The Use of Compost and Arbuscular Mycorrhizal Fungi and Their Combination to Improve Tomato Tolerance to Salt Stress
Abstract
:1. Introduction
2. Results
2.1. Growth, Yield, and Mycorrhizal Colonization Traits
2.2. Photosynthetic Pigments Content
2.3. Nitrogen Content
2.4. Hydrogen Peroxide and Malondialdehyde Content
2.5. Soluble Sugar and Protein Content
2.6. Antioxidant Enzyme Activity
2.7. Principal Component Analysis
3. Discussion
4. Materials and Methods
4.1. Plant and Biostimulant Materials and Experimental Design
4.2. Growth, Yield, and Mycorrhization Assessment
4.3. Measurement of Photosystem II Photochemical Efficiency and Stomatal Conductance
4.4. Nitrogen Content
4.5. Photosynthetic Pigments and Soluble Sugars Content
4.6. Dosage of Malondialdehyde and Hydrogen Peroxide Content
4.7. Determination of Protein Content and Antioxidant Enzyme Activity
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Butcher, K.; Wick, A.F.; DeSutter, T.; Chatterjee, A.; Harmon, J. Soil Salinity: A Threat to Global Food Security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
- Foronda, D.A. Reclamation of a Saline-Sodic Soil with Organic Amendments and Leaching. Environ. Sci. Proc. 2022, 16, 56. [Google Scholar] [CrossRef]
- Russo, D. ‘Physical Effects of Soil Salinity’. In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 123–138. [Google Scholar] [CrossRef]
- Trușcă, M.; Gâdea, S.; Vidican, R.; Stoian, V.; Vâtcă, A.; Balint, C.; Stoian, V.A.; Horvat, M.; Vâtcă, S. Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress. Agriculture 2023, 13, 734. [Google Scholar] [CrossRef]
- Orzechowska, A.; Trtílek, M.; Tokarz, K.M.; Szymańska, R.; Niewiadomska, E.; Rozpądek, P.; Wątor, K. Thermal Analysis of Stomatal Response under Salinity and High Light. Int. J. Mol. Sci. 2021, 22, 4663. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ Response Mechanisms to Salinity Stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef]
- Alzahib, R.H.; Migdadi, H.M.; Al Ghamdi, A.A.; Alwahibi, M.S.; Ibrahim, A.A.; Al-Selwey, W.A. Assessment of Morpho-Physiological, Biochemical and Antioxidant Responses of Tomato Landraces to Salinity Stress. Plants 2021, 10, 696. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Hewedy, O.A.; Battaglia, M.L.; Jalal, R.S.; Alhammad, B.A.; Schillaci, C.; Ali, N.; Al-Doss, A. Field Crop Responses and Management Strategies to Mitigate Soil Salinity in Modern Agriculture: A Review. Agronomy 2021, 11, 2299. [Google Scholar] [CrossRef]
- Anami, B.S.; Malvade, N.N.; Palaiah, S. Classification of yield affecting biotic and abiotic paddy crop stresses using field images. Inf. Process. Agric. 2019, 7, 272–285. [Google Scholar] [CrossRef]
- Fu, H.; Yang, Y. How Plants Tolerate Salt Stress. Curr. Issues Mol. Biol. 2023, 45, 5914–5934. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Wang, G.; Cha, J.-Y.; Li, G.; Chen, S.; Li, Z.; Guo, J.; Zhang, C.; Yang, Y.; et al. A Chaperone Function of NO CATALASE ACTIVITY1 Is Required to Maintain Catalase Activity and for Multiple Stress Responses in Arabidopsis. Plant Cell 2015, 27, 908–925. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, J.; Hao, R.; Guo, Y. Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII. J. Genet. Genom. 2017, 44, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Sreenivasulu, N.; Grimm, B.; Wobus, U.; Weschke, W. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol. Plant. 2000, 109, 435–442. [Google Scholar] [CrossRef]
- Wang, X.; Fang, G.; Yang, J.; Li, Y. A Thioredoxin-Dependent Glutathione Peroxidase (OsGPX5) Is Required for Rice Normal Development and Salt Stress Tolerance. Plant Mol. Biol. Rep. 2017, 35, 333–342. [Google Scholar] [CrossRef]
- Ahmed, A.; Kurian, J.; Raghavan, V. Biochar influences on agricultural soils, crop production, and the environment: A review. Environ. Rev. 2016, 24, 495–502. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rathod, S.; Manohara, K.K.; Gireesh, C.; Anantha, M.S.; Sakhare, A.S.; Parmar, B.; Yadav, B.K.; Bandumula, N.; Raihan, F.; et al. Salt Stress in Plants and Mitigation Approaches. Plants 2022, 11, 717. [Google Scholar] [CrossRef] [PubMed]
- Mbarki, S.; Skalicky, M.; Talbi, O.; Chakraborty, A.; Hnilicka, F.; Hejnak, V.; Zivcak, M.; Brestic, M.; Cerda, A.; Abdelly, C. Performance of Medicago sativa Grown in Clay Soil Favored by Compost or Farmyard Manure to Mitigate Salt Stress. Agronomy 2020, 10, 94. [Google Scholar] [CrossRef]
- Bustamante, M.; Gomis, M.; Murcia, P.; Gangi, D.; Ceglie, F.; Paredes, C.; Pérez-Espinosa, A.; Bernal, M.; Moral, R. Use of livestock waste composts as nursery growing media: Effect of a washing pre-treatment. Sci. Hortic. 2021, 281, 109954. [Google Scholar] [CrossRef]
- Naveed, M.; Aslam, M.K.; Ahmad, Z.; Abbas, T.; Al-Huqail, A.A.; Siddiqui, M.H.; Ali, H.M.; Ashraf, I.; Mustafa, A. Growth Responses, Physiological Alterations and Alleviation of Salinity Stress in Sunflower (Helianthus annuus L.) Amended with Gypsum and Composted Cow Dung. Sustainability 2021, 13, 6792. [Google Scholar] [CrossRef]
- Chauhan, S.; Mahawar, S.; Jain, D.; Udpadhay, S.K.; Mohanty, S.R.; Singh, A.; Maharjan, E. Boosting Sustainable Agriculture by Arbuscular Mycorrhiza under Stress Condition: Mechanism and Future Prospective. BioMed Res. Int. 2022, 2022, 5275449. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Read, D. Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In Mycorrhizal Symbiosis; Academic Press: Cambridge, MA, USA, 2008; pp. 145–187. [Google Scholar] [CrossRef]
- Dai, M.; Hamel, C.; Bainard, L.D.; Arnaud, M.S.; Grant, C.A.; Lupwayi, N.Z.; Malhi, S.S.; Lemke, R. Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian prairie. Soil Biol. Biochem. 2014, 74, 156–166. [Google Scholar] [CrossRef]
- Morin, E.; Miyauchi, S.; Clemente, H.S.; Chen, E.C.H.; Pelin, A.; de la Providencia, I.; Ndikumana, S.; Beaudet, D.; Hainaut, M.; Drula, E.; et al. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytol. 2019, 222, 1584–1598. [Google Scholar] [CrossRef]
- Habibi, N.; Aryan, S.; Amin, M.W.; Sanada, A.; Terada, N.; Koshio, K. Potential Benefits of Seed Priming under Salt Stress Conditions on Physiological, and Biochemical Attributes of Micro-Tom Tomato Plants. Plants 2023, 12, 2187. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Kamran, M.; Abbasi, G.H.; Saleem, M.H.; Ahmad, S.; Parveen, A.; Malik, Z.; Afzal, S.; Ahmar, S.; Dawar, K.M.; et al. Melatonin-Induced Salinity Tolerance by Ameliorating Osmotic and Oxidative Stress in the Seedlings of Two Tomato (Solanum lycopersicum L.) Cultivars. J. Plant Growth Regul. 2021, 40, 2236–2248. [Google Scholar] [CrossRef]
- Mihalache, G.; Peres, C.I.; Bodale, I.; Achitei, V.; Gheorghitoaie, M.V.; Teliban, G.C.; Cojocaru, A.; Butnariu, M.; Muraru, V.; Stoleru, V. Tomato Crop Performances under Chemical Nutrients Monitored by Electric Signal. Agronomy 2020, 10, 1915. [Google Scholar] [CrossRef]
- Stoleru, V.; Inculet, S.-C.; Mihalache, G.; Cojocaru, A.; Teliban, G.-C.; Caruso, G. Yield and Nutritional Response of Greenhouse Grown Tomato Cultivars to Sustainable Fertilization and Irrigation Management. Plants 2020, 9, 1053. [Google Scholar] [CrossRef] [PubMed]
- Murariu, O.C.; Brezeanu, C.; Jităreanu, C.D.; Robu, T.; Irimia, L.M.; Trofin, A.E.; Popa, L.-D.; Stoleru, V.; Murariu, F.; Brezeanu, P.M. Functional Quality of Improved Tomato Genotypes Grown in Open Field and in Plastic Tunnel under Organic Farming. Agriculture 2021, 11, 609. [Google Scholar] [CrossRef]
- Dasgupta, A.; Klein, K. ‘Herbal and Other Dietary Supplements That Are Antioxidants’. In Antioxidants in Food, Vita-Mins and Supplements; Elsevier: Amsterdam, The Netherlands, 2014; pp. 295–315. [Google Scholar] [CrossRef]
- Rahman, M.; Hossain, K.F.B.; Sikder, T.; Shammi, M.; Rasheduzzaman; Hossain, M.A.; Alam, A.M.; Uddin, M.K. Effects of NaCl-Salinity on Tomato (Lycopersicon esculentum Mill.) Plants in a Pot Experiment. Open Agric. 2018, 3, 578–585. [Google Scholar] [CrossRef]
- Bogoutdinova, L.R.; Khaliluev, M.R.; Chaban, I.A.; Gulevich, A.A.; Shelepova, O.V.; Baranova, E.N. Salt Tolerance Assessment of Different Tomato Varieties at the Seedling Stage. Horticulturae 2024, 10, 598. [Google Scholar] [CrossRef]
- Savy, D.; Cozzolino, V.; Vinci, G.; Verrillo, M.; Aliberti, A.; Maggio, A.; Barone, A.; Piccolo, A. Fertilisation with compost mitigates salt stress in tomato by affecting plant metabolomics and nutritional profiles. Chem. Biol. Technol. Agric. 2022, 9, 104. [Google Scholar] [CrossRef]
- Gedeon, S.; Ioannou, A.; Balestrini, R.; Fotopoulos, V.; Antoniou, C. Application of Biostimulants in Tomato Plants (Solanum lycopersicum) to Enhance Plant Growth and Salt Stress Tolerance. Plants 2022, 11, 3082. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.-M.; Li, Q.-S.; Liu, M.-Y.; Hashem, A.; Al-Arjani, A.-B.F.; Alenazi, M.M.; Abd_Allah, E.F.; Muthuramalingam, P.; Wu, Q.-S. Mycorrhizal Effects on Growth and Expressions of Stress-Responsive Genes (aquaporins and SOSs) of Tomato under Salt Stress. J. Fungi 2022, 8, 1305. [Google Scholar] [CrossRef]
- Liu, M.-Y.; Li, Q.-S.; Ding, W.-Y.; Dong, L.-W.; Deng, M.; Chen, J.-H.; Tian, X.; Hashem, A.; Al-Arjani, A.-B.F.; Alenazi, M.M.; et al. Arbuscular mycorrhizal fungi inoculation impacts expression of aquaporins and salt overly sensitive genes and enhances tolerance of salt stress in tomato. Chem. Biol. Technol. Agric. 2023, 10, 5. [Google Scholar] [CrossRef]
- da Silva, E.C.; Nogueira, R.J.M.C.; de Araújo, F.P.; de Melo, N.F.; Neto, A.D.d.A. Physiological responses to salt stress in young umbu plants. Environ. Exp. Bot. 2007, 63, 147–157. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Ait-El-Mokhtar, M.; Ben Laouane, R.; Anli, M.; Boutasknit, A.; Wahbi, S.; Meddich, A. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci. Hortic. 2019, 253, 429–438. [Google Scholar] [CrossRef]
- Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 2019, 225, 1091–1096. [Google Scholar] [CrossRef]
- Ait-El-Mokhtar, M.; Baslam, M.; Ben-Laouane, R.; Anli, M.; Boutasknit, A.; Mitsui, T.; Wahbi, S.; Meddich, A. Alleviation of Detrimental Effects of Salt Stress on Date Palm (Phoenix dactylifera L.) by the Application of Arbuscular Mycorrhizal Fungi and/or Compost. Front. Sustain. Food Syst. 2020, 4, 131. [Google Scholar] [CrossRef]
- Ben-Laouane, R.; Baslam, M.; Ait-El-Mokhtar, M.; Anli, M.; Boutasknit, A.; Ait-Rahou, Y.; Toubali, S.; Mitsui, T.; Oufdou, K.; Wahbi, S.; et al. Potential of Native Arbuscular Mycorrhizal Fungi, Rhizobia, and/or Green Compost as Alfalfa (Medicago sativa) Enhancers under Salinity. Microorganisms 2020, 8, 1695. [Google Scholar] [CrossRef]
- El Amerany, F.; Rhazi, M.; Wahbi, S.; Taourirte, M.; Meddich, A. The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Sci. Hortic. 2020, 261, 109015. [Google Scholar] [CrossRef]
- Gryndler, M.; Sudová, R.; Püschel, D.; Rydlová, J.; Janoušková, M.; Vosátka, M. Cultivation of high-biomass crops on coal mine spoil banks: Can microbial inoculation compensate for high doses of organic matter? Bioresour. Technol. 2008, 99, 6391–6399. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, Z.; Zhou, Y.; Han, J.; Shi, D. Effects of salt stress on ion balance and nitrogen metabolism in rice. Plant Soil Environ. 2012, 58, 62–67. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Agarwal, R.; Tomar, N.S.; Shrivastava, M. Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativaL cultivar Kent). J. Plant Interact. 2015, 10, 211–223. [Google Scholar] [CrossRef]
- Ouhaddou, R.; Ben-Laouane, R.; Lahlali, R.; Anli, M.; Ikan, C.; Boutasknit, A.; Slimani, A.; Oufdou, K.; Baslam, M.; Barka, E.A.; et al. Application of Indigenous Rhizospheric Microorganisms and Local Compost as Enhancers of Lettuce Growth, Development, and Salt Stress Tolerance. Microorganisms 2022, 10, 1625. [Google Scholar] [CrossRef] [PubMed]
- Baslam, M.; Mitsui, T.; Hodges, M.; Priesack, E.; Herritt, M.T.; Aranjuelo, I.; Sanz-Sáez, A. Photosynthesis in a Changing Global Climate: Scaling Up and Scaling Down in Crops. Front. Plant Sci. 2020, 11, 882. [Google Scholar] [CrossRef] [PubMed]
- Ben Laouane, R.; Meddich, A.; Bechtaoui, N.; Oufdou, K.; Wahbi, S. Effects of Arbuscular Mycorrhizal Fungi and Rhizobia Symbiosis on the Tolerance of Medicago Sativa to Salt Stress. Gesunde Pflanz. 2019, 71, 135–146. [Google Scholar] [CrossRef]
- Boutasknit, A.; Baslam, M.; Ait-El-Mokhtar, M.; Anli, M.; Ben-Laouane, R.; Douira, A.; El Modafar, C.; Mitsui, T.; Wahbi, S.; Meddich, A. Arbuscular Mycorrhizal Fungi Mediate Drought Tolerance and Recovery in Two Contrasting Carob (Ceratonia siliqua L.) Ecotypes by Regulating Stomatal, Water Relations, and (In)Organic Adjustments. Plants 2020, 9, 80. [Google Scholar] [CrossRef]
- Anli, M.; Baslam, M.; Tahiri, A.; Raklami, A.; Symanczik, S.; Boutasknit, A.; Ait-El-Mokhtar, M.; Ben-Laouane, R.; Toubali, S.; Rahou, Y.A.; et al. Biofertilizers as Strategies to Improve Photosynthetic Apparatus, Growth, and Drought Stress Tolerance in the Date Palm. Front. Plant Sci. 2020, 11, 516818. [Google Scholar] [CrossRef]
- Chen, X.; Han, H.; Cong, Y.; Li, X.; Zhang, W.; Wan, W.; Cui, J.; Xu, W.; Diao, M.; Liu, H. The Protective Effect of Exogenous Ascorbic Acid on Photosystem Inhibition of Tomato Seedlings Induced by Salt Stress. Plants 2023, 12, 1379. [Google Scholar] [CrossRef]
- Metwally, R.A.; Soliman, S.A. Alleviation of the adverse effects of NaCl stress on tomato seedlings (Solanum lycopersicum L.) by Trichoderma viride through the antioxidative defense system. Bot. Stud. 2023, 64, 4. [Google Scholar] [CrossRef] [PubMed]
- Talaat, N.B. Co-application of Melatonin and Salicylic Acid Counteracts Salt Stress-Induced Damage in Wheat (Triticum aestivum L.) Photosynthetic Machinery. J. Soil Sci. Plant Nutr. 2021, 21, 2893–2906. [Google Scholar] [CrossRef]
- Ikan, C.; Ben-Laouane, R.; Ouhaddou, R.; Anli, M.; Boutasknit, A.; Lahbouki, S.; Benchakour, A.; Jaouad, A.; Bouchdoug, M.; El Moatasime, A.; et al. Interactions between arbuscular mycorrhizal fungus and indigenous compost improve salt stress tolerance in wheat (Triticum durum). S. Afr. J. Bot. 2023, 158, 417–428. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, J.; He, X.; Xu, Z.; Xu, L.; Wei, P.; Huang, Y.; Brestic, M.; Ma, H.; Shao, H. A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. Front. Plant Sci. 2016, 6, 1237. [Google Scholar] [CrossRef] [PubMed]
- Ben-Laouane, R.; Ait-El-Mokhtar, M.; Anli, M.; Boutasknit, A.; Rahou, Y.A.; Raklami, A.; Oufdou, K.; Wahbi, S.; Meddich, A. Green Compost Combined with Mycorrhizae and Rhizobia: A Strategy for Improving Alfalfa Growth and Yield Under Field Conditions. Gesunde Pflanz. 2020, 73, 193–207. [Google Scholar] [CrossRef]
- Evelin, H.; Devi, T.S.; Gupta, S.; Kapoor, R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. Front. Plant Sci. 2019, 10, 470. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative stress mitigation by antioxidants—An overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2020, 209, 112891. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhao, X.; Bao, E.; Cao, K.; Zou, Z. Effects of Arbuscular Mycorrhizal Fungi on Watermelon Growth, Elemental Uptake, Antioxidant, and Photosystem II Activities and Stress-Response Gene Expressions Under Salinity-Alkalinity Stresses. Front. Plant Sci. 2019, 10, 863. [Google Scholar] [CrossRef]
- Tartoura, K.A.H.; Youssef, S.A.; Tartoura, E.-S.A.A. Compost alleviates the negative effects of salinity via up-regulation of antioxidants in Solanum lycopersicum L. plants. Plant Growth Regul. 2014, 74, 299–310. [Google Scholar] [CrossRef]
- Gao, H.-J.; Yang, H.-Y.; Bai, J.-P.; Liang, X.-Y.; Lou, Y.; Zhang, J.-L.; Wang, D.; Zhang, J.-L.; Niu, S.-Q.; Chen, Y.-L. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Front. Plant Sci. 2015, 5, 787. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.-L.; Liu, L.-N.; Xie, Q.; Sui, N. Photosynthetic Regulation Under Salt Stress and Salt-Tolerance Mechanism of Sweet Sorghum. Front. Plant Sci. 2020, 10, 1722. [Google Scholar] [CrossRef]
- Latef, A.A.H.A.; Mostofa, M.G.; Rahman, M.; Abdel-Farid, I.B.; Tran, L.-S.P. Extracts from Yeast and Carrot Roots Enhance Maize Performance under Seawater-Induced Salt Stress by Altering Physio-Biochemical Characteristics of Stressed Plants. J. Plant Growth Regul. 2019, 38, 966–979. [Google Scholar] [CrossRef]
- Hossain, M.S.; Dietz, K.-J. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Front. Plant Sci. 2016, 7, 548. [Google Scholar] [CrossRef] [PubMed]
- Arthikala, M.; Sánchez-López, R.; Nava, N.; Santana, O.; Cárdenas, L.; Quinto, C. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization. New Phytol. 2014, 202, 886–900. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Al Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Meddich, A.; Elouaqoudi, F.-Z.; Khadra, A.; Bourzik, W. Valorisation des déchets d’origine végétale et industrielle par compostage. Rev. Compos. Matériaux Av. 2016, 26, 451–469. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161, IN16–IN18. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Harley, P.C.; Loreto, F.; Di Marco, G.; Sharkey, T.D. Theoretical Considerations when Estimating the Mesophyll Conductance to CO2 Flux by Analysis of the Response of Photosynthesis to CO2. Plant Physiol. 1992, 98, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Anal. Bioanal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A. Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 1999, 151, 59–66. [Google Scholar] [CrossRef]
- García, N.A.T.; Olivera, M.; Iribarne, C.; Lluch, C. Partial purification and characterization of a non-specific acid phosphatase in leaves and root nodules of Phaseolus vulgaris. Plant Physiol. Biochem. 2004, 42, 585–591. [Google Scholar] [CrossRef]
- Hori, K.; Wada, A.; Shibuta, T. Changes in Phenoloxidase Activities of the Galls on Leaves of Ulmus davidana Formed by Tetraneura fuslformis (Homoptera: Eriosomatidae). Appl. Entomol. Zool. 1997, 32, 365–371. [Google Scholar] [CrossRef]
- Polle, A.; Otter, T.; Seifert, F. Apoplastic Peroxidases and Lignification in Needles of Norway Spruce (Picea abies L.). Plant Physiol. 1994, 106, 53–60. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
NaCl Levels | 0 mM | 150 mM | ||||||
---|---|---|---|---|---|---|---|---|
Treatments | Ct | C | M | CM | Ct | C | M | CM |
PH (cm) | 74.00 ± 4.58 ab | 69.67 ± 4.16 bc | 66.83 ± 3.75 bcd | 81.00 ± 2.65 a | 61.13 ± 6.19 cd | 65.30 ± 4.20 bcd | 58.00 ± 3.46 d | 63.00 ± 6.93 cd |
RE (cm) | 25.00 ± 1.32 b | 33.17 ± 6.33 ab | 36.50 ± 7.40 a | 28.17 ± 5.84 ab | 30.33 ± 0.58 ab | 33.70 ± 8.97 ab | 31.90 ± 4.15 ab | 37.80 ± 6.67 a |
NL | 72.67 ± 6.43 ab | 61.67 ± 7.51 bc | 64.33 ± 8.74 bc | 51.33 ± 10.02 c | 55.67 ± 12.50 c | 53.00 ± 7.94 c | 84.67 ± 6.66 a | 57.33 ± 7.50 bc |
NFl | 4.33 ± 3.51 b | 5.00 ± 2.00 b | 5.33 ± 3.21 b | 4.67 ± 0.58 b | 2.33 ± 0.58 b | 3.67 ± 1.15 b | 12.33 ± 0.58 a | 2.67 ± 3.06 b |
NFr | 12.67 ± 2.08 a | 8.33 ± 2.08 bc | 9.00 ± 4.36 abc | 7.00 ± 0.00 c | 5.33 ± 0.58 c | 6.67 ± 0.58 c | 8.67 ± 1.15 abc | 12.00 ± 3.00 ab |
SFW (g/plant) | 375.00 ± 12.00 ab | 261.00 ± 28.00 cd | 347.00 ± 31.00 b | 433.00 ± 25.00 a | 255.00 ± 26.00 cd | 218.00 ± 51.00 d | 362.00 ± 44.00 b | 310.00 ± 56.00 bc |
RFW (g/plant) | 8.61 ± 2.24 c | 19.10 ± 4.46 c | 12.78 ± 1.39 c | 12.57 ± 2.32 c | 67.83 ± 23.07 ab | 65.48 ± 13.30 ab | 80.33 ± 16.03 a | 57.09 ± 13.01 b |
SDW (g/plant) | 11.92 ± 1.54 ab | 12.40 ± 0.71 ab | 11.82 ± 0.83 ab | 10.55 ± 0.31 b | 12.52 ± 2.11 ab | 11.30 ± 0.57 ab | 11.14 ± 0.49 ab | 12.71 ± 0.35 a |
RDW (g/plant) | 33.64 ± 1.01 a | 28.74 ± 3.29 a | 18.08 ± 10.57 b | 12.97 ± 2.95 b | 11.76 ± 3.32 b | 12.99 ± 0.65 b | 14.42 ± 4.02 b | 16.70 ± 1.94 b |
Fv/Fm | 0.78 ± 0.01 a | 0.75 ± 0.04 a | 0.67 ± 0.03 bc | 0.36 ± 0.02 c | 0.70 ± 0.03 b | 0.79 ± 0.02 a | 0.75 ± 0.00 a | 0.78 ± 0.01 a |
gs (mmol m−2 s −1) | 172.97 ± 27.00 bc | 153.30 ± 26.00 c | 286.47 ± 58.00a | 177.87 ± 70.00 bc | 293.00 ± 67.00 bc | 173.53 ± 18.00 bc | 253.27 ± 50.00 ab | 220.13 ± 7.00 abc |
Fa (%) | 0.00 ± 0.00 d | 13.33 ± 23.00 d | 68.86 ± 10.00 ab | 57.77 ± 25.00 bc | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 82.22 ± 10.18 a | 40.00 ± 6.67 c |
Ma (%) | 0.00 ± 0.00 d | 0.02 ± 0.04 d | 11.55 ± 3.79 b | 4.55 ± 3.17 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 15.89 ± 2.41 a | 1.33 ± 0.67 cd |
NaCl Levels | Treatments | CAT (µmol H2O2/mg prot/min) | PPO (µmol Catéchol/mg prot/min) | APX (µmol Asc/mg prot/min) | POX (µmol Guaiacol/mg prot/min) |
---|---|---|---|---|---|
0 mM | Ct | 130.28 ± 61.90 c | 0.38 ± 0.03 b | 0.58 ± 0.80 a | 0.13 ± 0.01 c |
C | 178.48 ± 66.55 c | 0.70 ± 0.24 b | 1.35 ± 1.07 a | 0.36 ± 0.13 ab | |
M | 178.93 ± 34.57 c | 0.59 ± 0.18 b | 1.01 ± 0.69 a | 0.36 ± 0.10 ab | |
CM | 208.13 ± 41.43 c | 0.67 ± 0.27 b | 0.95 ± 0.40 a | 0.27 ± 0.17 abc | |
150 mM | Ct | 316.47 ± 73.09 b | 0.83 ± 0.12 b | 1.86 ± 1.15 a | 0.16 ± 0.06 bc |
C | 485.23 ± 42.14 a | 2.72 ± 0.24 a | 2.13 ± 2.84 a | 0.37 ± 0.11 ab | |
M | 516.77 ± 65.72 a | 3.26 ± 1.06 a | 2.51 ± 2.84 a | 0.41 ± 0.19 a | |
CM | 446.57 ± 85.77 a | 2.76 ± 0.74 a | 1.12 ± 1.38 a | 0.35 ± 0.08 abc |
NaCl Levels | Treatments | CAT (µmol H2O2/mg prot/min) | PPO (µmol Catechol/mg prot/min) | APX (µmol Asc/mg prot/min) | POX (µmol Guaiacol/mg prot/min) |
---|---|---|---|---|---|
0 Mm | Ct | 264.45 ± 56.00 c | 0.52 ± 0.08 b | 3.48 ± 1.82 b | 3.77 ± 1.66 bc |
C | 326.69 ± 69.73 c | 0.59 ± 0.05 b | 3.58 ± 2.43 b | 0.59 ± 0.28 d | |
M | 287.55 ± 38.39 c | 0.63 ± 0.04 b | 0.96 ± 0.50 b | 1.43 ± 0.80 cd | |
CM | 439.78 ± 85.32 bc | 0.52 ± 0.08 b | 4.64 ± 4.59 b | 0.97 ± 0.53 d | |
150 mM | Ct | 508.46 ± 158.77 b | 1.57 ± 0.72 b | 8.26 ± 9.08 b | 5.81 ± 2.37 ab |
C | 788.46 ± 158.40 a | 3.37 ± 1.46 a | 19.12 ± 1.60 a | 6.77 ± 1.94 a | |
M | 520.86 ± 40.50 b | 0.52 ± 0.13 b | 2.57 ± 1.87 b | 1.63 ± 0.85 cd | |
CM | 605.65 ± 104.59 b | 0.59 ± 0.19 b | 0.89 ± 0.59 b | 1.04 ± 0.21 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekkaoui, F.; Ait-El-Mokhtar, M.; Zaari Jabri, N.; Amghar, I.; Essadssi, S.; Hmyene, A. The Use of Compost and Arbuscular Mycorrhizal Fungi and Their Combination to Improve Tomato Tolerance to Salt Stress. Plants 2024, 13, 2225. https://doi.org/10.3390/plants13162225
Mekkaoui F, Ait-El-Mokhtar M, Zaari Jabri N, Amghar I, Essadssi S, Hmyene A. The Use of Compost and Arbuscular Mycorrhizal Fungi and Their Combination to Improve Tomato Tolerance to Salt Stress. Plants. 2024; 13(16):2225. https://doi.org/10.3390/plants13162225
Chicago/Turabian StyleMekkaoui, Fadoua, Mohamed Ait-El-Mokhtar, Nada Zaari Jabri, Ilham Amghar, Soukaina Essadssi, and Abdelaziz Hmyene. 2024. "The Use of Compost and Arbuscular Mycorrhizal Fungi and Their Combination to Improve Tomato Tolerance to Salt Stress" Plants 13, no. 16: 2225. https://doi.org/10.3390/plants13162225
APA StyleMekkaoui, F., Ait-El-Mokhtar, M., Zaari Jabri, N., Amghar, I., Essadssi, S., & Hmyene, A. (2024). The Use of Compost and Arbuscular Mycorrhizal Fungi and Their Combination to Improve Tomato Tolerance to Salt Stress. Plants, 13(16), 2225. https://doi.org/10.3390/plants13162225