The Functional Characterization of MaGS2 and Its Role as a Negative Regulator of Ciboria shiraiana
Abstract
:1. Introduction
2. Results
2.1. MaGS2 Is a Plastidic-Subtype Glutamine Synthetase
2.2. MaGS2 Locates in the Chloroplast
2.3. Transcriptional Characteristics of MaGS2 Are Associated with Sclerotiniose
2.4. MaGS2 Negatively Regulates Resistance against Ciboria shiraiana Infection
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. RNA Extraction and cDNA Synthesis
4.3. Cloning and Bioinformatic Analysis of MaGS2
4.4. Transcriptional Characteristics of MaGS2
4.5. Subcellular Localization of MaGS2
4.6. Overexpression and VIGS of MaGS2 Followed by C. shiraiana Infection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, H.; Zhou, Y.; Xiao, J.; Li, X.; Zhang, Q.; Lian, X. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 2009, 28, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Biesiadka, J.; Legocki, A.B. Evolution of the glutamine synthetase gene in plants. Plant Sci. 1997, 128, 51–58. [Google Scholar] [CrossRef]
- Moreira, E.; Coimbra, S.; Melo, P. Glutamine synthetase: An unlikely case of functional redundancy in Arabidopsis thaliana. Plant Biol. 2022, 24, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, L.; Qin, B.; Li, H.; Wang, X.; Zhang, Z.; Zhu, X.; Ma, X.; Wang, X. A New Perspective on the Role of Glutamine Synthetase in Nitrogen Remobilization in Wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2021, 22, 1083. [Google Scholar] [CrossRef] [PubMed]
- Lea, P.J.; Miflin, B.J. Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol. Biochem. 2003, 41, 555–564. [Google Scholar] [CrossRef]
- Valderrama-Martin, J.M.; Ortigosa, F.; Avila, C.; Canovas, F.M.; Hirel, B.; Canton, F.R.; Canas, R.A. A revised view on the evolution of glutamine synthetase isoenzymes in plants. Plant J. Cell Mol. Biol. 2022, 110, 946–960. [Google Scholar] [CrossRef]
- Mondal, R.; Kumar, A.; Chattopadhyay, S.K. Structural property, molecular regulation, and functional diversity of glutamine synthetase in higher plants: A data-mining bioinformatics approach. Plant J. Cell Mol. Biol. 2021, 108, 1565–1584. [Google Scholar] [CrossRef]
- Wang, S.; Lin, R.; Tumukunde, E.; Zeng, W.; Bao, Q.; Wang, S.; Wang, Y. Glutamine Synthetase Contributes to the Regulation of Growth, Conidiation, Sclerotia Development, and Resistance to Oxidative Stress in the Fungus Aspergillus flavus. Toxins 2022, 14, 822. [Google Scholar] [CrossRef] [PubMed]
- Avila Saez, C.; Munoz-Chapuli, R.; Plomion, C.; Frigerio, J.; Canovas, F.M. Two genes encoding distinct cytosolic glutamine synthetases are closely linked in the pine genome. FEBS Lett. 2000, 477, 237–243. [Google Scholar] [CrossRef]
- Guan, R.; Zhao, Y.; Zhang, H.; Fan, G.; Liu, X.; Zhou, W.; Shi, C.; Wang, J.; Liu, W.; Liang, X. Draft genome of the living fossil Ginkgo biloba. Gigascience 2016, 5, 49. [Google Scholar] [CrossRef]
- Castro-Rodríguez, V.; García-Gutiérrez, A.; Canales, J.; Avila, C.; Kirby, E.G.; Cánovas, F.M. The glutamine synthetase gene family in Populus. BMC Plant Biol. 2011, 11, 119. [Google Scholar] [CrossRef]
- Li, X.; Lu, X.; Liu, M.; Xiang, C.; Liu, W.; Wang, C.; Zhang, X.; Wang, T.; Liu, Z.; Gao, L.; et al. Genome-Wide Characterization of Glutamine Synthetase Family Genes in Cucurbitaceae and Their Potential Roles in Cold Response and Rootstock-Scion Signaling Communication. Agriculture 2021, 11, 1156. [Google Scholar] [CrossRef]
- Betti, M.; García-Calderón, M.; Pérez-Delgado, C.M.; Credali, A.; Estivill, G.; Galván, F.; Vega, J.M.; Márquez, A.J. Glutamine synthetase in legumes: Recent advances in enzyme structure and functional genomics. Int. J. Mol. Sci. 2012, 13, 7994–8024. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, F.; Fu, J.; Cantón, F.R.; García-Gutiérrez, A.; Cánovas, F.M.; Kirby, E.G. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 1999, 210, 19–26. [Google Scholar] [CrossRef]
- Jing, Z.P.; Gallardo, F.; Pascual, M.B.; Sampalo, R.; Romero, J.; De Navarra, A.T.; Cánovas, F.M. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 2004, 164, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Brugière, N.; Dubois, F.; Limami, A.M.; Lelandais, M.; Roux, Y.; Sangwan, R.S.; Hirel, B. Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell 1999, 11, 1995–2011. [Google Scholar] [CrossRef]
- Hoshida, H.; Tanaka, Y.; Hibino, T.; Hayashi, Y.; Tanaka, A.; Takabe, T.; Takabe, T. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol. Biol. 2000, 43, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Kozaki, A.; Takeba, G. Photorespiration protects C3 plants from photooxidation. Nature 1996, 384, 557–560. [Google Scholar] [CrossRef]
- Huang, H.; Nguyen Thi Thu, T.; He, X.; Gravot, A.; Bernillon, S.; Ballini, E.; Morel, J.B. Increase of Fungal Pathogenicity and Role of Plant Glutamine in Nitrogen-Induced Susceptibility (NIS) To Rice Blast. Front. Plant Sci. 2017, 8, 265. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit—A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef]
- Bao, L.; Gao, H.; Zheng, Z.; Zhao, X.; Zhang, M.; Jiao, F.; Su, C.; Qian, Y. Integrated Transcriptomic and Un-Targeted Metabolomics Analysis Reveals Mulberry Fruit (Morus atropurpurea) in Response to Sclerotiniose Pathogen Ciboria shiraiana Infection. Int. J. Mol. Sci. 2020, 21, 1789. [Google Scholar] [CrossRef] [PubMed]
- Lü, R.; Zhao, A.; Yu, J.; Wang, C.; Liu, C.; Cai, Y.; Yu, M. Biological and epidemiological characteristics of the pathogen of hypertrophy sorosis scleroteniosis, Ciboria shiraiana. Wei Sheng Wu Xue Bao Acta Microbiol. Sin. 2017, 57, 388–398. [Google Scholar]
- Lv, Z.; Hao, L.; Ma, B.; He, Z.; Luo, Y.; Xin, Y.; He, N. Ciboria carunculoides Suppresses Mulberry Immune Responses Through Regulation of Salicylic Acid Signaling. Front. Plant Sci. 2021, 12, 658590. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Li, Z.; Xiao, L.; Hu, W.; Zhang, L.; Xie, B.; Zhou, Q.; He, J.; Qiu, Y.; Wen, M.; et al. Glutamine Synthetase Promotes Radiation Resistance via Facilitating Nucleotide Metabolism and Subsequent DNA Damage Repair. Cell Rep. 2019, 28, 1136–1143.e1134. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Chung, Y.H.; Hsieh, M.H. The Arabidopsis glutamine synthetase2 mutants (gln2-1 and gln2-2) do not have abnormal phenotypes. Plant Physiol. 2022, 189, 1906–1910. [Google Scholar] [CrossRef]
- Kan, C.C.; Chung, T.Y.; Wu, H.Y.; Juo, Y.A.; Hsieh, M.H. Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. BMC Genom. 2017, 18, 186. [Google Scholar] [CrossRef] [PubMed]
- Cocaliadis, M.F.; Fernández-Muñoz, R.; Pons, C.; Orzaez, D.; Granell, A. Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J. Exp. Bot. 2013, 65, 4589–4598. [Google Scholar] [CrossRef]
- Livne, A.; Gepstein, S. Abundance of the major chloroplast polypeptides during development and ripening of tomato fruits: An immunological study. Plant Physiol. 1988, 87, 239–243. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Guo, Y.; Kang, X.; Huang, Y.; Guo, Z.; Wang, Y.; Ma, S.; Li, H.; Chao, N.; Liu, L. Functional characterization of MaEXPA11 and its roles in response to biotic and abiotic stresses in mulberry. Plant Physiol. Biochem. 2024, 206, 108289. [Google Scholar] [CrossRef]
- Chou, K.C.; Shen, H.B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yidilisi, K.; Wang, Y.; Guo, Z.; Guo, Y.; Kang, X.; Li, S.; Zhang, W.; Chao, N.; Liu, L. The Functional Characterization of MaGS2 and Its Role as a Negative Regulator of Ciboria shiraiana. Plants 2024, 13, 1660. https://doi.org/10.3390/plants13121660
Yidilisi K, Wang Y, Guo Z, Guo Y, Kang X, Li S, Zhang W, Chao N, Liu L. The Functional Characterization of MaGS2 and Its Role as a Negative Regulator of Ciboria shiraiana. Plants. 2024; 13(12):1660. https://doi.org/10.3390/plants13121660
Chicago/Turabian StyleYidilisi, Keermula, Yuqiong Wang, Zixuan Guo, Yangyang Guo, Xiaoru Kang, Shan Li, Wenhao Zhang, Nan Chao, and Li Liu. 2024. "The Functional Characterization of MaGS2 and Its Role as a Negative Regulator of Ciboria shiraiana" Plants 13, no. 12: 1660. https://doi.org/10.3390/plants13121660
APA StyleYidilisi, K., Wang, Y., Guo, Z., Guo, Y., Kang, X., Li, S., Zhang, W., Chao, N., & Liu, L. (2024). The Functional Characterization of MaGS2 and Its Role as a Negative Regulator of Ciboria shiraiana. Plants, 13(12), 1660. https://doi.org/10.3390/plants13121660