Dhurrin in Sorghum: Biosynthesis, Regulation, Biological Function and Challenges for Animal Production
Abstract
:1. Introduction
2. What Is Dhurrin
3. Role of Cyanogenic Glucosides (Dhurrin) for Plants
4. Biosynthesis of Dhurrin in Plants
4.1. Biochemical Synthesis and Catabolism Process of Dhurrin
4.2. Genes Involved in the Regulation of Dhurrin Metabolism
5. Factors Affecting the Dhurrin Accumulation in Plants
5.1. Sorghum Species
5.2. Growth Stage
5.3. Environmental Stress
5.3.1. Drought Stress
5.3.2. Nitrogen Fertilization
6. Potential Impacts of Dhurrin in Sorghum on Animal Production
6.1. Sorghum Grain
6.2. Sorghum Forage
7. Measures to Reduce Dhurrin Content in Sorghum
7.1. Breeding Strategies
7.2. Production Management Approaches
7.3. Processing Techniques
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, R. Research progress on plant tolerance to soil salinity and alkalinity in sorghum. J. Integr. Agric. 2018, 17, 739–746. [Google Scholar] [CrossRef]
- Silva, T.N.; Thomas, J.B.; Dahlberg, J.; Rhee, S.Y.; Mortimer, J.C. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. J. Exp. Bot. 2022, 73, 646–664. [Google Scholar] [CrossRef]
- Proietti, I.; Frazzoli, C.; Mantovani, A. Exploiting nutritional value of staple foods in the world’s semi-arid areas: Risks, benefits, challenges and opportunities of sorghum. Healthcare 2015, 3, 172–193. [Google Scholar] [CrossRef]
- Barros, F.; Awika, J.; Rooney, L.W. Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation. J. Sci. Food Agric. 2014, 94, 1212–1217. [Google Scholar] [CrossRef]
- Mohamed, H.I.; Fawzi, E.M.; Basit, A.; Kaleemullah, L.R.; Sofy, M.R. Sorghum: Nutritional factors, bioactive compounds, pharmaceutical and application in food systems: A review. Phyton-Int. J. Exp. Bot. 2022, 91, 23. [Google Scholar] [CrossRef]
- Qu, H.; Liu, X.B.; Dong, C.F.; Lu, X.Y.; Shen, Y.X. Field performance and nutritive value of sweet sorghum in eastern China. Field Crops Res. 2014, 157, 84–88. [Google Scholar] [CrossRef]
- Amer, S.; Seguin, P.; Mustafa, A.F. Short communication: Effects of feeding sweet sorghum silage on milk production of lactating dairy cows. J. Dairy Sci. 2012, 95, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Campanili, P.R.B.; Sarturi, J.O.; Ballou, M.A.; Trojan, S.J.; Sugg, J.D.; Ovinge, L.A.; Alrumaih, A.U.; Pellarin, L.A.; Hoffman, A.A. Effects of silage type and inclusion level on ruminal characteristics and feeding behavior of steers fed finishing diets. J. Anim. Sci. 2017, 95, 4623–4637. [Google Scholar] [CrossRef]
- Busk, P.K.; Møller, B.L. Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 2002, 7, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.M.; Burow, G.B.; Brown, P.J.; Thurber, C.; Xin, Z.; Burke, J.J. Natural variation in synthesis and catabolism genes influences dhurrin content in sorghum. Plant Genome 2015, 8, eplantgenome2014.09.0048. [Google Scholar] [CrossRef] [PubMed]
- Kahn, R.A.; Fahrendorf, T.; Halkier, B.A.; Møller, B.L. Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch. Biochem. Biop. 1999, 363, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Darbani, B.; Motawia, M.S.; Olsen, C.E.; Nour-Eldin, H.H.; Møller, B.L.; Rook, F. The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar mate transporter. Sci. Rep. 2016, 6, 37079. [Google Scholar] [CrossRef] [PubMed]
- Gleadow, R.M.; McKinley, B.A.; Blomstedt, C.K.; Lamb, A.C.; Møller, B.L.; Mullet, J.E. Regulation of dhurrin pathway gene expression during Sorghum bicolor development. Planta 2021, 254, 119. [Google Scholar] [CrossRef]
- Emendack, Y.; Burke, J.; Sanchez, J.; Laza, H.E.; Hayes, C. Agro-morphological characterization of diverse sorghum lines for pre-and post-flowering drought tolerance. Aust. J. Crop Sci. 2018, 12, 135–150. [Google Scholar] [CrossRef]
- Gleadow, R.M.; Ottman, M.J.; Kimball, B.A.; Wall, G.W.; Pinter, P.J., Jr.; LaMorte, R.L.; Leavitt, S.W. Drought-induced changes in nitrogen partitioning between cyanide and nitrate in leaves and stems of sorghum grown at elevated CO2 are age dependent. Field Crops Res. 2016, 185, 97–102. [Google Scholar] [CrossRef]
- Rosati, V.C.; Blomstedt, C.K.; Møller, B.L.; Garnett, T.; Gleadow, R. The interplay between drought stress, dhurrin and nitrate in the low-cyanogenic Sorghum mutant adult cyanide deficient class 1. Front. Plant Sci. 2019, 10, 1458. [Google Scholar] [CrossRef]
- Donato, D.B.; Nichols, O.; Possingham, H.; Moore, M.; Ricci, P.F.; Noller, B.N. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environ. Int. 2007, 33, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Cressey, P.; Reeve, J. Metabolism of cyanogenic glycosides: A review. Food Chem. Toxicol. 2019, 125, 225–232. [Google Scholar] [CrossRef]
- Rhykerd, C.L.; Johnson, K.D. Minimizing Prussic Acid Poisoning Hazard in Forages; Purdue University: West Lafayette, IN, USA, 2007. [Google Scholar]
- Heraud, P.; Cowan, M.F.; Marzec, K.M.; Møller, B.L.; Blomstedt, C.K.; Gleadow, R. Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells. Sci. Rep. 2018, 8, 2691. [Google Scholar] [CrossRef]
- Tattersall, D.B.; Bak, S.; Jones, P.R.; Olsen, C.E.; Nielsen, J.K.; Hansen, M.L.; Høj, P.B.; Møller, B.L. Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 2001, 293, 1826–1828. [Google Scholar] [CrossRef]
- Krothapalli, K.; Buescher, E.M.; Li, X.; Brown, E.; Chapple, C.; Dilkes, B.P.; Tuinstra, M.R. Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor. Genetics 2013, 195, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Siebert, M.; Sommer, S.; Li, S.M.; Wang, Z.X.; Severin, K.; Heide, L. Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides as a result of the expression of the bacterial ubiC gene in tobacco. Plant Physiol. 1996, 112, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Møller, B.L.; Seigler, D.S. Biosynthesis of cyanogenic glycosides, cyanolipids, and related compounds. In Plant Amino Acids: Biochemistry and Biotechnology; Singh, B.K., Ed.; Marcel Dekker: New York, NY, USA, 1999; pp. 563–609. [Google Scholar]
- Lieberei, R.; Biehl, B.; Giesemann, A.; Junqueira, N.T.V. Cyanogenesis inhibits active defense reactions in plants. Plant Physiol. 1989, 90, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Gleadow, R.M.; Møller, B.L. Cyanogenic glycosides, synthesis, physiology, and phenotypic plasticity. Annu. Rev. Plant Biol. 2014, 65, 155–185. [Google Scholar] [CrossRef]
- Cowan, M.F.; Blomstedt, C.K.; Norton, S.L.; Henry, R.J.; Møller, B.L.; Gleadow, R. Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum. Environ. Exp. Bot. 2020, 169, 103884. [Google Scholar] [CrossRef]
- Myrans, H.; Diaz, M.V.; Khoury, C.K.; Carver, D.; Henry, R.J.; Gleadow, R. Modelled distributions and conservation priorities of wild sorghums (Sorghum Moench). Divers. Distrib. 2020, 26, 1727–1740. [Google Scholar] [CrossRef]
- Halkier, B.A.; Møller, B.L. Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiol. 1989, 90, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.J.; Chen, J.; Burow, G.; Mechref, Y.; Rosenow, D.; Payton, P.; Xin, Z.; Hayes, C. Leaf dhurrin content is a quantitative measure of the level of pre- and post-flowering drought tolerance in sorghum. Crop Sci. 2013, 53, 1056–1065. [Google Scholar] [CrossRef]
- Nielsen, K.A.; Tattersall, D.B.; Jones, P.R.; Møller, B.L. Metabolon formation in dhurrin biosynthesis. Phytochemistry 2008, 69, 88–98. [Google Scholar] [CrossRef]
- Sibbesen, O.; Koch, B.; Halkier, B.A.; Møller, B.L. Cytochrome P-450TYR is a multifunctional heme-thiolate enzyme catalyzing the conversion of l-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. J. Biol. Chem. 1995, 270, 3506–3511. [Google Scholar] [CrossRef]
- Bjarnholt, N.; Neilson, E.H.; Crocoll, C.; Jørgensen, K.; Motawia, M.S.; Olsen, C.E.; Dixon, D.P.; Edwards, R.; Møller, B.L. Glutathione transferases catalyze recycling of auto-toxic cyanogenic glucosides in sorghum. Plant J. 2018, 94, 1109–1125. [Google Scholar] [CrossRef]
- Hayes, C.M.; Weers, B.D.; Thakran, M.; Burow, G.; Xin, Z.; Emendack, Y.; Burke, J.J.; Rooney, W.L.; Mullet, J.E. Discovery of a dhurrin QTL in sorghum: Co-localization of dhurrin biosynthesis and a novel stay-green QTL. Crop Sci. 2016, 56, 104–112. [Google Scholar] [CrossRef]
- Jenrich, R.; Trompetter, I.; Bak, S.; Olsen, C.E.; Møller, B.L.; Piotrowski, M. Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. PNAS. 2007, 104, 18848–18853. [Google Scholar] [CrossRef]
- Picmanova, M.; Neilson, E.H.; Motawia, M.S.; Olsen, C.E.; Agerbirk, N.; Gray, C.J.; Flitsch, S.; Meier, S.; Silvestro, D.; Jø, R.K.; et al. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemi. J. 2015, 469, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, M.; Xu, D.; Crocoll, C.; Ernst, H.; Ramírez, D.; Motawia, M.; Olsen, C.; Mirza, O.; Nour-Eldin, H.; Halkier, B. Origin and evolution of transporter substrate specificity within the NPF family. eLife 2017, 6, 19466. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Pérez, R.; Pavan, S.; Mazzeo, R.; Moldovan, C.; Aiese Cigliano, R.; Del Cueto, J.; Ricciardi, F.; Lotti, C.; Ricciardi, L.; Dicenta, F.; et al. Mutation of a bHLH transcription factor allowed almond domestication. Science 2019, 364, 1095–1098. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, F.; Zhang, K.; Niu, X.; Zhao, H.; Liu, Q.; Georgiev, M.I.; Xu, X.; Zhang, X.; Zhou, M. MeJA-responsive bHLH transcription factor LjbHLH7 regulates cyanogenic glucoside biosynthesis in Lotus japonicus. J. Exp. Bot. 2022, 73, 2650–2665. [Google Scholar] [CrossRef]
- Rosati, V.C.; Quinn, A.A.; Gleadow, R.M.; Blomstedt, C.K. The putative GATA transcription factor SbGATA22 as a novel regulator of dhurrin biosynthesis. Life 2024, 14, 470. [Google Scholar] [CrossRef]
- Sohail, M.N.; O’Donnell, N.H.; Kaiser, B.N.; Blomstedt, C.K.; Gleadow, R.M. Wounding and methyl jasmonate increase cyanogenic glucoside concentrations in Sorghum bicolor via upregulation of biosynthesis. Plant Biol. 2023, 25, 498–508. [Google Scholar] [CrossRef]
- Myrans, H.; Vandegeer, R.; Henry, R.J.; Gleadow, R.M. Nitrogen availability and allocation in sorghum and its wild relatives: Divergent roles for cyanogenic glucosides. J. Plant Physiol. 2021, 258–259, 153393. [Google Scholar] [CrossRef]
- Ananda, G.K.S.; Norton, S.L.; Blomstedt, C.; Furtado, A.; Møller, B.L.; Gleadow, R.; Henry, R.J. Transcript profiles of wild and domesticated sorghum under water-stressed conditions and the differential impact on dhurrin metabolism. Planta 2022, 255, 51. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.; Møller, B.L.; Norton, S.; Knudsen, C.; Crocoll, C.; Furtado, A.; Henry, R.; Blomstedt, C.; Gleadow, R.M. Cyanogenesis in the Sorghum genus: From genotype to phenotype. Genes 2022, 13, 140. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.; Blomstedt, C.K.; Møller, B.L.; Henry, R.; Gleadow, R.M. Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated Sorghum. Phytochemistry 2021, 184, 112645. [Google Scholar] [CrossRef] [PubMed]
- Bredeson, J.V.; Lyons, J.B.; Prochnik, S.E.; Wu, G.A.; Ha, C.M.; Edsinger-Gonzales, E.; Grimwood, J.; Schmutz, J.; Rabbi, I.Y.; Egesi, C. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. 2016, 34, 562. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.L.; Shapter, F.M.; Henry, R.J.; Cordeiro, G.; Izquierdo, L.; Lee, L.S. Domestication to crop improvement: Genetic resources for Sorghum and Saccharum (Andropogoneae). Ann. Bot. 2007, 100, 975–989. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.C.; Chung, Y.S.; Lee, Y.G.; Kang, Y.; Park, Y.J.; Park, S.U.; Kim, C. Prediction of dhurrin metabolism by transcriptome and metabolome analyses in sorghum. Plants 2020, 9, 1390. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.J.; Stuart, P.; Pičmanová, M.; Rasmussen, S.; Olsen, C.E.; Harholt, J.; Møller, B.L.; Bjarnholt, N. Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data. BMC Genom. 2016, 17, 1021. [Google Scholar] [CrossRef] [PubMed]
- Gleadow, R.M.; Woodrow, I.E. Mini-review: Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J. Chem. Ecol. 2002, 28, 1301–1313. [Google Scholar] [CrossRef]
- Rossnerova, A.; Izzotti, A.; Pulliero, A.; Bast, A.; Rattan, S.I.S.; Rossner, P. The molecular mechanisms of adaptive response related to environmental stress. Int. J. Mol. Sci. 2020, 21, E7059. [Google Scholar] [CrossRef]
- Abreha, K.B.; Enyew, M.; Carlsson, A.S.; Vetukuri, R.R.; Feyissa, T.; Motlhaodi, T.; Ng’uni, D.; Geleta, M. Sorghum in dryland: Morphological, physiological, and molecular responses of sorghum under drought stress. Planta 2021, 255, 20. [Google Scholar] [CrossRef]
- Sarshad, A.; Talei, D.; Torabi, M.; Rafei, F.; Nejatkhah, P. Morphological and biochemical responses of Sorghum bicolor (L.) Moench under drought stress. SN Appl. Sci. 2021, 3, 81. [Google Scholar] [CrossRef]
- Shehab, A.A.; Yao, L.H.; Wei, L.L.; Wang, D.K.; Li, Y.; Zhang, X.F.; Guo, Y.J. The increased hydrocyanic acid in drought-stressed sorghums could be alleviated by plant growth regulators. Crop Pasture Sci. 2020, 71, 459–468. [Google Scholar] [CrossRef]
- O’Donnell, N.H.; Møller, B.L.; Neale, A.D.; Hamill, J.D.; Blomstedt, C.K.; Gleadow, R.M. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum. Plant. Physiol. Biochem. 2013, 73, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Neilson, E.H.; Edwards, A.M.; Blomstedt, C.K.; Berger, B.; Møller, B.L.; Gleadow, R.M. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J. Exp. Bot. 2015, 66, 1817–1832. [Google Scholar] [CrossRef]
- Jeon, D.; Kim, J.-B.; Kang, B.-C.; Kim, C. Deciphering the genetic mechanisms of salt tolerance in Sorghum bicolor L.: Key genes and SNP associations from comparative transcriptomic analyses. Plants 2023, 12, 2639. [Google Scholar] [CrossRef]
- Holmana, J.D.; Obourb, A.K.; Mengel, D.B. Nitrogen application effects on forage sorghum production and nitrate concentration. J. Plant Nutr. 2019, 42, 2794–2804. [Google Scholar] [CrossRef]
- Yan, P.; Fang, M.; Lu, L.; Ren, L.; Dong, X.; Dong, Z. Effect of urea coated with polyaspartic acid on the yield and nitrogen use efficiency of sorghum (Sorghum bicolor, (L.) Moench.). Plants 2022, 11, 1724. [Google Scholar] [CrossRef]
- Blomstedt, C.K.; Rosati, V.C.; Møller, B.L.; Gleadow, R. Counting the costs: Nitrogen partitioning in sorghum mutants. Funct. Plant Biol. 2018, 45, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Adebo, O.A. African sorghum-based fermented foods: Past, current and future prospects. Nutrients 2020, 12, 1111. [Google Scholar] [CrossRef] [PubMed]
- Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 2004, 65, 1199–1221. [Google Scholar] [CrossRef] [PubMed]
- Waniska, R.D.; Rooney, L.W. Structure and chemistry of the sorghum caryopsis. In Sorghum: Origin, History, Technology and Production; Wayne Smith, C., Frederiksen, R.A., Eds.; John Wiley & Sons: New York, NY, USA, 2000; pp. 3–98. [Google Scholar]
- Belton, P.S.; Delgadillo, I.; Halford, N.G.; Shewry, P.R. Kafirin structure and functionality. J. Cereal Sci. 2006, 44, 272–286. [Google Scholar] [CrossRef]
- Barros, F.; Awika, J.M.; Rooney, L.W. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J. Agric. Food Chem. 2012, 60, 11609–11617. [Google Scholar] [CrossRef] [PubMed]
- Peerzada, A.M.; Ali, H.H.; Hanif, Z.; Bajwa, A.A.; Kebaso, L.; Frimpong, D.; Iqbal, N.; Namubiru, H.; Hashim, S.; Rasool, G.; et al. Eco-biology, impact, and management of Sorghum halepense (L.). Pers. Biol. Invasions. 2017, 25, 955–973. [Google Scholar] [CrossRef]
- Sisodiya, H.S.; Singh, D.P.; Kishore, A.; Chandra, P. Effect of dietary dhurrin from remja (Prosopis spicigera) on goat health. Indian J. Small Rumin. 2008, 14, 133–136. [Google Scholar]
- Vetter, J. Plant Cyanogenic Glycosides. Toxicon 2000, 38, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, M. Forage sorghum breeding for animal production. Indian J. Genet. Pl. Br. 1977, 37, 241–244. [Google Scholar]
- Cattani, M.; Guzzo, N.; Mantovani, R.; Bailoni, L. Effects of total replacement of corn silage with sorghum silage on milk yield, composition, and quality. J. Anim. Sci. Biotechnol. 2017, 8, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, M.; Rouzbehan, Y.; Rezaei, M.; Rezaei, J. Total replacement of corn silage with sorghum silage improves milk fatty acid profile and antioxidant capacity of Holstein dairy cows. J. Dairy Sci. 2018, 101, 10953–10961. [Google Scholar] [CrossRef]
- Blomstedt, C.K.; Gleadow, R.M.; O’Donnell, N.; Naur, P.; Jensen, K.; Laursen, T.; Olsen, C.E.; Stuart, P.; Hamill, J.D.; Møller, B.L.; et al. A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol. J. 2012, 10, 54–66. [Google Scholar] [CrossRef]
- Paterson, A.H.; Bowers, J.E.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Mace, E.S.; Tai, S.; Gilding, E.K.; Li, Y.; Prentis, P.J.; Bian, L.; Campbell, B.C.; Hu, W.; Innes, D.J.; Han, X.; et al. Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat. Commun. 2013, 4, 2320. [Google Scholar] [CrossRef] [PubMed]
- McCormick, R.F.; Truong, S.K.; Sreedasyam, A.; Jenkins, J.; Shu, S.; Sims, D.; Kennedy, M.; Amirebrahimi, M.; Weers, B.D.; McKinley, B.; et al. The Sorghum bicolor reference genome: Improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2018, 93, 338–354. [Google Scholar] [CrossRef] [PubMed]
- Cooper, E.A.; Brenton, Z.W.; Flinn, B.S.; Jenkins, J.; Shu, S.; Flowers, D.; Luo, F.; Wang, Y.; Xia, P.; Barry, K.; et al. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: Implications for the genetics of sugar metabolism. BMC Genom. 2019, 20, 420. [Google Scholar] [CrossRef] [PubMed]
- Myrans, R.H.; Gleadow, M. Regulation of cyanogenic glucosides in wild and domesticated Eusorghum taxa. Plant Biol. 2022, 24, 1084–1088. [Google Scholar] [CrossRef]
- Ananda, G.K.S.; Myrans, H.; Norton, S.L.; Gleadow, R.; Furtado, A.; Henry, R.J. Wild sorghum as a promising resource for crop improvement. Front. Plant Sci. 2020, 11, 1108. [Google Scholar] [CrossRef]
- Kapanigowda, M.H.; Perumal, R.; Djanaguiraman, M.; Aiken, R.M.; Tesso, T.; Prasad, P.V.V.; Little, C.R. Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance. Springerplus 2013, 2, 650. [Google Scholar] [CrossRef]
- Fracasso, A.; Trindade, L.M.; Amaducci, S. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol. 2016, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Badigannavar, A.; Teme, N.; de Oliveira, A.C.; Li, G.; Vaksmann, M.; Viana, V.E.; Ganapathi, T.; Sarsu, F. Physiological, genetic and molecular basis of drought resilience in sorghum [Sorghum bicolor (L.) Moench]. Indian J. Plant Physiol. 2018, 23, 670–688. [Google Scholar] [CrossRef]
- Queiroz, M.S.; Oliveira, C.E.; Steiner, F.; Zufo, A.M.; Zoz, T.; Vendruscolo, E.P.; Silva, M.V.; Mello, B.; Cabra, R.; Menis, F.T. Drought stresses on seed germination and early growth of maize and sorghum. J. Agric. Sci. 2019, 11, 310–318. [Google Scholar] [CrossRef]
- Oberoi, H.K.; Kaur, M.; Agrawal, R.K. Hydrocyanic acid, fodder quality and yield variation in sorghum genotypes grown under varying fertilizer levels. Range Manag. Agrofor. 2020, 41, 322–327. [Google Scholar]
- Norman, S.N. Toxicity and Associated Agronomy of Forage Sorghum. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 2012. [Google Scholar]
- Pereira, I.G.; Vagula, J.M.; Marchi, D.F.; Barão, C.E.; Almeida, G.R.S.; Visentainer, J.V.; Maruyamab, S.A.; Júnior, O.O.S. Easy method for removal of cyanogens from cassava leaves with retention of vitamins and omega-3 fatty acids. J. Brazil. Chem. Soc. 2016, 27, 1290–1296. [Google Scholar] [CrossRef]
- Bradbury, J.H.; Denton, I.C. Mild method for removal of cyanogens from cassava leaves with retention of vitamins and protein. Food Chem. 2014, 158, 417–420. [Google Scholar] [CrossRef]
- Ngwa, T.A.; Nsahlai, I.V.; Iji, P.A. Ensilage as a means of reducing the concentration of cyanogenic glycosides in the pods of Acacia sieberiana and the effect of additives on silage quality. J. Sci. Food Agric. 2004, 84, 521–529. [Google Scholar] [CrossRef]
- Chander, S.; Sharma, K.C.; Toor, G.S. Effect of cutting schedules and varieties on growth, yield and quality of perennial pasture grasses grown in hot arid region. Indian J. Agron. 2004, 100, 567–575. [Google Scholar]
- Zhai, J.; Wang, B.; Sun, Y.; Yang, J.; Zhou, J.; Wang, T.; Zhang, W.; Qi, C.; Guo, Y. Effects of Aspergillus niger on cyanogenic glycosides removal and fermentation qualities of ratooning sorghum. Front. Microbiol. 2023, 14, 1128057. [Google Scholar] [CrossRef] [PubMed]
- Essers, A.J.A.; Witjes, C.M.J.W.; Schurink, E.W.; Nout, R. Role of fungi in cyanogens removal during solid substrate fermentation of cassava. Biotechnol. Lett. 1994, 16, 755–758. [Google Scholar] [CrossRef]
- Murugan, K.; Sekar, K.; Al-Sohaibani, S. Detoxification of cyanides in cassava flour by linamarase of Bacillus subtilis KM05 isolated from cassava peel. Afr. J. Biotechnol. 2012, 11, 7232–7237. [Google Scholar]
- Ramalingam, S.; Bahuguna, A.; Al-Ansari, M.M.; Shanmugam, G.; Al-Humaid, L.; Lee, J.S.; Kim, M. Whole-genome analysis guided molecular mechanism of cyanogenic glucoside degradation by yeast isolated from Prunus mume fruit syrup. Chemosphere 2022, 307, 136061. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Xiong, W.; Guo, Y. Dhurrin in Sorghum: Biosynthesis, Regulation, Biological Function and Challenges for Animal Production. Plants 2024, 13, 2291. https://doi.org/10.3390/plants13162291
Wang B, Xiong W, Guo Y. Dhurrin in Sorghum: Biosynthesis, Regulation, Biological Function and Challenges for Animal Production. Plants. 2024; 13(16):2291. https://doi.org/10.3390/plants13162291
Chicago/Turabian StyleWang, Bo, Wangdan Xiong, and Yanjun Guo. 2024. "Dhurrin in Sorghum: Biosynthesis, Regulation, Biological Function and Challenges for Animal Production" Plants 13, no. 16: 2291. https://doi.org/10.3390/plants13162291
APA StyleWang, B., Xiong, W., & Guo, Y. (2024). Dhurrin in Sorghum: Biosynthesis, Regulation, Biological Function and Challenges for Animal Production. Plants, 13(16), 2291. https://doi.org/10.3390/plants13162291