The Co-Inoculation Effect on Triticum aestivum Growth with Synthetic Microbial Communities (SynComs) and Their Potential in Agrobiotechnology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Area and Soil Analysis
2.2. Identification and Characterization of PGPR Isolates
2.3. Phosphorus in Liquid NBRIP Medium with RP and Organic Acid Detection
2.4. Analysis of Phytohormones by Liquid Chromatography Time-of-Flight Mass Spectrometry (LC-TOF/MS)
2.5. Co-Inoculation Test in Sterile Soils through Pot Experiment
3. Materials and Methods
3.1. Sample Location
3.2. Collection of Samples
3.3. Physicochemical Analysis of Soil
3.4. Isolation of PGPR
3.5. Identification of PGPR
3.6. ZymoBIOMICS® Targeted Sequencing
3.7. Characterization of Selected PGPR
3.7.1. NH3 Production
3.7.2. HCN Production
3.7.3. Siderofore Production
3.7.4. 1-Aminocyclopropane-1-Carboxylate Deaminase Production
3.7.5. Catalase Activity
3.7.6. Nitrogen-Fixing Activity
3.7.7. Potassium Solubilization Activity
3.7.8. Phosphate Solubilization Activity
3.8. Quantitative Estimation of Phosphate Solubilization Activity
3.9. Analysis of Organic Acids by HPLC Dionex Ultimate 3000-4
3.10. Analysis of Phytohormones by Liquid Chromatography Time-of-Flight Mass Spectrometry
3.11. Co-Inoculation Test in Non-Sterile Soils through Pot Experiment
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Enagbonma, B.J.; Fadiji, A.E.; Ayangbenro, A.S.; Babalola, O.O. Communication between Plants and Rhizosphere Microbiome: Exploring the Root Microbiome for Sustainable Agriculture. Microorganisms 2023, 11, 2003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhan, J.; Ma, C.; Liu, W.; Huang, H.; Yu, H.; Christie, P.; Li, T.; Wu, L. Root-associated bacterial microbiome shaped by root selective effects benefits phytostabilization by Athyrium wardii (Hook.). Ecotoxicol. Environ. Saf. 2024, 269, 115739. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Ali, S.; Shahid, M.A.; Mustafa, A.; Sayyed, R.Z.; Curá, J.A. Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: A review. Cells 2021, 10, 1551. [Google Scholar] [CrossRef] [PubMed]
- Dukare, A.; Mhatre, P.; Maheshwari, H.S.; Bagul, S.; Manjunatha, B.S.; Khade, Y.; Kamble, U. Delineation of mechanistic approaches of rhizosphere microorganisms facilitated plant health and resilience under challenging conditions. 3 Biotech 2022, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Vincze, É.B.; Becze, A.; Laslo, É.; Mara, G. Beneficial Soil Microbiomes and Their Potential Role in Plant Growth and Soil Fertility. Agriculture 2024, 14, 152. [Google Scholar] [CrossRef]
- Kumar, S.; Diksha; Sindhu, S.S.; Kumar, R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr. Res. Microb. Sci. 2022, 3, 100094. [Google Scholar] [CrossRef] [PubMed]
- Aloo, B.N.; Tripathi, V.; Makumba, B.A.; Mbega, E.R. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Front. Plant Sci. 2022, 13, 1002448. [Google Scholar] [CrossRef]
- Custer, G.F.; Bresciani, L.; Dini-Andreote, F. Ecological and Evolutionary Implications of Microbial Dispersal. Front. Microbiol. 2022, 13, 855859. [Google Scholar] [CrossRef]
- Pantigoso, H.A.; Newberger, D.; Vivanco, J.M. The rhizosphere microbiome: Plant–microbial interactions for resource acquisition. J. Appl. Microbiol. 2022, 133, 2864–2876. [Google Scholar] [CrossRef]
- De Souza, R.S.C.; Armanhi, J.S.L.; Arruda, P. From Microbiome to Traits: Designing Synthetic Microbial Communities for Improved Crop Resiliency. Front. Plant Sci. 2020, 11, 1179. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, O.S.; Creevey, C.J.; Santana, M.F. Designing a synthetic microbial community through genome metabolic modeling to enhance plant–microbe interaction. Environ. Microbiome 2023, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Qiu, Z.; Ye, J.; Verma, J.P.; Li, J.; Singh, B.K. Effective colonisation by a bacterial synthetic community promotes plant growth and alters soil microbial community. J. Sustain. Agric. Environ. 2022, 1, 30–42. [Google Scholar] [CrossRef]
- Kumar, M.; Poonam; Ahmad, S.; Singh, R.P. Plant growth promoting microbes: Diverse roles for sustainable and ecofriendly agriculture. Energy Nexus 2022, 7, 100133. [Google Scholar] [CrossRef]
- Abdelaal, K.; Alkahtani, M.; Attia, K.; Hafez, Y.; Király, L.; Künstler, A. The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology 2021, 10, 520. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017, 33, 197. [Google Scholar] [CrossRef] [PubMed]
- Fahde, S.; Boughribil, S.; Sijilmassi, B.; Amri, A. Rhizobia: A Promising Source of Plant Growth-Promoting Molecules and Their Non-Legume Interactions: Examining Applications and Mechanisms. Agriculture 2023, 13, 1279. [Google Scholar] [CrossRef]
- Shayanthan, A.; Ordoñez, P.A.C.; Oresnik, I.J. The Role of Synthetic Microbial Communities (SynCom) in Sustainable Agriculture. Front. Agron. 2022, 4, 896307. [Google Scholar] [CrossRef]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef]
- Ibrahim, M.; Iqbal, M.; Tang, Y.T.; Khan, S.; Guan, D.X.; Li, G. Phosphorus Mobilization in Plant–Soil Environments and Inspired Strategies for Managing Phosphorus: A Review. Agronomy 2022, 12, 2539. [Google Scholar] [CrossRef]
- Richardson, A.E.; Hocking, P.J.; Simpson, R.J.; George, T.S. Plant mechanisms to optimise access to soil phosphorus. Proc. Crop Pasture Sci. 2009, 60, 124–143. [Google Scholar] [CrossRef]
- Bechtaoui, N.; Rabiu, M.K.; Raklami, A.; Oufdou, K.; Hafidi, M.; Jemo, M. Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. Front. Plant Sci. 2021, 12, 679916. [Google Scholar] [CrossRef]
- Yaakob, M.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Ravishankar, G.A.; Ambati, R.R. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells 2021, 10, 393. [Google Scholar] [CrossRef] [PubMed]
- Barrow, N.J.; Hartemink, A.E. The effects of pH on nutrient availability depend on both soils and plants. Plant Soil 2023, 487, 21–37. [Google Scholar] [CrossRef]
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef] [PubMed]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef]
- Ch’Ng, H.Y.; Ahmed, O.H.; Majid, N.M.A. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. Sci. World J. 2014, 2014, 506356. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Oluranti Babalola, O.; Prudence Dlamini, S.; Olalekan Akanmu, A. Rhizospheric microorganisms: The gateway to a sustainable plant health. Front. Sustain. Food Syst. 2022, 6, 925802. [Google Scholar] [CrossRef]
- Deng, J.; Yin, Y.; Zhu, W.; Zhou, Y. Variations in soil bacterial community diversity and structures among different revegetation types in the Baishilazi nature reserve. Front. Microbiol. 2018, 9, 2874. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006, 72, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Wang, Y.; An, M.; Chen, X.; Kulyar, M.F.e.A.; Tan, Z.; Liu, S.; Li, K. The successional trajectory of bacterial and fungal communities in soil are fabricated by yaks’ excrement contamination in plateau, China. Front. Microbiol. 2022, 13, 1016852. [Google Scholar] [CrossRef] [PubMed]
- Kovács, E.B.; Dorner, Z.; Csík, D.; Zalai, M. Effect of Environmental, Soil and Management Factors on Weed Flora of Field Pea in South-East Hungary. Agronomy 2023, 13, 1864. [Google Scholar] [CrossRef]
- Islam, W.; Noman, A.; Naveed, H.; Huang, Z.; Chen, H.Y.H. Role of environmental factors in shaping the soil microbiome. Environ. Sci. Pollut. Res. 2020, 27, 41225–41247. [Google Scholar] [CrossRef] [PubMed]
- Schloter, M.; Nannipieri, P.; Sørensen, S.J.; van Elsas, J.D. Microbial indicators for soil quality. Biol. Fertil. Soils 2018, 54, 1–10. [Google Scholar] [CrossRef]
- Giovannetti, M.; Salvioli di Fossalunga, A.; Stringlis, I.A.; Proietti, S.; Fiorilli, V. Unearthing soil-plant-microbiota crosstalk: Looking back to move forward. Front. Plant Sci. 2023, 13, 1082752. [Google Scholar] [CrossRef] [PubMed]
- Suman, J.; Rakshit, A.; Ogireddy, S.D.; Singh, S.; Gupta, C.; Chandrakala, J. Microbiome as a Key Player in Sustainable Agriculture and Human Health. Front. Soil Sci. 2022, 2, 821589. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Singh, S.; Kuppusamy, P.; Singh, P.; Paul, D.; et al. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. Int. J. Environ. Res. Public Health 2022, 19, 3141. [Google Scholar] [CrossRef]
- Nautiyal, C.S.; Bhadauria, S.; Kumar, P.; Lal, H.; Mondal, R.; Verma, D. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 2000, 182, 291–296. [Google Scholar] [CrossRef]
- Diwan, D.; Rashid, M.M.; Vaishnav, A. Current understanding of plant-microbe interaction through the lenses of multi-omics approaches and their benefits in sustainable agriculture. Microbiol. Res. 2022, 265, 127180. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.M.; Dourado, M.N.; Araújo, W.L. Microbial interactions: Ecology in a molecular perspective. Braz. J. Microbiol. 2016, 47, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, R.; Zhang, S.; Shen, Q.; Chen, J.; Ma, H.; Ge, C.; Hao, L.; Zhang, J.; Shi, S.; et al. The Contributions of Sub-Communities to the Assembly Process and Ecological Mechanisms of Bacterial Communities along the Cotton Soil–Root Continuum Niche Gradient. Microorganisms 2024, 12, 869. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liang, K.; Huang, G.; Wang, X.; Lin, M.; Chen, Y.; Zhou, Z. Soil bacterial community shifts are driven by soil nutrient availability along a teak plantation chronosequence in tropical forests in China. Biology 2021, 10, 1329. [Google Scholar] [CrossRef] [PubMed]
- Cordero, J.; de Freitas, J.R.; Germida, J.J. Bacterial microbiome associated with the rhizosphere and root interior of crops in Saskatchewan, Canada. Can. J. Microbiol. 2020, 66, 71–85. [Google Scholar] [CrossRef]
- Dong, C.J.; Wang, L.L.; Li, Q.; Shang, Q.M. Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS ONE 2019, 14, e0223847. [Google Scholar] [CrossRef] [PubMed]
- Pascale, A.; Proietti, S.; Pantelides, I.S.; Stringlis, I.A. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Front. Plant Sci. 2020, 10, 1741. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef] [PubMed]
- Romero, F.; Hilfiker, S.; Edlinger, A.; Held, A.; Hartman, K.; Labouyrie, M.; van der Heijden, M.G.A. Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. Sci. Total Environ. 2023, 885, 163683. [Google Scholar] [CrossRef]
- Latif, S.; Bibi, S.; Kouser, R.; Fatimah, H.; Farooq, S.; Naseer, S.; Kousar, R. Characterization of bacterial community structure in the rhizosphere of Triticum aestivum L. Genomics 2020, 112, 4760–4768. [Google Scholar] [CrossRef]
- Ngamcharungchit, C.; Chaimusik, N.; Panbangred, W.; Euanorasetr, J.; Intra, B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023, 28, 5915. [Google Scholar] [CrossRef]
- Silva, G.d.C.; Kitano, I.T.; Ribeiro, I.A.d.F.; Lacava, P.T. The Potential Use of Actinomycetes as Microbial Inoculants and Biopesticides in Agriculture. Front. Soil Sci. 2022, 2, 833181. [Google Scholar] [CrossRef]
- Alam, K.; Mazumder, A.; Sikdar, S.; Zhao, Y.M.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y.; et al. Streptomyces: The biofactory of secondary metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, O.S.; Babalola, O.O. Streptomyces: Implications and interactions in plant growth promotion. Appl. Microbiol. Biotechnol. 2019, 103, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Nonthakaew, N.; Panbangred, W.; Songnuan, W.; Intra, B. Plant growth-promoting properties of Streptomyces spp. isolates and their impact on mung bean plantlets’ rhizosphere microbiome. Front. Microbiol. 2022, 13, 967415. [Google Scholar] [CrossRef] [PubMed]
- Chouyia, F.E.; Romano, I.; Fechtali, T.; Fagnano, M.; Fiorentino, N.; Visconti, D.; Idbella, M.; Ventorino, V.; Pepe, O. P-solubilizing Streptomyces roseocinereus ms1b15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population. Front. Plant Sci. 2020, 11, 1137. [Google Scholar] [CrossRef] [PubMed]
- Viollier, P.H.; Minas, W.; Dale, G.E.; Folcher, M.; Thompson, C.J. Role of acid metabolism in Streptomyces coelicolor morphological differentiation and antibiotic biosynthesis. J. Bacteriol. 2001, 183, 3184–3192. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.A.d.J.; Olivares, F.L. Plant growth promotion by Streptomycetes: Ecophysiology, mechanisms and applications. Chem. Biol. Technol. Agric. 2016, 3, 24. [Google Scholar] [CrossRef]
- Worsley, S.F.; Newitt, J.; Rassbach, J.; Batey, S.F.D.; Holmes, N.A.; Murrell, J.C.; Wilkinson, B.; Hutchings, M.I. Streptomyces Endophytes Promote Host Health and Enhance Growth across Plant Species. Appl. Environ. Microbiol. 2020, 86, e01053-20. [Google Scholar] [CrossRef]
- Sah, S.; Krishnani, S.; Singh, R. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr. Res. Microb. Sci. 2021, 2, 100084. [Google Scholar] [CrossRef]
- Amherst, S. Impact of Pseudomonas putida on Nodulation in the Common Bean, Phaseolus vulgaris. Master’s Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 1911. [Google Scholar]
- Mekureyaw, M.F.; Pandey, C.; Hennessy, R.C.; Nicolaisen, M.H.; Liu, F.; Nybroe, O.; Roitsch, T. The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. J. Plant Physiol. 2022, 270, 153629. [Google Scholar] [CrossRef] [PubMed]
- Dobrzyński, J.; Wróbel, B.; Górska, E.B. Taxonomy, Ecology, and Cellulolytic Properties of the Genus Bacillus and Related Genera. Agriculture 2023, 13, 1979. [Google Scholar] [CrossRef]
- Khan, A.R.; Mustafa, A.; Hyder, S.; Valipour, M.; Rizvi, Z.F.; Gondal, A.S.; Yousuf, Z.; Iqbal, R.; Daraz, U. Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. Biology 2022, 11, 1763. [Google Scholar] [CrossRef] [PubMed]
- Tsotetsi, T.; Nephali, L.; Malebe, M.; Tugizimana, F. Bacillus for Plant Growth Promotion and Stress Resilience: What Have We Learned? Plants 2022, 11, 2482. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Hashem, A.; Abd Allah, E.F. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 2017, 8, 667. [Google Scholar] [CrossRef] [PubMed]
- De Souza, A.E.S.; Filla, V.A.; da Silva, J.P.M.; Barbosa Júnior, M.R.; de Oliveira-Paiva, C.A.; Coelho, A.P.; Lemos, L.B. Application of Bacillus spp. Phosphate-Solubilizing Bacteria Improves Common Bean Production Compared to Conventional Fertilization. Plants 2023, 12, 3827. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, R.; Nwangburuka, C.; Oboirien, B. Origins, roles and fate of organic acids in soils: A review. S. Afr. J. Bot. 2017, 108, 393–406. [Google Scholar] [CrossRef]
- Othman, R.; Panhwar, Q.A. Phosphate-solubilizing bacteria improves nutrient uptake in aerobic rice. In Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 207–224. ISBN 9783319082165. [Google Scholar]
- Mardad, I.; Serrano, A.; Soukri, A. Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. Afr. J. Microbiol. Res. 2013, 7, 626–635. [Google Scholar] [CrossRef]
- Kudoyarova, G.; Arkhipova, T.; Korshunova, T.; Bakaeva, M.; Loginov, O.; Dodd, I.C. Phytohormone Mediation of Interactions Between Plants and Non-Symbiotic Growth Promoting Bacteria Under Edaphic Stresses. Front. Plant Sci. 2019, 10, 1368. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The significance of bacillus spp. In disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef]
- Chebotar, V.K.; Zaplatkin, A.N.; Chizhevskaya, E.P.; Gancheva, M.S.; Voshol, G.P.; Malfanova, N.V.; Baganova, M.E.; Khomyakov, Y.V.; Pishchik, V.N. Phytohormone Production by the Endophyte Bacillus safensis TS3 Increases Plant Yield and Alleviates Salt Stress. Plants 2024, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Ali, Q.; Jiang, Q.; Wang, R.; Wang, Z.; Mu, G.; Khan, S.A.; Khan, A.R.; Manghwar, H.; Wu, H.; et al. Salt Tolerant Bacillus Strains Improve Plant Growth Traits and Regulation of Phytohormones in Wheat under Salinity Stress. Plants 2022, 11, 2769. [Google Scholar] [CrossRef] [PubMed]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M.; et al. Advances in chemical and biological methods to identify microorganisms—From past to present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Lyng, M.; Kovács, Á.T. Frenemies of the soil: Bacillus and Pseudomonas interspecies interactions. Trends Microbiol. 2023, 31, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Pereponova, A.; Grahmann, K.; Lischeid, G.; Bellingrath-Kimura, S.D.; Ewert, F.A. Sustainable transformation of agriculture requires landscape experiments. Heliyon 2023, 9, e21215. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.A.; Nicholls, C.I. Agroecology and the Search for a Truly Sustainable Agriculture; Environmental Training Network for Latin America and the Caribbean; United Nations Environmental Programme: Mexico City, Mexico, 2005; ISBN 9687913355. [Google Scholar]
- Schmitz, L.; Yan, Z.; Schneijderberg, M.; de Roij, M.; Pijnenburg, R.; Zheng, Q.; Franken, C.; Dechesne, A.; Trindade, L.M.; van Velzen, R.; et al. Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome. ISME J. 2022, 16, 1907–1920. [Google Scholar] [CrossRef] [PubMed]
- Aguiar-Pulido, V.; Huang, W.; Suarez-Ulloa, V.; Cickovski, T.; Mathee, K.; Narasimhan, G. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol. Bioinform. 2016, 12, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Garbeva, P.; Raaijmakers, J.M.; Medema, M.H. Strategies for tailoring functional microbial synthetic communities. ISME J. 2024, 18, wrae049. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, L.A.; Santos, C.H.B.; Frezarin, E.T.; Sales, L.R.; Rigobelo, E.C. Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production. Microorganisms 2023, 11, 1088. [Google Scholar] [CrossRef]
- Bhat, M.A.; Mishra, A.K.; Jan, S.; Bhat, M.A.; Kamal, M.A.; Rahman, S.; Shah, A.A.; Jan, A.T. Plant Growth Promoting Rhizobacteria in Plant Health: A Perspective Study of the Underground Interaction. Plants 2023, 12, 629. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Soil pH Determination; FAO: Rome, Italy, 2021. [Google Scholar]
- Li, C.; Wang, S.; Sun, M.; Li, D.; Xu, H.; Zhang, L.; Xue, C.; Ma, W.; Sun, Z. Improving the Extraction Process of Mehlich 3 Method for Calcareous Soil Nutrients. Agronomy 2022, 12, 2907. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Soil Organic Carbon; FAO: Rome, Italy, 2019. [Google Scholar]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Salem, F.B. Determination of Phosphate in Water Samples. Rev. Anal. Chem. 1996, 15, 225–236. [Google Scholar] [CrossRef]
- Castillo, G.; Torrecillas, A.; Nogueiras, C.; Michelena, G.; Sánchez-Bravo, J.; Acosta, M. Simultaneous quantification of phytohormones in fermentation extracts of Botryodiplodia theobromae by liquid chromatography-electrospray tandem mass spectrometry. World J. Microbiol. Biotechnol. 2014, 30, 1937–1946. [Google Scholar] [CrossRef] [PubMed]
Field | Coordinates 1 | Altitude (m) 2 | Climate Type 3 | Average Annual Lower Temperature (°C) | Average Annual Higher Temperature (°C) | Average Annual Rainfall (mm) |
---|---|---|---|---|---|---|
Jakuboniai/JAK | 55°54′00.3″ N 24°06′44.3″ E | 54 | Dfb | −6.0 | 23.0 | 65.1 |
Beicarke/BEI | 55°55′53.6″ N 24°16′46.2″ E | 41 | ||||
Deglenai/DEG | 55°56′17.8″ N 24°08′26.9″ E | 48 |
Field | Depth (cm) | pH Value (H2O) | Available P (mg Kg−1) | Available K (mg Kg−1) | Organic Carbon (%) | N-NO3 (mg Kg−1) | N-NH4 (mg Kg−1) | Nmin (mg Kg−1) |
---|---|---|---|---|---|---|---|---|
JAK | 0–20 | 7.08 | 115 | 129 | 1.19 | 1.43 | 2.35 | 3.77 |
BEI | 6.11 | 199 | 141 | 0.95 | 8.32 | 0.74 | 9.06 | |
DEG | 8.00 | 159 | 265 | 2.12 | 15.20 | 0.50 | 15.70 |
Sequence ID | Blast-Related Sequence | Strain | The Number Assigned to the Sequence | Sequence Similarity (%) | Mismatched Nucleotides/Total Nucleotides | Sequence Coverage (%) |
---|---|---|---|---|---|---|
IJAK-27 | Bacillus toyonensis | BCT-7112 | CP006863 | 99.71223022 | 4/1390 | 100 |
IJAK-44 | Pseudomonas bijieensis | L22-9 | MT835388 | 99.78355 | 3/1386 | 100 |
IJAK-91 | Streptomyces gardneri | NBRC 12865 | AB249908 | 100 | 0/1360 | 100 |
IIBEI-32 | Bacillus aryabhattai | B8W22 | EF114313 | 100 | 0/1400 | 100 |
IIBEI-40 | Pseudomonas helmanticensis | OHA11 | HG940537 | 99.12 | 12/1376 | 100 |
IIBEI-22 | Streptomyces anulatus | NRRL B-2000 | DQ026637 | 99.57 | 6/1421 | 100 |
IIIDEG-45 | Bacillus tequilensis | KCTC 13622 | AYTO01000043 | 99.85 | 2/1410 | 100 |
IIIDEG-41 | Pseudomonas granadensis | LMG 27940 | LT629778 | 99.34783 | 9/1380 | 100 |
IIIDEG-72 | Streptomyces badius | NRRL B-2567 | AY999783 | 99.50 | 7/1421 | 100 |
Strain | Ammonia (NH3) Production | HCN Production | Siderophore Production | ACC Deaminase Production | Catalase Activity | Nitrogen-Fixing Activity | Potassium Solubilisation | Phosphate Solubilisation |
---|---|---|---|---|---|---|---|---|
IJAK-27 | +++ | +++ | ++ | +++ | +++ | ++ | + | ++ |
IJAK-44 | + | ++ | +++ | +++ | ++ | ++ | ++ | +++ |
IJAK-91 | + | + | ++ | ++ | + | ++ | + | + |
IIBEI-32 | +++ | ++ | ++ | +++ | ++ | + | + | ++ |
IIBEI-40 | + | + | ++ | ++ | + | + | + | +++ |
IIBEI-22 | − | − | ++ | +++ | + | + | + | + |
IIIDEG-45 | +++ | +++ | ++ | ++ | +++ | +++ | + | ++ |
IIIDEG-41 | + | + | +++ | ++ | ++ | + | ++ | +++ |
IIIDEG-72 | − | − | + | ++ | + | + | + | + |
Treatment | Concentration, µg mL−1 (Average from Triplicates ± SD) | |||||
---|---|---|---|---|---|---|
Lactic Acid | Acetic Acid | Gluconic Acid | Malic Acid | Oxalic Acid | Citric Acid | |
Control | 8.0 ± 1.0 | 5.0 ± 0.2 | ND † | ND | ND | ND |
IJAK-27 | 62.0 ± 5.0 | 6.5 ± 0.2 | 19.0 ± 2.0 | 25.0 ± 2.0 | 0.6 ± 0.1 | 20.0 ± 2.0 |
IJAK-44 | 240.0 ± 6.0 | 16.0 ± 2.0 | 59.0 ± 4.0 | 62.0 ± 1.0 | 1.0 ± 0.3 | 10.0 ± 1.0 |
IJAK-91 | 10.5 ± 1.0 | 13.0 ± 0.7 | 25.0 ± 2.0 | 6.0 ± 0.3 | ND | ND |
IJAK-27+44 | 333.5 ± 8.0 | 33.0 ± 2.0 | 83.0 ± 2.0 | 77.5 ± 4.0 | 1.8 ± 0.2 | 70.0 ± 4.0 |
IJAK-27+91 | 101.0 ± 16.0 | 15.0 ± 3.0 | 34.0 ± 3.0 | 21.5 ± 1.0 | 0.8 ± 0.2 | 27.0 ± 3.0 |
IJAK-44+91 | 222.0 ± 4.0 | 28.0 ± 1.0 | 42.0 ± 3.0 | 64.0 ± 1.0 | 1.1 ± 0.2 | 15.0 ± 3.0 |
IJAK-27+44+91 | 567.0 ± 13.0 | 35.0 ± 2.0 | 108.0 ± 5.0 | 140.0 ± 7.0 | 1.2 ± 0.2 | 33.5 ± 6.0 |
IIBEI-32 | 105.0 ± 1.0 | 13.0 ± 0.7 | 87.0 ± 13.0 | 6.0 ± 0.3 | 1.1 ± 0.3 | 13.5 ± 0.6 |
IIBEI-40 | 267.0 ± 6.0 | 11.5 ± 2.0 | 88.5 ± 5.0 | 21.0 ± 3.0 | 1.0 ± 0.3 | 7.0 ± 0.2 |
IIBEI-22 | 26.0 ± 4.0 | ND | 18.5 ± 2.0 | 14.0 ± 1.0 | ND | ND |
IIBEI-32+40 | 399.0 ± 7.0 | 25.5 ± 4.0 | 180.0 ± 7.0 | 105.0 ± 5.0 | 1.0 ± 0.5 | 27.0 ± 0.2 |
IIBEI-32+22 | 107.0 ± 2.0 | 10.0 ± 1.0 | 78.0 ± 8.0 | 2.0 ± 0.2 | 0.5 ± 0.1 | 4.5 ± 0.5 |
IIBEI-40+22 | 200.0 ± 4.0 | 17.0 ± 2.0 | 140.0 ± 4.0 | 92.0 ± 2.0 | 1.5 ± 0.2 | 10.0 ± 0.5 |
IIBEI-32+40+22 | 186.0 ± 6.0 | 12.5 ± 2.0 | 139.0 ± 7.0 | 66.0 ± 4.0 | 0.9 ± 0.3 | 5.0 ± 1.0 |
IIIDEG-45 | 201.0 ± 2.0 | 15.0 ± 2.0 | 13.0 ± 1.0 | 4.0 ± 1.0 | 0.2 ± 0.1 | 1.0 ± 0.1 |
IIIDEG-41 | 213.0 ± 5.0 | 17.0 ± 2.0 | 37.0 ± 4.0 | 4.0 ± 0.5 | 0.3 ± 0.1 | 1.0 ± 0.3 |
IIIDEG-72 | 26.0 ± 2.0 | 3.0 ± 0.5 | 42.5 ± 3.0 | ND | ND | ND |
IIIDEG-45+41 | 455.0 ± 15.0 | 35.0 ± 2.0 | 88.0 ± 3.0 | 11.0 ± 3.0 | 0.7 ± 0.2 | 5.0 ± 1.0 |
IIIDEG-45+72 | 222.0 ± 6.0 | 15.0 ± 2.0 | 55.0 ± 4.0 | 3.0 ± 0.5 | ND | ND |
IIIDEG-41+72 | 245. ± 7.0 | 34.0 ± 2.0 | 7.0 ± 1.0 | 2.0 ± 0.5 | 0.2 ± 0.1 | 0.2 ± 0.1 |
IIIDEG-45+41+72 | 405.0 ± 7.0 | 33.5 ± 3.0 | 101.5 ± 2.0 | 6.0 ± 2.0 | 1.3± 0.1 | 9.0 ± 0.8 |
Treatment | Concentration, µg mL−1 (Average from Triplicates ± SD) | |||
---|---|---|---|---|
Indole-3-Acetic Acid | Zeatin | Gibberellic Acid | Abscisic Acid | |
IJAK-27+44+91 | 6.600 ± 0.500 a | 0.150 ± 0.020 b | 3.400 ± 0.400 a | 0.250 ± 0.020 a |
IIBEI-32+40 | 3.500 ± 0.300 b | 0.160 ± 0.010 b | 1.240 ± 0.100 d | 0.136 ± 0.003 b |
IIIDEG-45+41 | 0.382 ± 0.005 c | 1.100 ± 0.200 a | 1.700 ± 0.300 c | 0.271 ± 0.006 a |
IIIDEG-45+41+72 | 0.348 ± 0.020 d | 0.159 ± 0.011 b | 2.250 ± 0.040 b | 0.271 ± 0.012 a |
Growth Indexes | CON1 † | CON2 ‡ | IJAK-27+44+91 | IIBEI-32+40 | IIIDEG-45+41 | IIIDEG-45+41+72 |
---|---|---|---|---|---|---|
Root length (cm) | 25.83 c | 27.33 bc | 36.00 a | 35.17 a | 34.33 a | 33.83 ab |
Shoot length (cm) | 51.67 b | 55.83 ab | 63.50 a | 63.17 a | 62.00 ab | 61.50 ab |
Number of leaves | 6.28 b | 7.90 ab | 8.30 a | 7.96 a | 7.86 ab | 7.90 ab |
Shoot fresh weight (g) | 6.15 b | 6.92 ab | 9.60 a | 9.62 a | 8.23 ab | 7.85 ab |
Root fresh weight (g) | 7.05 b | 8.68 ab | 10.93 a | 10.73 a | 8.85 ab | 8.80 ab |
Shoot dry weight (g) | 0.53 c | 0.57 bc | 0.87 ab | 0.90 a | 0.71 ac | 0.69 ac |
Root dry weight (g) | 0.54 d | 0.66 cd | 0.97 a | 0.89 ab | 0.83 ac | 0.77 bc |
Growth Indexes | CON2 | CON1 | IJAK-27+44+91 | IIBEI-32+40 | IIIDEG-45+41 | IIIDEG-45+41+72 |
---|---|---|---|---|---|---|
Sugars, % | 1.7 | 1.3 | 2.0 | 2.2 | 2.2 | 1.9 |
pH | 5.8 | 5.8 | 5.8 | 5.8 | 5.8 | 5.9 |
EC, mS/cm | 10.1 | 9.2 | 10.1 | 9.9 | 9.9 | 9.6 |
K, ppm | 4451 | 3989 | 4470 | 4278 | 4879 | 4367 |
Ca, ppm | 1073 | 876 | 1390 | 1634 | 1112 | 1328 |
Mg, ppm | 375 | 334 | 427 | 410 | 371 | 365 |
Na, ppm | 38 | 19 | 21 | 35 | 33 | 33 |
NH4, ppm | 49 | 41 | 52 | 45 | 57 | 51 |
NO3, ppm | 123 | 25 | 26 | 42 | 74 | 166 |
N in Nitrate, ppm | 28 | 6 | 9 | 6 | 17 | 38 |
N—Total Nitrogen, ppm | 1713 | 1324 | 1522 | 1684 | 1975 | 1690 |
Cl, ppm | 802 | 570 | 665 | 576 | 672 | 644 |
S, ppm | 165 | 151 | 208 | 191 | 182 | 164 |
P, ppm | 633 | 429 | 638 | 635 | 604 | 573 |
Si, ppm | 13.0 | 13.3 | 23.8 | 26.3 | 19.9 | 19.4 |
Fe, ppm | 1.99 | 1.90 | 2.21 | 2.7 | 2.75 | 2.22 |
Mn, ppm | 7.12 | 6.27 | 7.64 | 6.85 | 5.53 | 7.54 |
Zn, ppm | 2.03 | 1.31 | 2.00 | 2.3 | 3.6 | 2.04 |
B, ppm | 2.27 | 1.93 | 2.60 | 2.4 | 2.47 | 2.36 |
Cu, ppm | 0.29 | 0.19 | 0.27 | 0.29 | 0.31 | 0.37 |
Mo, ppm | 0.10 | <0.05 | 0.08 | 0.10 | 0.10 | 0.09 |
Al, ppm | 0.88 | <0.05 | 0.82 | 1.01 | 1.05 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mažylytė, R.; Kailiuvienė, J.; Mažonienė, E.; Orola, L.; Kaziūnienė, J.; Mažylytė, K.; Lastauskienė, E.; Gegeckas, A. The Co-Inoculation Effect on Triticum aestivum Growth with Synthetic Microbial Communities (SynComs) and Their Potential in Agrobiotechnology. Plants 2024, 13, 1716. https://doi.org/10.3390/plants13121716
Mažylytė R, Kailiuvienė J, Mažonienė E, Orola L, Kaziūnienė J, Mažylytė K, Lastauskienė E, Gegeckas A. The Co-Inoculation Effect on Triticum aestivum Growth with Synthetic Microbial Communities (SynComs) and Their Potential in Agrobiotechnology. Plants. 2024; 13(12):1716. https://doi.org/10.3390/plants13121716
Chicago/Turabian StyleMažylytė, Raimonda, Jurgita Kailiuvienė, Edita Mažonienė, Liana Orola, Justina Kaziūnienė, Kamilė Mažylytė, Eglė Lastauskienė, and Audrius Gegeckas. 2024. "The Co-Inoculation Effect on Triticum aestivum Growth with Synthetic Microbial Communities (SynComs) and Their Potential in Agrobiotechnology" Plants 13, no. 12: 1716. https://doi.org/10.3390/plants13121716
APA StyleMažylytė, R., Kailiuvienė, J., Mažonienė, E., Orola, L., Kaziūnienė, J., Mažylytė, K., Lastauskienė, E., & Gegeckas, A. (2024). The Co-Inoculation Effect on Triticum aestivum Growth with Synthetic Microbial Communities (SynComs) and Their Potential in Agrobiotechnology. Plants, 13(12), 1716. https://doi.org/10.3390/plants13121716