Long-Term Effect of Crop Succession Systems on Soil Chemical and Physical Attributes and Soybean Yield
Abstract
:1. Introduction
2. Results and Discussion
2.1. Soil Chemical Attributes
2.2. Soil Physical Attributes
2.3. Vegetative and Productive Components of Soybean
3. Materials and Methods
3.1. Experimental Area Characterization
3.2. Experimental Design and Treatments
3.3. Experiment Conduction
3.4. Soybean Yield
3.5. Soil Evaluations
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Growing Season | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2017/2018 | 2018 | 2018/2019 | 2019 | 2019/2020 | 2020 | 2020/2021 | 2021 | 2020/2021 | ||
Corn | Soybean | Corn | Soybean | Corn | Soybean | Corn | Soybean | Corn | Soybean | ||
Cultivar | 2A401PW | M7110 IPRO | 2B433PW | SYN1163RR | B2433PWU | SPEED | MG545 PWU | Bmx Foco IPRO | P3858PWU | Bmx Foco IPRO | |
Density | 3 seeds m−1 | 14.4 seeds m−1 | 3 seeds m−1 | 15 seeds m−1 | 3 seeds m−1 | 20 seeds m−1 | 3 seeds m−1 | 16 seeds m−1 | 3 seeds m−1 | 14 seeds m−1 | |
Fertilization | N-sowing | 80 kg ha−1 | 0 kg ha−1 | 30 kg ha−1 | 0 kg ha−1 | 30 kg ha−1 | 0 kg ha−1 | 30 kg ha−1 | 15 kg ha−1 | 15 kg ha−1 | 15 kg ha−1 |
P2O-sowing | 80 kg ha−1 | 80 kg ha−1 | 80 kg ha−1 | 80 kg ha−1 | 80 kg ha−1 | 80 kg ha−1 | 80 kg ha−1 | 80 kg ha−1 | 80 kg ha−1 | 80 kg ha−1 | |
K2O-sowing | 80 kg ha−1 | 80 kg ha−1 | 90 kg ha−1 | 80 kg ha−1 | 90 kg ha−1 | 80 kg ha−1 | 90 kg ha−1 | 80 kg ha−1 | 60 kg ha−1 | 80 kg ha−1 | |
N-sidedressing | 70 kg ha−1 | 100 kg ha−1 | 100 kg ha−1 | 100 kg ha−1 | 100 kg ha−1 | ||||||
S-sidedressing | - | - | - | - | 10 kg ha−1 | ||||||
Intercropped | Intercropped | Intercropped | Intercropped | Intercropped | |||||||
Corn | Corn | Corn | Corn | Corn | |||||||
Cultivar | 2A401PW | 2B433PW | B2433PWU | MG 545 PWU | P3858PWU | ||||||
Density | 3 seeds m−1 | 3 seeds m−1 | 3 seeds m−1 | 3 seeds m−1 | 3 seeds m−1 | ||||||
Fertilization | N-sowing | 80 kg ha−1 | 30 kg ha−1 | 30 kg ha−1 | 30 kg ha−1 | 15 kg ha−1 | |||||
P2O-sowing | 80 kg ha−1 | 80 kg ha−1 | 80 kg ha−1 | 80 kg ha−1 | 80 kg ha−1 | ||||||
K2O-sowing | 80 kg ha−1 | 90 kg ha−1 | 90 kg ha−1 | 90 kg ha−1 | 60 kg ha−1 | ||||||
N-sidedressing | 70 kg ha−1 | 100 kg ha−1 | 100 kg ha−1 | 100 kg ha−1 | 100 kg ha−1 | ||||||
S-sidedressing | 10 kg ha−1 | ||||||||||
Brachiaria | Brachiaria | Brachiaria | Brachiaria | Brachiaria | |||||||
Cultivar | U. ruziziensis | U. ruziziensis | U. ruziziensis | U. ruziziensis | U. ruziziensis | ||||||
Density | 10 kg ha−1 | 10 kg ha−1 | 10 kg ha−1 | 10 kg ha−1 | 8 kg ha−1 | ||||||
Cultural value | 51.80% | 75.00% | 75.00% | 80.00% | 85.00% | ||||||
Millet | Millet | Millet | Millet | Millet | |||||||
Cultivar | ADR300 | ADR300 | ADR300 | ADR300 | BRS 1501 | ||||||
Density | 20 kg ha−1 | 20 kg ha−1 | 20 kg ha−1 | 20 kg ha−1 | 15 kg ha−1 | ||||||
Brachiaria | Brachiaria | Brachiaria | Brachiaria | Brachiaria | |||||||
Cultivar | U. ruziziensis | U. ruziziensis | U. ruziziensis | U. ruziziensis | U. ruziziensis | ||||||
Density | 10 kg ha−1 | 10 kg ha−1 | 10 kg ha−1 | 10 kg ha−1 | 10 kg ha−1 | ||||||
Cultural value | 51.80% | 75.00% | 75.00% | 80.00% | 80.00% |
Phytosanitary Management—Soybean 2020/2021 | ||
---|---|---|
Dose (c.p.) | Active Ingredient | |
1st application | ||
200 mL ha−1 Wetcit® | Orange oil | |
2.5 L ha−1 Shadow Transorb® | Glyphosate | |
0.8 L ha−1 Viance® | Clethodim | |
2nd application | ||
150 mL ha−1 Mustang 350 EC® | Zeta-cypermethrin | |
3rd application | ||
300 mL ha−1 Galil SC® | Bifenthrin + Imidacloprid | |
300 mL ha−1 Approach Prima® | Cyproconazole + Picoxystrobin | |
200 mL ha−1 Wetcit® | Orange oil | |
4th application | ||
200 mL ha−1 Wetcit® | Orange oil | |
300 mL ha−1 Approach Prima® | Cyproconazole + Picoxystrobin | |
1 L ha−1 Talismã® | Bifenthrin + Carbosulfan |
References
- Oliveira, V.S.; Rolim, M.M.; Vasconcelos, R.F.B.; Pedrosa, E.M.R. Distribuição de agregados e carbono orgânico em um Argissolo Amarelo distrocoeso em diferentes manejos. Rev. Bras. Eng. Agric. Ambient. 2010, 14, 907–913. [Google Scholar] [CrossRef]
- Santos, G.G.; Silveira, P.M.D.; Marchão, R.L.; Petter, F.A.; Becquer, T. Chemical properties and aggregate stability under different cover crops in cerrado Oxisol. Rev. Bras. Eng. Agric. Ambient. 2012, 16, 1171–1178. [Google Scholar] [CrossRef]
- de Sousa, D.M.G.; Nunes, R.S.; Rein, T.A.; dos Santos, J.D.G., Jr. Manejo do fósforo na região do Cerrado. In Práticas de Manejo do Solo para Adequada Nutrição de Plantas no Cerrado, 1st ed.; Flores, R.A., Cunha, P., Eds.; UFG: Goiânia, Brazil, 2016; pp. 291–358. ISBN 978-85-495-0004-5. [Google Scholar]
- Shahidian, S.; Guimarães, R.C.; Rodrigues, C.M. Hidrologia Agrícola, 2nd ed.; ECT e ICAAM: Évora, Portugal, 2017; ISBN 978-989-8550-40-8. [Google Scholar]
- Brady, N.C. Natureza e Propriedades dos Solos, 7th ed.; Freitas Bastos Editora: Rio de Janeiro, Brazil, 1989; ISBN 0000000353. [Google Scholar]
- Peixoto, D.S.; Silva, B.M.; Oliveira, G.C.; Moreira, S.G.; da Silva, F.; Curi, N. A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil Tillage Res. 2019, 194, 104–307. [Google Scholar] [CrossRef]
- Leite, L.F.C. Matéria Orgânica do solo, 1 st ed.; Embrapa Meio Norte: Teresina, Brazil, 2004; ISSN 0104-866X. [Google Scholar]
- Motter, P.; Almeida, H.G. Plantio Direto: A Tecnologia que Revolucionou a Agricultura Brasileira, 1 st ed.; Parque Itaipu: Foz do Iguaçu, Brazil, 2015; ISBN 978-85-98845-42-5. [Google Scholar]
- Borghi, E.; Silva, G.F.; Calonego, J.C.; Parrella, R.A.C.; Antonio, M.S. BRS 716 Biomass Sorghum for Forage and Straw Production in a No-Tillage and Conventional Soy Preparation System, 1 st ed.; Embrapa Milho: Sete Lagoas, Brazil, 2020; ISSN 1679-0154. [Google Scholar]
- Pacheco, L.P.; Miguel, A.S.D.C.S.; Silva, R.G.D.; Souza, E.D.D.; Petter, F.A.; Kappes, C. Biomass yield in production systems of soybean sown in succession to annual crops and cover crops. Pesqui. Agropecu. Bras. 2017, 52, 559–582. [Google Scholar] [CrossRef]
- Soares, M.B.; da Ferddi, O.S.; da Matos, E.S.; Tavanti, R.F.R.; Wruck, F.J.; de Lima, J.P.; Marchioro, V.; Franchini, J.C. Integrated production systems: An alternative to soil chemical quality restoration in the Cerrado-Amazon ecotone. Catena 2020, 185, 104279. [Google Scholar] [CrossRef]
- Wu, G.-L.; Liu, Y.; Tian, F.-P.; Shi, Z.-H. Legumes Functional Group Promotes Soil Organic Carbon and Nitrogen Storage by Increasing Plant Diversity. Land Degrad. Dev. 2017, 28, 1336–1344. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. Environmental Factors Affecting the Mineralization of Crop Residues. Agronomy 2020, 10, 1951. [Google Scholar] [CrossRef]
- Shen, J.; Luo, Y.; Tao, Q.; White, P.J.; Sun, G.; Li, M.; Luo, J.; He, Y.; Li, B.; Li, Q.-Q.; et al. The exacerbation of soil acidification correlates with structural and functional succession of the soil microbiome upon agricultural intensification. Sci. Total Environ. 2022, 828, 154524. [Google Scholar] [CrossRef]
- Hao, T.; Zhu, Q.; Zeng, M.; Shen, J.; Shi, X.; Liu, X.; Zhang, F.; de Vries, W. Impacts of nitrogen fertilizer type and application rate on soil acidification rate under a wheat-maize double cropping system. J. Environ. Manag. 2020, 270, 110888. [Google Scholar] [CrossRef]
- Hao, T.; Liu, X.; Zhu, Q.; Zeng, M.; Chen, X.; Yang, L.; Shen, J.; Shi, X.; Zhang, F.; de Vries, W. Quantifying drivers of soil acidification in three Chinese cropping systems. Soil Tillage Res. 2022, 215, 105230. [Google Scholar] [CrossRef]
- Casali, C.A.; Tiecher, T.; Kaminski, J.; Santos, D.R.D.; Calegari, A.; Piccin, R. Benefícios do uso de plantas de cobertura de solo na ciclagem de fósforo. In Manejo e Conservação do Solo e da Água em Pequenas Propriedades Rurais no Sul do Brasil: Práticas Alternativas de Manejo Visando a Conservação do Solo e da Água, 1st ed.; Tiecher, T., Ed.; UFRGS: Porto Alegre, Brazil, 2016; pp. 23–33. ISBN 978-85-9489-010-8. [Google Scholar]
- Torres, J.L.R.; Costa, D.D.A.; Pereira, M.G.; Guardieiro, L.V.F.; Loss, A.; Lourenzi, C.R.; Gonzalez, A.P.; Carvalho, M.; Vieira, D.M.S. Phosphorus Fractionations and Availability in Areas under Different Management Systems in the Cerrado. Agronomy 2023, 13, 966. [Google Scholar] [CrossRef]
- Torres, J.L.R.; Pereira, M.G. Potassium dynamics in crop residues of cover plants in Cerrado. Rev. Bras. Cienc. Solo 2008, 32, 1609–1618. [Google Scholar] [CrossRef]
- Bortoluzi, E.C.; Eltz, F.L.F. Effect of black oat straw mechanical management on soil cover, temperature, soil water content and soybean emergency under no-till system. Rev. Bras. Cienc. Solo 2000, 24, 449–457. [Google Scholar] [CrossRef]
- Costa, R.R.G.F.; Costa, K.A.P.; Assis, R.L.; Santos, C.B.; Severiano, E.C.; Rocha, A.F.S.; Oliveira, I.P.; Costa, P.H.C.P.; Souza, W.F.; Aquino, M.M. Dynamics of biomass of pearl millet and paiaguas palisadegrass in different forage systems and sowing periods in yield of soybean. Afr. J. Agric. Res. 2016, 11, 4661–4673. [Google Scholar] [CrossRef]
- Silva, J.A.G.; Costa, K.A.P.; Severiano, E.C.; da Silva, A.G.; Vilela, L.; Leandro, W.M.; Muniz, M.P.; da Silva, L.M.; Mendonça, K.T.M.; Barros, V.M. Efficiency of Desiccation, Decomposition and Release of Nutrients in the Biomass of Forage Plants of the Genus Brachiaria After Intercropping with Sorghum in Integrated Systems for Soybean Productivity. Commun. Soil Sci. Plant Anal. 2024, 55, 1644–1662. [Google Scholar] [CrossRef]
- Pires, F.R.; Assis, R.L.d.; Silva, G.P.; Braz, A.J.B.P.; Santos, S.C.; Vieira, S.A.N.; de Souza, J.P.G. Desempenho agronômico de variedades de milheto em razão da fenologia em pré-safra. Biosci. J. 2007, 23, 41–49. [Google Scholar]
- Pavinato, P.S. Dinâmica do Fósforo no solo em Função do Manejo e da Presença de Resíduos em Superfície. Ph.D. Thesis, Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agronômicas, Botucatu, Brazil, 2007. [Google Scholar]
- Alcântara, F.A.D.; Furtini, A.E.N.; Paula, M.B.D.; Mesquita, H.A.D.; Muniz, J.A. Green manuring in the recovery of degraded oxisoil fertility. Pesqui. Agropecu. Bras. 2000, 35, 277–288. [Google Scholar] [CrossRef]
- Sistemas de Produção—Cultivo do Milheto. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/doc/993985/1/Sistema-de-Producao-Cultivo-do-Milheto.pdf (accessed on 20 May 2023).
- Silva, C.G.M.; Resende, A.V.d.; Gutiérrez, A.M.; Moreira, S.G.; Borghi, E.; Almeida, G.O. Macronutrient uptake and export in transgenic corn under two levels of fertilization. Pesqui. Agropecu. Bras. 2018, 53, 1363–1372. [Google Scholar] [CrossRef]
- Favarato, L.F.; de Souza, J.L.; de Souza, C.M.; Guarçoni, R.; Galvão, J. Attributes chemical soil on different cover crops in no tillage organic system. Rev. Bras. Agropecuária Sustentável 2015, 5, 19–28. [Google Scholar]
- Floss, E.; Federizzi, L.; Matzembacker, R.; Rosa Filho, O.; Carvalho, F.; Almeida, J.; Godoy, R. Análise Conjunta do Ensaio Brasileiro de Cultivares Recomendados de Aveia Branca; Reunião da Comissão Brasileira de Pesquisa de Aveia: Pelotas, Brazil, 2000; pp. 401–424. [Google Scholar]
- Boer, C.A.; Assis, R.L.D.; Silva, G.P.; Braz, A.J.B.P.; Barroso, A.L.D.L.; Cargnelutti Filho, A.; Pires, F.R. Nutrient cycling in off-season cover crops on a Brazilian savanna soil. Pesqui. Agropecu. Bras. 2007, 42, 1269–1276. [Google Scholar] [CrossRef]
- Vargas, V.P.; Sangoi, L.; Ernani, P.R.; Siega, E.; Carniel, G.; Ferreira, M.A. Leaf attributes are more efficient than soil mineral N to evaluate the availability of this nutrient to maize. Bragantia 2012, 71, 245–255. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Kissel, D.E.; Vigil, M.F. Nitrogen mineralization from organic residues: Research opportunities. J. Environ. Qual. 2005, 34, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Paśmionka, I. Microbiological transformations of soil nitrogen. Kosmos 2017, 66, 185–192. [Google Scholar]
- Sapek, B.; Kalinowska, D. Mineralization of soil organic nitrogen compounds in the light of long-term grassland experiments in IMUZ. Water Environ. Rural Areas 2004, 4, 183–200. [Google Scholar]
- Mateus, G.P.; Crusciol, C.A.C.; Pariz, C.M.; Borghi, E.; Costa, C.; Martello, J.M.; Franzluebbers, A.J.; Castilhos, A.M. Sidedress nitrogen application rates to sorghum intercropped with tropical perennial grasses. Agron. J. 2016, 108, 433–447. [Google Scholar] [CrossRef]
- Canisares, L.P.; Rosolem, C.A.; Momesso, L.; Crusciol, C.A.C.; Villegas, D.M.; Arango, J.; Ritz, K.; Cantarella, H. Maize-Brachiaria intercropping: A strategy to supply recycled N to maize and reduce soil N2O emissions? Agric. Ecosyst. Environ. 2021, 319, 107491. [Google Scholar] [CrossRef] [PubMed]
- Crusciol, C.A.C.; Nascente, A.S.; Borghi, E.; Soratto, R.P.; Martins, P.O. Improving soil fertility and crop yield in a tropical region with palisadegrass cover crops. Agron. J. 2015, 107, 2271–2280. [Google Scholar] [CrossRef]
- Bayer, C.; Mielniczuk, J. Dinâmica e função da matéria orgânica. In Fundamentos da Matéria Orgânica do Solo: Ecossistemas Tropicais e Subtropicais, 2nd ed.; Santos, G.d.A., Da Silva, L.S., Canellas, L.P., Camargo, F.A.O., Eds.; Metrópole: Porto Alegre, Brazil, 2008; pp. 7–18. ISBN 978-89-85401-73-9. [Google Scholar]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A Review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Farmaha, B.S.; Sekaran, U.; Franzluebbers, A.J. Cover cropping and conservation tillage improve soil health in the southeastern United States. Agron. J. 2021, 114, 296–316. [Google Scholar] [CrossRef]
- De Maria, I.C.; Nnabude, P.C.; Castro, O.M. Long-term tillage and crop rotation effects on soil chemical properties of a Rhodic Ferralsol in southern Brazil. Soil Tillage Res. 1999, 51, 71–79. [Google Scholar] [CrossRef]
- Pereira, F.G.C. Chemical and Physical Quality Characteristics of a Yellow Latosol (Oxisol) under Different Utilization Systems in the Semiarid Region in Bahia, Brazil. Master’s Thesis, Universidade Federal do Vale do São Francisco, Juazeiro, Brazil, 2013. [Google Scholar]
- Arantes, E.M.; Cremon, C.; Luiz, M.A.C. Changes in soil chemical attributes cultivated in the organic system with no-tillage in different coverage plants. Agrarian 2012, 5, 47–54. [Google Scholar]
- Ghiberto, P.J.; Moraes, S.O. Comparison of determination methods of hydraulic conductivity in a typic Hapludox. Rev. Bras. Cienc. Solo 2011, 35, 1177–1188. [Google Scholar] [CrossRef]
- Guimarães, C.V.; Assis, R.L.D.; Simon, G.A.; Pires, F.R.; Ferreira, R.L.; Santos, D.C.D. Performance of cultivars and hybrids of millet in a soil submitted to compaction. Rev. Bras. Eng. Agric. Ambient. 2013, 17, 1188–1194. [Google Scholar] [CrossRef]
- Stone, L.F.; Guimarães, C.M.; Moreira, J.A. Soil compaction in a bean crop. I: Effects on soil physical and water properties. Rev. Bras. Eng. Agric. Ambient. 2002, 6, 207–212. [Google Scholar] [CrossRef]
- Argenton, J.; Albuquerque, J.A.; Bayer, C.; Wildner, L.D.P. Structural attributes of a clayey hapludox cultivated under distinct tillage methods and cover crops. Rev. Bras. Cienc. Solo 2005, 29, 425–435. [Google Scholar] [CrossRef]
- Reeves, D.W. Soil management under no-tillage: Soil physical aspects. In I Seminário Internacional do Sistema Plantio Direto; Embrapa: Passo Fundo, Brazil, 1995; pp. 127–130. [Google Scholar]
- Stone, L.F.; Silveira, P.M.d. Effects of soil tillage systems and crop rotations on soil porosity and bulk density. Rev. Bras. Cienc. Solo 2001, 25, 395–401. [Google Scholar] [CrossRef]
- Walter, K.; Don, A.; Tiemeyer, B.; Freibauer, A. Determining soil bulk density for carbon stock calculations: A systematic method comparison. Soil Sci. Soc. Am. J. 2016, 80, 579–591. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 15th ed.; Person Education: Upper Saddle River, NJ, USA, 2016; ISBN 978-0133254488. [Google Scholar]
- McPhee, J.E.; Antille, D.L.; Tullberg, J.N.; Doyle, R.B.; Boersma, M. Managing soil compaction—A choice of low-mass autonomous vehicles or controlled traffic? Biosyst. Eng. 2020, 195, 227–241. [Google Scholar] [CrossRef]
- Lepsch, I.F. 19 Lições de Pedologia, 2 nd ed.; Oficina de Textos: São Paulo, Brazil, 2021; ISBN 978-65-86235-26-5. [Google Scholar]
- Tavares, S.C.A.; Cezar, T.M.; Nóbrega, L.H.P. Porosity of oxisols and management practices foragricultural soil conservation. Varia Sci. Agrárias 2012, 2, 153–164. [Google Scholar]
- Kiehl, E.J. Manual de Edafologia: Relações Solo-Planta; Agronômica Ceres: São Paulo, Brazil, 1979. [Google Scholar]
- Ribeiro, K.D.; Menezes, S.M.; Mesquita, M.D.G.B.D.F.; Sampaio, F.D.M.T. Soil physical properties, influenced by pores distribution, of six soil classes in the region of Lavras-MG. Cienc. Agrotecnologia 2007, 31, 1167–1175. [Google Scholar] [CrossRef]
- Castro Filho, C.; Muzilli, O.; Podanoschi, A.L. Soil aggregate stability and its relation with organic carbon in a typic haplorthox, as a function of tillage systems, crop rotations and soil sample preparation. Rev. Bras. Cienc. Solo 1998, 22, 527–538. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Environmental Soil Physics, 3rd ed.; Academic Press: San Diego, CA, USA, 2003; ISBN 978-0-12-348655-4. [Google Scholar]
- Silva, I.F.; Mielniczuk, J. Aggregate stability as affected by croppingsystems and soil characteristics. Rev. Bras. Cienc. Solo 1998, 23, 311–317. [Google Scholar] [CrossRef]
- Carpenedo, V.; Mielniczuk, J. Estado de agregação e qualidade de agregados de Latossolos Roxos, submetidos a diferentes sistemas de manejo. Rev. Bras. Cienc. Solo 1990, 14, 99–105. [Google Scholar]
- de Lima, O.F.F.; Ambrosano, E.J.; Wutke, E.B.; Rossi, F.; Carlos, J.A.D. Adubação Verde e Plantas de Cobertura no Brasil: Fundamentos e Prática, 2nd ed.; Embrapa: Brasília, Brazil, 2023; ISBN 978-65-86056-63-1. [Google Scholar]
- Spera, S.T.; Santos, H.P.; Fontaneli, R.S.; Tomm, G.O. Effects of grain production systems including pastures under no-tillage on soil physical properties and yield. Rev. Bras. Cienc. Solo 2005, 28, 533–542. [Google Scholar] [CrossRef]
- Pariz, C.M.; Costa, C.; Crusciol, C.A.C.; Meirelles, P.R.L.; Castilhos, A.M.; Andreotti, M.; Costa, N.R.; Martello, J.M.; Souza, D.M.; Protes, V.M.; et al. Production, nutrient cycling and soil compaction to grazing of grass companion cropping with corn and soybean. Nutr. Cycl. Agroecosyst. 2017, 5, 35–54. [Google Scholar] [CrossRef]
- Martins, E.C.A.; Peluzio, J.M.; Oliveira, W.P., Jr.; Tsai, S.M.; Navarrete, A.A.; Moraes, P.B. Changes in physico-chemical properties of topsoil in response to agriculture with soybeans in the “várzea” of Tocantins. Biota Amaz. 2015, 5, 56–62. [Google Scholar] [CrossRef]
- Garcia, A.; Pipolo, A.E.; Lopes, I.d.O.N.; Portugal, F.A.F. Instalação da Lavoura de soja: Época, Cultivares, Espaçamento e População de Plantas, 1st ed.; Embrapa: Londrina, Brazil, 2007; ISSN 1516-7860. [Google Scholar]
- Peluzio, J.M.; Vaz-de-Melo, A.; Colombo, G.A.; Silva, R.B.; Afférri, F.S.; Pires, L.P.M.; Barros, H.B. Efeito da época e densidade de semeadura na produtividade de grãos de soja na Região Centro-Sul do estado do Tocantins. Pesqui. Apl. e Agrotecnologia 2010, 3, 145–153. [Google Scholar]
- Instituto Nacional de Meteorologia—INMET. Dados Históricos, 2022. Available online: https://portal.inmet.gov.br/dadoshistoricos (accessed on 20 May 2023).
- dos Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; de Araújo, J.C.F.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; ISBN 978-85-7035-800-4. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília, Brazil, 2017; ISBN 978-85-7035-771-7. [Google Scholar]
- Claessen, M.E.C.; Barreto, W.O.; Paula, J.L.d.; Duarte, M.N. Manual de Métodos de Análise de Solo, 2nd.ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2011; ISBN 85-85864-3-6. [Google Scholar]
- Ferreira, D.F. Sisvar: A computer analysis system to fixed effects split plot type designs. Rev. Bras. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef]
Crop Succession Systems | NP (no.) | NGP (no.) | NG (no.) | M400 (g) | POP (no.) | Y (kg.ha−1) | ∑Y (kg.ha−1) |
---|---|---|---|---|---|---|---|
Corn | 36.35 | 2.49 | 90.23 | 62.38 | 313,771 | 4835 | 9669 b |
Millet | 38.00 | 2.45 | 93.01 | 61.86 | 329,512 | 4835 | 9669 b |
Brachiaria | 41.39 | 2.51 | 103.59 | 62.73 | 293,401 | 4811 | 9622 b |
intercropping | 40.06 | 2.54 | 101.98 | 64.83 | 303,123 | 5107 | 10,203 a |
2020/2021 | 39.93 | 2.33 | 93.02 | 62.30 | 354,973 | 4576.5 | - |
2021/2022 | 37.98 | 2.67 | 101.38 | 63.60 | 264,931 | 5217.2 | - |
SV | NP (no.) | NGP (no.) | NG (no.) | M400 (g) | POP (no.) | Y (kg.ha−1) | ∑Y (kg.ha−1) |
Treatments (T) | 0.154 ns | 0.199 ns | 0.098 ns | 0.153 ns | 0.018 | 0.034 | 0.069 |
Growing Season (GS) | 0.232 ns | <0.001 | 0.058 ns | 0.052 ns | <0.001 | <0.001 | - |
T × GS | 0.267 ns | 0.20 ns | 0.233 ns | 0.065 ns | 0.084 ns | 0.896 ns | - |
pH | OM | Meh. P | H + Al | K | Ca | Mg | SB | CEC | V |
---|---|---|---|---|---|---|---|---|---|
H2O | g.kg−1 | mg.dm−3 | -------------------- cmolc.dm−3 ---------------------- | % | |||||
5.10 | 36.0 | 16.1 | 5.75 | 0.21 | 2.76 | 1.02 | 3.99 | 9.74 | 40.96 |
Clay | Sand | Silt | |||||||
----------------------------- g.kg−1 ----------------------------- | |||||||||
585 | 240 | 175 |
pH | OM | Meh. P | H + Al | K | Ca | Mg | SB | CEC | V |
---|---|---|---|---|---|---|---|---|---|
H2O | g.kg−1 | mg.dm−3 | ---------------------- cmolc.dm−3 --------------------- | % | |||||
5.78 | 31.8 | 21.4 | 4.09 | 0.26 | 2.92 | 1.55 | 4.73 | 8.82 | 46.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, M.S.S.; Nascimento, N.M.; Pereira, L.A.F.M.; Barbosa, T.A.; da Costa, C.H.M.; Guimarães, T.M.; Bezerra, A.C.T.P.; Machado, D.L. Long-Term Effect of Crop Succession Systems on Soil Chemical and Physical Attributes and Soybean Yield. Plants 2024, 13, 2217. https://doi.org/10.3390/plants13162217
Alves MSS, Nascimento NM, Pereira LAFM, Barbosa TA, da Costa CHM, Guimarães TM, Bezerra ACTP, Machado DL. Long-Term Effect of Crop Succession Systems on Soil Chemical and Physical Attributes and Soybean Yield. Plants. 2024; 13(16):2217. https://doi.org/10.3390/plants13162217
Chicago/Turabian StyleAlves, Milla S. S., Natanael M. Nascimento, Luiz Antonio F. M. Pereira, Thiago A. Barbosa, Claudio Hideo Martins da Costa, Tiara M. Guimarães, Aracy Camilla T. P. Bezerra, and Deivid L. Machado. 2024. "Long-Term Effect of Crop Succession Systems on Soil Chemical and Physical Attributes and Soybean Yield" Plants 13, no. 16: 2217. https://doi.org/10.3390/plants13162217
APA StyleAlves, M. S. S., Nascimento, N. M., Pereira, L. A. F. M., Barbosa, T. A., da Costa, C. H. M., Guimarães, T. M., Bezerra, A. C. T. P., & Machado, D. L. (2024). Long-Term Effect of Crop Succession Systems on Soil Chemical and Physical Attributes and Soybean Yield. Plants, 13(16), 2217. https://doi.org/10.3390/plants13162217