ± 2.5 a | 0.15 ± 0.04 a | 0.41 ± 0.05 a | 4.4 ± 0.2 a | 19.7 ± 1.5 a |
WPI-ICS | 0.08 ± 0.02 b | 0.50 ± 0.06 b | −0.2 ± 0.1 b | 28.8 ± 1.4 a | 0.08 ± 0.02 b | 0.41 ± 0.03 a | −0.1 ± 0.1 b | 19.6 ± 1.2 a |
WPS-ICI | 0.26 ± 0.08 a | 0.58 ± 0.09 b | 4.3 ± 0.1 a | 28.8 ± 2.5 a | 0.16 ± 0.04 a | 0.40 ± 0.05 a | 4.3 ± 0.3 a | 18.9 ± 1.5 a |
WPS-ICS | 0.06 ± 0.04 b | 0.50 ± 0.05 b | −0.2 ± 0.1 b | 27.7 ± 2.1 a | 0.03 ± 0.01 c | 0.43 ± 0.08 a | 0.0 ± 0.1 b | 18.8 ± 1.7 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Z.; Xiao, J.; Zhao, J.; Liu, S.; Yang, D.; Xiong, D.; Cui, K.; Peng, S.; Huang, J. Estimation of Photosynthetic Induction Is Significantly Affected by Light Environments of Local Leaves and Whole Plants in Oryza Genus. Plants 2024, 13, 1646. https://doi.org/10.3390/plants13121646
Xiong Z, Xiao J, Zhao J, Liu S, Yang D, Xiong D, Cui K, Peng S, Huang J. Estimation of Photosynthetic Induction Is Significantly Affected by Light Environments of Local Leaves and Whole Plants in Oryza Genus. Plants. 2024; 13(12):1646. https://doi.org/10.3390/plants13121646
Chicago/Turabian StyleXiong, Zhuang, Jian Xiao, Jinfang Zhao, Sicheng Liu, Desheng Yang, Dongliang Xiong, Kehui Cui, Shaobing Peng, and Jianliang Huang. 2024. "Estimation of Photosynthetic Induction Is Significantly Affected by Light Environments of Local Leaves and Whole Plants in Oryza Genus" Plants 13, no. 12: 1646. https://doi.org/10.3390/plants13121646
APA StyleXiong, Z., Xiao, J., Zhao, J., Liu, S., Yang, D., Xiong, D., Cui, K., Peng, S., & Huang, J. (2024). Estimation of Photosynthetic Induction Is Significantly Affected by Light Environments of Local Leaves and Whole Plants in Oryza Genus. Plants, 13(12), 1646. https://doi.org/10.3390/plants13121646