Design and Optimization of 3D-Printed Tablets Containing Mucuna Extracts for Erectile Dysfunction Management: A DoE-Guided Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening Factors Affecting Polymer Matrix Formulation Containing Mucuna Extract in 3D Printing
2.2. Levodopa Quantitation
2.3. Formulation Optimization and Release Study
2.4. Excipients and Mucuna Extract Compatibility Study
3. Materials and Methods
3.1. Materials
3.2. Plant Extraction and Preparation
3.3. Screening
3.3.1. Sustained-Release Tablet 3D Printing
3.3.2. Viscosity
3.3.3. Shape Fidelity
3.4. Chromatographic Conditions
3.5. Analytical Method Validation for Levodopa Determination
3.5.1. Specificity
3.5.2. Linearity
3.5.3. Accuracy
3.5.4. Precision
3.6. Optimization
3.6.1. Levodopa Release Study and Drug Release Mechanism Evaluation
3.6.2. Levodopa Content in Mucuna Extract Tablets
3.7. ATR-FTIR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.M.; Wu, B.R.; Xiang, P.; Xiao, J.; Hu, X.C. Management of Male Erectile Dysfunction: From the Past to the Future. Front. Endocrinol. 2023, 14, 1148834. [Google Scholar] [CrossRef] [PubMed]
- Dean, C.; Lue, T.F. Physiology of Penile Erection and Pathophysiology of Erectile Dysfunction. Urol. Clin. N. Am. 2005, 32, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, R.; Uchiyama, T.; Yamamoto, T.; Kusumoto, M.; Ogawa, E.; Tateno, F. Sexual Problems in Parkinson’s Disease. Psychiatry Parkinson’s Dis. 2012, 27, 71–76. [Google Scholar]
- Yafi, F.A.; Jenkins, L.C.; Albersen, M.; Corona, G.; Isidori, A.M.; Goldfarb, S.; Maggi, M.; Nelson, C.J.; Parish, S.J.; Salonia, A.; et al. Erectile Dysfunction. Nat. Rev. Dis. Primers 2016, 2, 16003. [Google Scholar] [CrossRef] [PubMed]
- Leisegang, K.; Finelli, R. Alternative Medicine and Herbal Remedies in the Treatment of Erectile Dysfunction: A Systematic Review. Arab. J. Urol. 2021, 19, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Pathania, R.; Chawla, P.; Khan, H.; Kaushik, R.; Khan, M.A. An Assessment of Potential Nutritive and Medicinal Properties of Mucuna pruriens: A Natural Food Legume. 3 Biotech 2020, 10, 261. [Google Scholar] [CrossRef] [PubMed]
- Duangnin, N.; Phitak, T.; Pothacharoen, P.; Kongtawelert, P. In Vitro and In Vivo Investigation of Natural Compounds from Seed Extract of Mucuna pruriens Lacking L-DOPA for the Treatment of Erectile Dysfunction. Asian Pac. J. Trop. Med. 2017, 10, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Choowong-In, P.; Sattayasai, J.; Boonchoong, P.; Poodendaen, C.; Wu, A.T.; Tangsrisakda, N.; Sawatpanich, T.; Arun, S.; Uabundit, N.; Iamsaard, S. Protective Effects of Thai Mucuna pruriens (L.) DC. Var. Pruriens Seeds on Sexual Behaviors and Essential Reproductive Markers in Chronic Unpredictable Mild Stress Mice. J. Tradit. Complement. Med. 2022, 12, 402–413. [Google Scholar]
- Theansungnoen, T.; Nitthikan, N.; Wilai, M.; Chaiwut, P.; Kiattisin, K.; Intharuksa, A. Phytochemical Analysis and Antioxidant, Antimicrobial, and Anti-Aging Activities of Ethanolic Seed Extracts of Four Mucuna Species. Cosmetics 2022, 9, 14. [Google Scholar] [CrossRef]
- Both, S.; Everaerd, W.; Laan, E.; Gooren, L. Effect of a Single Dose of Levodopa on Sexual Response in Men and Women. Neuropsychopharmacology 2004, 30, 173–183. [Google Scholar] [CrossRef]
- Shukla, K.K.; Mahdi, A.A.; Ahmad, M.K.; Shankhwar, S.N.; Rajender, S.; Jaiswar, S.P. Mucuna pruriens Improves Male Fertility by Its Action on the Hypothalamus-Pituitary-Gonadal Axis. Fertil. Steril. 2009, 92, 1934–1940. [Google Scholar] [CrossRef]
- Ahmed, S.; Qureshi, B.; Hasan, M.; Ahmed, S.W.; Azhar, I. Toxicity Assessment of Mucuna pruriens Linn. Seeds. Int. Res. J. Pharm. 2011, 2, 133–135. [Google Scholar]
- Arafat, M.; Sarfraz, M.; AbuRuz, S. Development and In Vitro Evaluation of Controlled Release Viagra® Containing Poloxamer-188 Using Gastroplus™ PBPK Modeling Software for In Vivo Predictions and Pharmacokinetic Assessments. Pharmaceuticals 2021, 14, 479. [Google Scholar] [CrossRef]
- Nutt, G. Pharmacokinetics and Pharmacodynamics of Levodopa. Mov. Disord. 2008, 23, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Pareek, S.P.; Kumawat, S.; Sharma, V.; Sharma, D.; Rathore, D.S.; Agarwal, M. Review on Sustained Release Technology. Int. J. Pharm. Biol. Sci. Arch. 2019, 7, 29–38. [Google Scholar]
- Azad, M.A.; Olawuni, D.; Kimbell, G.; Nunna, S.; Boateng, J. Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective. Pharmaceutics 2020, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Qin, H.; Acevedo, N.C.; Shi, X. Development of Methylcellulose-Based Sustained-Release Dosage by Semisolid Extrusion Additive Manufacturing in Drug Delivery System. J. Biomed. Mater. Res. Part B 2020, 109, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Zhang, X.; Rahman, S.E.; Su, S.; Wei, J.; Ning, F.; Hu, Z.; Martínez-Zaguilán, R.; Sennoune, S.R.; et al. 3D Printed Agar/Calcium Alginate Hydrogels with High Shape Fidelity and Tailorable Mechanical Properties. Polymers 2021, 213, 123238. [Google Scholar] [CrossRef]
- Park, J.Y.; Gao, G.; Jang, J.; Cho, D.W. Three-dimensional Printing of Biomaterials with Controlled Shape Fidelity. Adv. Mater. 2018, 30, 1800410. [Google Scholar]
- Farahani, R.D.; Chizari, K.; Therriault, D. Three-Dimensional Printing of Freeform Helical Microstructures: A Review. Nanoscale 2014, 6, 10470–10485. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, Y.; Kondo, Y.; Breedveld, V.; Lively, R.P. A Guide to Solution-Based Additive Manufacturing of Polymeric Structures: Ink Design, Porosity Manipulation, and Printing Strategy. J. Adv. Manuf. Process. 2020, 2, e10026. [Google Scholar] [CrossRef]
- Kumar, L.; Reddy, M.S.; Shirodkar, R.K.; Pai, K.G.; Tippavajhala, V.K.; Verma, R. Preparation and Characterisation of Fluconazole Vaginal Films for the Treatment of Vaginal Candidiasis. Indian J. Pharm. Sci. 2013, 75, 585–590. [Google Scholar] [PubMed]
- Hixson, A.W.; Crowell, J.H. The Geometry of Dissolution in Solid Dispersions. J. Am. Pharm. Assoc. 1964, 53, 1076–1081. [Google Scholar]
- Jipa, I.; Stoica, A.; Stroescu, M.; Dobre, L.; Dobre, T.; Jinga, S.; Tardei, C. Potassium Sorbate Release from Poly(Vinyl Alcohol)-Bacterial Cellulose Films. Chem. Pap. 2012, 66, 138–143. [Google Scholar] [CrossRef]
- Mukhopadhyay, H.K.; Das, S.K.; Bhowmik, M.; Ray, S.; Rajabalaya, R.; Ghosh, L.; Gupta, B.K. Preparation and Characterization of Polymethacrylate-Based Matrix Microspheres of Carbamazepine Using Solvent Evaporation Method. Farmacia 2014, 62, 137–158. [Google Scholar]
- Balieiro, A.L.; Santos, R.A.M.D.; Pereira, M.M.; Figueiredo, R.T.; Freitas, L.S.; De Alsina, O.L.S.; Lima, Á.S.; Soares, C.M.F. Adsorption Process of Molecularly Imprinted Silica for Extraction of Lactose from Milk. Braz. J. Chem. Eng. 2016, 33, 361–372. [Google Scholar] [CrossRef]
- Divya, B.J.; Suman, B.; Raju, K.T. Study of Phytochemicals in Methanol Extract of Mucuna pruriens. Sci. Spectr. 2016, 1, 231–237. [Google Scholar]
- Panraksa, P.; Udomsom, S.; Rachtanapun, P.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. Hydroxypropyl Methylcellulose E15: A Hydrophilic Polymer for Fabrication of Orodispersible Film Using Syringe Extrusion 3D Printer. Polymers 2020, 12, 2666. [Google Scholar] [CrossRef]
- Dhanani, T.; Singh, R.; Shah, S.; Kumari, P.; Kumar, S. Comparison of Green Extraction Methods with Conventional Extraction Method for Extract Yield, L-DOPA Concentration, and Antioxidant Activity of Mucuna pruriens Seed. Green Chem. Lett. Rev. 2015, 8, 43–48. [Google Scholar] [CrossRef]
- Cunniff, P. Official Methods of Analysis of AOAC International; Oxford University Press: Oxford, UK, 2023. [Google Scholar] [CrossRef]
Formulation | Zero-Order | First-Order | Korsmeyer–Peppas | Higuchi | Hixon–Crowell | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AIC | R2 | AIC | R2 | AIC | R2 | n | AIC | R2 | AIC | R2 | |
O1 | 29.04 | 0.9757 | 5.78 | 0.9945 | 7.36 | 0.998937 | 0.727987 | 76.81 | 0.9728 | −28.22 | 0.9987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wattanawiggan, R.; Chansakaow, S.; Jantrawut, P.; Panraksa, P.; Jiaranaikulwanitch, J.; Udomsom, S.; Worajittiphon, P.; Tipduangta, P. Design and Optimization of 3D-Printed Tablets Containing Mucuna Extracts for Erectile Dysfunction Management: A DoE-Guided Study. Plants 2024, 13, 2294. https://doi.org/10.3390/plants13162294
Wattanawiggan R, Chansakaow S, Jantrawut P, Panraksa P, Jiaranaikulwanitch J, Udomsom S, Worajittiphon P, Tipduangta P. Design and Optimization of 3D-Printed Tablets Containing Mucuna Extracts for Erectile Dysfunction Management: A DoE-Guided Study. Plants. 2024; 13(16):2294. https://doi.org/10.3390/plants13162294
Chicago/Turabian StyleWattanawiggan, Ratchapoom, Sunee Chansakaow, Pensak Jantrawut, Pattaraporn Panraksa, Jutamas Jiaranaikulwanitch, Suruk Udomsom, Patnarin Worajittiphon, and Pratchaya Tipduangta. 2024. "Design and Optimization of 3D-Printed Tablets Containing Mucuna Extracts for Erectile Dysfunction Management: A DoE-Guided Study" Plants 13, no. 16: 2294. https://doi.org/10.3390/plants13162294
APA StyleWattanawiggan, R., Chansakaow, S., Jantrawut, P., Panraksa, P., Jiaranaikulwanitch, J., Udomsom, S., Worajittiphon, P., & Tipduangta, P. (2024). Design and Optimization of 3D-Printed Tablets Containing Mucuna Extracts for Erectile Dysfunction Management: A DoE-Guided Study. Plants, 13(16), 2294. https://doi.org/10.3390/plants13162294