Functions and Regulatory Mechanisms of bHLH Transcription Factors during the Responses to Biotic and Abiotic Stresses in Woody Plants
Abstract
:1. Introduction
2. Structure of bHLH TFs
3. Research History of bHLH TFs
4. Roles of bHLH TFs in Plant Growth
5. Molecular Regulatory Mechanisms of Woody Plants Response to Various Stresses
6. bHLH TFs in Response to Various Stresses in Woody Plants
6.1. Roles of bHLH TFs in Biotic Stress
6.2. Roles of bHLH TFs in Woody Plants under Abiotic Stresses
6.2.1. bHLH TFs Response to Drought Stress in Woody Plants
6.2.2. bHLH TFs Response to Salt Stress in Woody Plants
6.2.3. bHLH TFs Response to Cold Stress in Woody Plants
6.2.4. bHLH TFs Response to Nutrition Deficiency Stress in Woody Plants
7. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Balestrini, R.; Chitarra, W.; Ghirardo, A.; Nardini, A.; Nerva, L. A Stressful Life: How Plants Cope with Multiple Biotic and Abiotic Adverse Factors. Plant Stress 2022, 5, 100095. [Google Scholar] [CrossRef]
- Ahmad, M.; Ali, Q.; Hafeez, M.M.; Malik, A. Improvement for biotic and abiotic stress tolerance in crop plants. Biol. Clin. Sci. Res. J. 2021, 2021, 50. [Google Scholar] [CrossRef]
- Khorasaninejad, S.; Mousavi, A.; Soltanloo, H.; Hemmati, K.; Khalighi, A. The Effect of Salinity Stress on Growth Parameters, Essential Oil Yield and Constituent of Peppermint (Mentha piperita L.). World Appl. Sci. J. 2010, 11, 1403–1407. [Google Scholar]
- Teshome, D.T.; Zharare, G.E.; Naidoo, S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. Front. Plant Sci. 2020, 11, 601009. [Google Scholar] [CrossRef]
- Wang, W.; Vinocur, B.; Altman, A. Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedback, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Baldoni, E.; Genga, A.; Cominelli, E. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms. Int. J. Mol. Sci. 2015, 16, 15811–15851. [Google Scholar] [CrossRef]
- Han, X.; Zhao, Y.; Chen, Y.; Xu, J.; Jiang, C.; Wang, X.; Zhuo, R.; Lu, M.-Z.; Zhang, J. Lignin Biosynthesis and Accumulation in Response to Abiotic Stresses in Woody Plants. For. Res. 2022, 2, 9. [Google Scholar] [CrossRef]
- Dai, Y.; Luo, X.; Zhou, W.; Chen, F.; Shuai, H.; Yang, W.; Shu, K. Plant Systemic Signaling under Biotic and Abiotic Stress. Chin. Bull. Bot. 2019, 54, 255–264. [Google Scholar]
- Ashapkin, V.V.; Kutueva, L.I.; Aleksandrushkina, N.I.; Vanyushin, B.F. Epigenetic Mechanisms of Plant Adaptation to Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2020, 21, 7457. [Google Scholar] [CrossRef]
- Osakabe, Y.; Kawaoka, A.; Nishikubo, N.; Osakabe, K. Responses to Environmental Stresses in Woody Plants: Key to Survive and Longevity. J. Plant Res. 2012, 125, 1–10. [Google Scholar] [CrossRef]
- Llanes, A.; Palchetti, M.V.; Vilo, C.; Ibañez, C. Molecular Control to Salt Tolerance Mechanisms of Woody Plants: Recent Achievements and Perspectives. Ann. For. Sci. 2021, 78, 96. [Google Scholar] [CrossRef]
- Qi, X.; Li, Y.; Li, C.; Han, L.; Zhao, M.; Zhang, J. Progress on Application of bHLH Transcription Factors in Cold Tolerance Genetic Engineering of Plants. J. Henan Agric. Sci. 2023, 52, 1–9. [Google Scholar]
- Zhang, D.; Wang, Y.; Shen, J.; Yin, J.; Li, D.; Gao, Y.; Xu, W.; Liang, J. OsRACK1A, encodes a Circadian Clock-Regulated WD40 Protein, Negatively Affect Salt Tolerance in Rice. Rice 2018, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Gu, L.; Wang, S.; Cai, H.; Wu, J.; Wang, J.; Yang, M. Progress in the Understanding of WRKY Transcription Factors in Woody Plants. Int. J. Biol. Macromol. 2023, 242, 124379. [Google Scholar] [CrossRef]
- Latchman, D.S. Transcription Factors: An Overview. Int. J. Biochem. Cell Biol. 1997, 29, 1305–1312. [Google Scholar] [CrossRef]
- Jan, S.; Abbas, N.; Ashraf, M.; Ahmad, P. Roles of Potential Plant Hormones and Transcription Factors in Controlling Leaf Senescence and Drought Tolerance. Protoplasma 2019, 256, 313–329. [Google Scholar] [CrossRef]
- Vatansever, R.; Ozyigit, I.I.; Filiz, E. Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: A Review. Appl. Biochem. Biotechnol. 2017, 181, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, K.; Li, Y.; Zhao, X.; Wang, L. MYB Transcription Factors as Regulators of Secondary Metabolism in Plants. Biology 2020, 9, 61. [Google Scholar] [CrossRef]
- Meraj, T.A.; Fu, J.; Raza, M.A.; Zhu, C.; Shen, Q.; Xu, D.; Wang, Q. Transcriptional Factors Regulate Plant Stress Responses Through Mediating Secondary Metabolism. Genes 2020, 11, 346. [Google Scholar] [CrossRef]
- Ledent, V.; Vervoort, M. The Basic Helix-Loop-Helix Protein Family: Comparative Genomics and Phylogenetic Analysis. Genome Res. 2001, 11, 754–770. [Google Scholar] [CrossRef]
- Wang, L.; Xiang, L.; Hong, J.; Xie, Z.; Li, B. Genome-Wide Analysis of bHLH Transcription Factor Family Reveals Their Involvement in Biotic and Abiotic Stress Responses in Wheat (Triticum aestivum L.). 3 Biotech 2019, 9, 236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-Y.; Bai, M.-Y.; Wu, J.; Zhu, J.-Y.; Wang, H.; Zhang, Z.; Wang, W.; Sun, Y.; Zhao, J.; Sun, X.; et al. Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and Arabidopsis. Plant Cell 2010, 21, 3767–3780. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yu, J.; Du, M.; Wang, J.; Hu, D. Basic Helix-Loop-Helix (bHLH) Transcription Factor MdbHLH3 Negatively Affects the Storage Performance of Postharvest Apple Fruit. Hortic. Plant J. 2022, 8, 700–712. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Yu, C.; Wang, C.; Jin, Y.; Zhang, H. MYB Transcription Factor PdMYB118 Directly Interacts with bHLH Transcription Factor PdTT8 to Regulate Wound-Induced Anthocyanin Biosynthesis in Poplar. BMC Plant Biol. 2020, 20, 173. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Xiang, X.; Liu, D.; Yang, A.; Wang, Y. Tobacco Transcription Factor NtbHLH123 Confers Tolerance to Cold Stress by Regulating the NtCBF Pathway and Reactive Oxygen Species Homeostasis. Front. Plant Sci. 2018, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Babitha, K.C.; Vemanna, R.S.; Nataraja, K.N.; Udayakumar, M. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress. PLoS ONE 2015, 10, e0137098. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Klatte, M.; Jakoby, M.; Bäumlein, H.; Weisshaar, B.; Bauer, P. Iron Deficiency-Mediated Stress Regulation of Four Subgroup Ib BHLH Genes in Arabidopsis thaliana. Planta 2007, 226, 897–908. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, X.; Nie, X.; Qu, M.; Zheng, L.; Tan, Z.; Zhao, H.; Huo, L.; Liu, S.; Zhang, B.; et al. Arabidopsis AtbHLH 112 Regulates the Expression of Genes Involved in Abiotic Stress Tolerance by Binding to Their E-box and GCG-box Motifs. New Phytol. 2015, 207, 692–709. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, B.; Deyholos, M.K. Functional Characterization of the Arabidopsis bHLH92 Transcription Factor in Abiotic Stress. Mol. Genet. Genom. 2009, 282, 503–516. [Google Scholar] [CrossRef]
- Fan, Y.; Lai, D.; Yang, H.; Xue, G.; He, A.; Chen, L.; Feng, L.; Ruan, J.; Xiang, D.; Yan, J.; et al. Genome-Wide Identification and Expression Analysis of the bHLH Transcription Factor Family and Its Response to Abiotic Stress in Foxtail Millet (Setaria italica L.). BMC Genom. 2021, 22, 778. [Google Scholar] [CrossRef]
- Yang, T. Wheat bHLH-Type Transcription Factor Gene TabHLH1 Is Crucial in Mediating Osmotic Stresses Tolerance through Modulating Largely the ABA-Associated Pathway. Plant Cell Rep. 2016, 35, 2309–2323. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, P.; Kong, N.; Lu, R.; Pei, Y.; Huang, C.; Ma, H.; Chen, Q. Genome-Wide Identification and Characterization of the Potato bHLH Transcription Factor Family. Genes 2018, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Feller, A.; Machemer, K.; Braun, E.L.; Grotewold, E. Evolutionary and Comparative Analysis of MYB and bHLH Plant Transcription Factors. Plant J. 2011, 66, 94–116. [Google Scholar] [CrossRef]
- Atchley, W.R.; Terhalle, W.; Dress, A. Positional Dependence, Cliques, and Predictive Motifs in the bHLH Protein Domain. J. Mol. Evol. 1999, 48, 501–516. [Google Scholar] [CrossRef]
- Carretero-Paulet, L.; Galstyan, A.; Roig-Villanova, I.; Martínez-García, J.F.; Bilbao-Castro, J.R.; Robertson, D.L. Genome-Wide Classification and Evolutionary Analysis of the bHLH Family of Transcription Factors in Arabidopsis, Poplar, Rice, Moss, and Algae. Plant Physiol. 2010, 153, 1398–1412. [Google Scholar] [CrossRef] [PubMed]
- Murre, C.; McCaw, P.S.; Baltimore, D. A New DNA Binding and Dimerization Motif in Immunoglobulin Enhancer Binding, Daughterless, MyoD, and Myc Proteins. Cell 1989, 56, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, E.M.; Eisenman, R.N. Max: A Helix-Loop-Helix Zipper Protein That Forms a Sequence-Specific DNA-Binding Complex with Myc. Science 1991, 251, 1211–1217. [Google Scholar] [CrossRef]
- Ferré-D’Amaré, A.R.; Prendergast, G.C.; Ziff, E.B.; Burley, S.K. Recognition by Max of Its Cognate DNA through a Dimeric b/HLH/Z Domain. Nature 1993, 363, 38–45. [Google Scholar] [CrossRef]
- Ma, P.C.M.; Rould, M.A.; Weintraub, H.; Pabo, C.O. Crystal Structure of MyoD bHLH Domain-DNA Complex: Perspectives on DNA Recognition and Implications for Transcriptional Activation. Cell 1994, 77, 451–459. [Google Scholar] [CrossRef]
- Ludwig, S.R.; Habera, L.F.; Dellaporta, S.L.; Wessler, S.R. Lc, a Member of the Maize R Gene Family Responsible for Tissue-Specific Anthocyanin Production, encodes a Protein Similar to Transcriptional Activators and Contains the Myc-Homology Region. Proc. Natl. Acad. Sci. USA 1989, 86, 7092–7096. [Google Scholar] [CrossRef]
- Wei, K.; Chen, H. Comparative Functional Genomics Analysis of bHLH Gene Family in Rice, Maize and Wheat. BMC Plant Biol. 2018, 18, 309. [Google Scholar] [CrossRef]
- Sun, H.; Fan, H.-J.; Ling, H.-Q. Genome-Wide Identification and Characterization of the bHLH Gene Family in Tomato. BMC Genom. 2015, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Dubos, C. The Arabidopsis bHLH Transcription Factor Family. Trends Plant Sci. 2024, 29, 668–680. [Google Scholar] [CrossRef]
- Heim, M.A.; Jakoby, M.; Werber, M.; Martin, C.; Weisshaar, B.; Bailey, P.C. The Basic Helix–Loop–Helix Transcription Factor Family in Plants: A Genome-Wide Study of Protein Structure and Functional Diversity. Mol. Biol. Evol. 2003, 20, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Bano, N.; Patel, P.; Chakrabarty, D.; Bag, S.K. Genome-Wide Identification, Phylogeny, and Expression Analysis of the bHLH Gene Family in Tobacco (Nicotiana tabacum). Physiol. Mol. Biol. Plants 2021, 27, 1747–1764. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Liang, C.; Liu, F.; Hou, X.; Zou, X. Genome-Wide Identification and Characterization of the bHLH Transcription Factor Family in Pepper (Capsicum annuum L.). Front. Genet. 2020, 11, 570156. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wen, J.; Wang, S.; Chen, J.; Sun, Y.; Liu, Q.; Li, X.; Dong, S. Genome-Wide Identification, Expression Analysis, and Potential Roles under Low-Temperature Stress of bHLH Gene Family in Prunus sibirica. Front. Plant Sci. 2023, 14, 1267107. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, J.; Zhang, L.; Jin, H.; Fang, S. Genome-Wide Identification of bHLH Transcription Factors and Their Response to Salt Stress in Cyclocarya paliurus. Front. Plant Sci. 2023, 14, 1117246. [Google Scholar] [CrossRef]
- Lang, Y.; Liu, Z. Basic Helix-Loop-Helix (bHLH) Transcription Factor Family in Yellow Horn (Xanthoceras sorbifolia Bunge): Genome-Wide Characterization, Chromosome Location, Phylogeny, Structures and Expression Patterns. Int. J. Biol. Macromol. 2020, 160, 711–723. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Ding, W.; Li, H.; Shi, T.; Yang, X.; Wang, L.; Yue, Y. Genome-Wide Identification of Osmanthus fragrans bHLH Transcription Factors and Their Expression Analysis in Response to Abiotic Stress. Environ. Exp. Bot. 2020, 172, 103990. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, S.; Wang, X.; Mao, T.; Bao, M.; Zhang, J.; Zhang, J. Genome-Wide Identification and Characterization of the bHLH Gene Family in an Ornamental Woody Plant Prunus mume. Hortic. Plant J. 2022, 8, 531–544. [Google Scholar] [CrossRef]
- Zhou, X.; Liao, Y.; Kim, S.-U.; Chen, Z.; Nie, G.; Cheng, S.; Ye, J.; Xu, F. Genome-Wide Identification and Characterization of bHLH Family Genes from Ginkgo biloba. Sci. Rep. 2020, 10, 13723. [Google Scholar] [CrossRef]
- Shen, F.; Wang, L.; Li, X. Genome-wide analysis of the bHLH transcription factor family in Populus tremula. J. Sichuan Univ. (Nat. Sci. Ed.) 2021, 58, 179–187. [Google Scholar]
- Wang, X.; Peng, X.; Shu, X.; Li, Y.; Wang, Z.; Zhuang, W. Genome-Wide Identification and Characterization of PdbHLH Transcription Factors Related to Anthocyanin Biosynthesis in Colored-Leaf Poplar (Populus deltoids). BMC Genom. 2022, 23, 244. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhou, L.; Geng, L.; Jiang, L.; Sui, Y.; Luo, L.; Pan, H.; Zhang, Q.; Yu, C. Genome-Wide Identification of the bHLH Transcription Factor Family in Rosa persica and Response to Low-Temperature Stress. PeerJ 2024, 12, e16568. [Google Scholar] [CrossRef]
- Xu, F.; Tang, J.; Wang, S.; Cheng, X.; Wang, H.; Ou, S.; Gao, S.; Li, B.; Qian, Y.; Gao, C.; et al. Antagonistic Control of Seed Dormancy in Rice by Two bHLH Transcription Factors. Nat. Genet. 2022, 54, 1972–1982. [Google Scholar] [CrossRef] [PubMed]
- Szécsi, J.; Joly, C.; Bordji, K.; Varaud, E.; Cock, J.M.; Dumas, C.; Bendahmane, M. BIGPETALp, a bHLH Transcription Factor Is Involved in the Control of Arabidopsis Petal Size. EMBO J. 2006, 25, 3912–3920. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Yu, Z.; Tong, Y.; Huang, W.; Chen, H.; Wu, P. A Transcription Factor with a bHLH Domain Regulates Root Hair Development in Rice. Cell Res. 2009, 19, 1309–1311. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Liang, H.; Chen, G.; Li, F.; Wang, Y.; Liao, C.; Hu, Z. The bHLH Transcription Factor SlPRE2 Regulates Tomato Fruit Development and Modulates Plant Response to Gibberellin. Plant Cell Rep. 2019, 38, 1053–1064. [Google Scholar] [CrossRef]
- Komatsu, K.; Maekawa, M.; Ujiie, S.; Satake, Y.; Furutani, I.; Okamoto, H.; Shimamoto, K.; Kyozuka, J. LAX and SPA: Major Regulators of Shoot Branching in Rice. Proc. Natl. Acad. Sci. USA 2003, 100, 11765–11770. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Xin, H.; Gu, X.; Ma, J.; Li, L. Genome-Wide Identification and Functional Analysis of the Basic Helix-Loop-Helix (bHLH) Transcription Family Reveals Candidate PtFBH Genes Involved in the Flowering Process of Populus trichocarpa. Forests 2021, 12, 1439. [Google Scholar] [CrossRef]
- Ito, S.; Song, Y.H.; Josephson-Day, A.R.; Miller, R.J.; Breton, G.; Olmstead, R.G.; Imaizumi, T. FLOWERING BHLH Transcriptional Activators Control Expression of the Photoperiodic Flowering Regulator CONSTANS in Arabidopsis. Proc. Natl. Acad. Sci. USA 2012, 109, 3582–3587. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, W.; Xue, C.; Zhang, Y.; Liu, Z.; Zhang, Y.; Meng, X.; Liu, M.; Zhao, J. Genome-Wide Analysis of the bHLH Gene Family in Chinese Jujube (Ziziphus jujuba Mill.) and Wild Jujube. BMC Genom. 2019, 20, 568. [Google Scholar] [CrossRef] [PubMed]
- Pichersky, E.; Raguso, R.A. Why Do Plants Produce so Many Terpenoid Compounds? New Phytol. 2018, 220, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Tounekti, T.; Hernández, I.; Munné-Bosch, S. Salicylic Acid Biosynthesis and Role in Modulating Terpenoid and Flavonoid Metabolism in Plant Responses to Abiotic Stress. In Salicylic Acid: Plant Growth and Development; Hayat, S., Ahmad, A., Alyemeni, M.N., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 8, pp. 141–162. [Google Scholar]
- Yang, J.; Chen, Y.; Gao, M.; Wu, L.; Xiong, S.; Wang, S.; Gao, J.; Zhao, Y.; Wang, Y. Comprehensive Identification of bHLH Transcription Factors in Litsea cubeba Reveals Candidate Gene Involved in the Monoterpene Biosynthesis Pathway. Front. Plant Sci. 2022, 13, 1081335. [Google Scholar] [CrossRef]
- Leivar, P.; Monte, E.; Al-Sady, B.; Carle, C.; Storer, A.; Alonso, J.M.; Ecker, J.R.; Quail, P.H. The Arabidopsis Phytochrome-Interacting Factor PIF7, Together with PIF3 and PIF4, Regulates Responses to Prolonged Red Light by Modulating phyB Levels. Plant Cell 2008, 20, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Baena-González, E.; Sheen, J. Convergent Energy and Stress Signaling. Trends Plant Sci. 2008, 13, 474–482. [Google Scholar] [CrossRef]
- Yamamoto, H.; Yoshida, M.; Okuyama, T. Growth Stress Controls Negative Gravitropism in Woody Plant Stems. Planta 2002, 216, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Chelli-Chaabouni, A. Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. In Mechanisms and Adaptation of Plants to Environmental Stress: A Case of Woody Species; Ahmad, P., Wani, M.R., Eds.; Springer: New York, NY, USA, 2014; Volume 1, pp. 1–24. [Google Scholar]
- Silva, E.N.; Silveira, J.A.G.; Rodrigues, C.R.F.; Viégas, R.A. Physiological Adjustment to Salt Stress in Jatropha curcas Is Associated with Accumulation of Salt Ions, Transport and Selectivity of K+, Osmotic Adjustment and K+/Na+ Homeostasis. Plant Biol. J. 2015, 17, 1023–1029. [Google Scholar] [CrossRef]
- Sauter, J.J.; van Cleve, B. Biochemical and Ultrastructural Results during Starch-Sugar-Conversion in Ray Parenchyma Cells of Populus during Cold Adaptation. J. Plant Physiol. 1991, 139, 19–26. [Google Scholar] [CrossRef]
- Zhang, F.; Wan, X.; Zheng, Y.; Sun, L.; Chen, Q.; Guo, Y.; Zhu, X.; Liu, M. Physiological and Related Anthocyanin Biosynthesis Genes Responses Induced by Cadmium Stress in a New Colored-Leaf Plant “Quanhong Poplar”. Agrofor. Syst. 2014, 88, 343–355. [Google Scholar] [CrossRef]
- Gomez, L.; Allona, I.; Ramos, A.; Nuñez, P.; Ibañez, C.; Casado, R.; Aragoncillo, C. Molecular Responses to Thermal Stress in Woody Plants. For. Syst. 2005, 14, 307–317. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, J.; Zhang, Q.; Li, X.; Li, M.; Yang, Y.; Zhou, J.; Wei, Q.; Zhou, B. Exogenous Application of Acetic Acid Enhances Drought Tolerance by Influencing the MAPK Signaling Pathway Induced by ABA and JA in Apple Plants. Tree Physiol. 2022, 42, 1827–1840. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Kajita, S.; Osakabe, K. Genetic Engineering of Woody Plants: Current and Future Targets in a Stressful Environment. Physiol. Plant. 2011, 142, 105–117. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Guo, K.; Fan, D.; Li, G.; Zheng, Y.; Yu, L.; Yang, R. Effect of Drought on Pigments, Osmotic Adjustment and Antioxidant Enzymes in Six Woody Plant Species in Karst Habitats of Southwestern China. Environ. Exp. Bot. 2011, 71, 174–183. [Google Scholar] [CrossRef]
- Ji, X.; Nie, X.; Liu, Y.; Zheng, L.; Zhao, H.; Zhang, B.; Huo, L.; Wang, Y. A bHLH Gene from Tamarix hispida Improves Abiotic Stress Tolerance by Enhancing Osmotic Potential and Decreasing Reactive Oxygen Species Accumulation. Tree Physiol. 2016, 36, 193–207. [Google Scholar] [PubMed]
- Kijowska-Oberc, J.; Dylewski, Ł.; Ratajczak, E. Proline Concentrations in Seedlings of Woody Plants Change with Drought Stress Duration and Are Mediated by Seed Characteristics: A Meta-Analysis. Sci. Rep. 2023, 13, 15157. [Google Scholar]
- Watanabe, S.; Kojima, K.; Ide, Y.; Sasaki, S. Effects of Saline and Osmotic Stress on Proline and Sugar Accumulation in Populus euphratica In Vitro. Plant Cell Tissue Organ Cult. 2000, 63, 199–206. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Y.; Yu, M.; Zhang, J.; Xu, D.; Lu, Z.; Qiao, G.; Qiu, W.; Zhuo, R. Transporters and Ascorbate–Glutathione Metabolism for Differential Cadmium Accumulation and Tolerance in Two Contrasting Willow Genotypes. Tree Physiol. 2020, 40, 1126–1142. [Google Scholar] [CrossRef]
- Bilska, K.; Wojciechowska, N.; Alipour, S.; Kalemba, E.M. Ascorbic Acid—The Little-Known Antioxidant in Woody Plants. Antioxidants 2019, 8, 645. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Dai, S.; Wang, R.; Chen, S.; Li, N.; Zhou, X.; Lu, C.; Shen, X.; Zheng, X.; Hu, Z.; et al. Calcium Mediates Root K+/Na+ Homeostasis in Poplar Species Differing in Salt Tolerance. Tree Physiol. 2009, 29, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.-J.; Cisse, E.H.M.; Zhang, L.-J.; Miao, L.-F.; Nawaz, M.; Yang, F. Coupling Exogenous Melatonin with Ca2+ Alleviated Chilling Stress in Dalbergia odorifera T. Chen. Trees 2021, 35, 1541–1554. [Google Scholar] [CrossRef]
- Fang, L.; Wang, Y. MicroRNAs in Woody Plants. Front. Plant Sci. 2021, 12, 686831. [Google Scholar] [CrossRef]
- Hao, Z.; Wu, H.; Zheng, R.; Li, R.; Zhu, Z.; Chen, Y.; Lu, Y.; Cheng, T.; Shi, J.; Chen, J. The Plant Peptide Hormone Phytosulfokine Promotes Somatic Embryogenesis by Maintaining Redox Homeostasis in Cunninghamia lanceolata. Plant J. 2023, 113, 716–733. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Rojas, L.; Tapia, F.; Gurovich, L.A. Electrophysiological Assessment of Water Stress in Fruit-Bearing Woody Plants. J. Plant Physiol. 2014, 171, 799–806. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of Tree Mortality under Drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
- Marron, N.; Dreyer, E.; Boudouresque, E.; Delay, D.; Petit, J.-M.; Delmotte, F.M.; Brignolas, F. Impact of Successive Drought and Re-Watering Cycles on Growth and Specific Leaf Area of Two Populus × Canadensis (Moench) Clones, ‘Dorskamp’ and ‘Luisa_Avanzo’. Tree Physiol. 2003, 23, 1225–1235. [Google Scholar] [CrossRef]
- Ksouri, N.; Jiménez, S.; Wells, C.E.; Contreras-Moreira, B.; Gogorcena, Y. Transcriptional Responses in Root and Leaf of Prunus persica under Drought Stress Using RNA Sequencing. Front. Plant Sci. 2016, 7, 1715. [Google Scholar] [CrossRef]
- Zhao, Q.; Fan, Z.; Qiu, L.; Che, Q.; Wang, T.; Li, Y.; Wang, Y. MdbHLH130, an Apple bHLH Transcription Factor, Confers Water Stress Resistance by Regulating Stomatal Closure and ROS Homeostasis in Transgenic Tobacco. Front. Plant Sci. 2020, 11, 543696. [Google Scholar] [CrossRef]
- Ruelland, E.; Zachowski, A. How Plants Sense Temperature. Environ. Exp. Bot. 2010, 69, 225–232. [Google Scholar] [CrossRef]
- Falcone, D.L.; Ogas, J.P.; Somerville, C.R. Regulation of Membrane Fatty Acid Composition by Temperature in Mutants of Arabidopsis with Alterations in Membrane Lipid Composition. BMC Plant Biol. 2004, 4, 17. [Google Scholar] [CrossRef]
- Strimbeck, G.R.; Schaberg, P.G.; Fossdal, C.G.; Schröder, W.P.; Kjellsen, T.D. Extreme Low Temperature Tolerance in Woody Plants. Front. Plant Sci. 2015, 6, 884. [Google Scholar] [CrossRef]
- Ketchie, D.O.; Kammereck, R. Seasonal Variation of Cold Resistance in Malus Woody Tissue as Determined by Differential Thermal Analysis and Viability Tests. Can. J. Bot. 1987, 65, 2640–2645. [Google Scholar] [CrossRef]
- Crifò, T.; Puglisi, I.; Petrone, G.; Recupero, G.R.; Lo Piero, A.R. Expression Analysis in Response to Low Temperature Stress in Blood Oranges: Implication of the Flavonoid Biosynthetic Pathway. Gene 2011, 476, 1–9. [Google Scholar] [CrossRef]
- Gu, R.; Fonseca, S.; Puskas, L.G.; Hackler, L.; Zvara, A.; Dudits, D.; Pais, M.S. Transcript Identification and Profiling during Salt Stress and Recovery of Populus euphratica. Tree Physiol. 2004, 24, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Yan, H.; Arndt, S.K. Leaf and Whole Tree Adaptations to Mild Salinity in Field Grown Populus euphratica. Tree Physiol. 2009, 29, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sun, W.; Wang, P.; Li, H.; Rehman, S.; Li, D.; Zhuge, Q. Characterization, Expression, and Functional Analysis of the Pathogenesis-Related Gene PtDIR11 in Transgenic Poplar. Int. J. Biol. Macromol. 2022, 210, 182–195. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, J.; Li, H.; Shi, W.; Polle, A.; Lu, M.; Sun, X.; Luo, Z.-B. Global Poplar Root and Leaf Transcriptomes Reveal Links between Growth and Stress Responses under Nitrogen Starvation and Excess. Tree Physiol. 2015, 35, 1283–1302. [Google Scholar] [CrossRef]
- Zheng, P.-F. Identification and Functional Characterization of MdPIF3 in Response to Cold and Drought Stress in Malus domestica. Plant Cell 2021, 144, 435–447. [Google Scholar] [CrossRef]
- Ren, Y.-R.; Yang, Y.-Y.; Zhao, Q.; Zhang, T.-E.; Wang, C.-K.; Hao, Y.-J.; You, C.-X. MdCIB1, an Apple bHLH Transcription Factor, Plays a Positive Regulator in Response to Drought Stress. Environ. Exp. Bot. 2021, 188, 104523. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Zheng, P.-F.; Ren, Y.-R.; Yao, Y.-X.; You, C.-X.; Wang, X.-F.; Hao, Y.-J. Apple MdSAT1 Encodes a bHLHm1 Transcription Factor Involved in Salinity and Drought Responses. Planta 2021, 253, 46. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, C.; Han, X.; Tang, S.; Liu, S.; Xia, X.; Yin, W. A Novel bHLH Transcription Factor PebHLH35 from Populus euphratica Confers Drought Tolerance through Regulating Stomatal Development, Photosynthesis and Growth in Arabidopsis. Biochem. Biophys. Res. Commun. 2014, 450, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Li, C.; Chen, X.; Li, S.; Liang, N.; Wang, H.; Zhan, Y.; Zeng, F. Basic Helix-Loop-Helix Transcription Factor PxbHLH02 Enhances Drought Tolerance in Populus (Populus simonii × P. nigra). Tree Physiol. 2023, 43, 185–202. [Google Scholar] [CrossRef]
- Ni, L.; Wang, Z.; Fu, Z.; Liu, D.; Yin, Y.; Li, H.; Gu, C. Genome-Wide Analysis of Basic Helix-Loop-Helix Family Genes and Expression Analysis in Response to Drought and Salt Stresses in Hibiscus hamabo Sieb. et Zucc. Int. J. Mol. Sci. 2021, 22, 8748. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Ren, H.; Qi, X.; Zhang, S.; Yu, Z.; Xie, J. Conserved Hierarchical Gene Regulatory Networks for Drought and Cold Stress Response in Myrica Rubra. Front. Plant Sci. 2023, 14, 1155504. [Google Scholar] [CrossRef]
- Liang, B.; Wan, S.; Ma, Q.; Yang, L.; Hu, W.; Kuang, L.; Xie, J.; Huang, Y.; Liu, D.; Liu, Y. A Novel bHLH Transcription Factor PtrbHLH66 from Trifoliate Orange Positively Regulates Plant Drought Tolerance by Mediating Root Growth and ROS Scavenging. Int. J. Mol. Sci. 2022, 23, 15053. [Google Scholar] [CrossRef]
- Sajeevan, R.S.; Nataraja, K.N. Molecular Cloning and Characterization of a Novel Basic Helix–Loop–Helix-144 (bHLH144)-like Transcription Factor from Morus alba (L.). Plant Gene 2016, 5, 109–117. [Google Scholar] [CrossRef]
- Ye, L.; Wu, Y.; Zhang, J.; Zhang, J.; Zhou, H.; Zeng, R.; Zheng, W.; Qiu, M.; Zhou, J.; Xie, Z.; et al. A bZIP Transcription Factor (CiFD) Regulates Drought- and Low-temperature-induced Flowering by Alternative Splicing in Citrus. J. Integr. Plant Biol. 2023, 65, 674–691. [Google Scholar] [CrossRef]
- Ariyarathne, M.A.; Wone, B.W.M. Overexpression of the Selaginella lepidophylla bHLH Transcription Factor Enhances Water-Use Efficiency, Growth, and Development in Arabidopsis. Plant Sci. 2022, 315, 111129. [Google Scholar] [CrossRef]
- Du, J.; Ge, X.; Wei, H.; Zhang, M.; Bai, Y.; Zhang, L.; Hu, J. PsPRE1 Is a Basic Helix-Loop-Helix Transcription Factor That Confers Enhanced Root Growth and Tolerance to Salt Stress in Poplar. For. Res. 2023, 3, 16. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, J.; Zhang, Y.; Hu, H.; Cui, J.; Xue, J.; Xu, J. Overexpression of CfICE1 from Cryptomeria Fortunei Enhances Cold, Drought and Salt Stress in Poplar. Int. J. Mol. Sci. 2022, 23, 15214. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Li, Z.; Chen, W.; Xing, W.; Yang, J.; Cui, Y. Overexpression of RmICE1, a bHLH Transcription Factor from Rosa multiflora, Enhances Cold Tolerance via Modulating ROS Levels and Activating the Expression of Stress-Responsive Genes. Environ. Exp. Bot. 2020, 178, 104160. [Google Scholar] [CrossRef]
- Li, R.; Ahmad, B.; Hwarari, D.; Li, D.; Lu, Y.; Gao, M.; Chen, J.; Yang, L. Genomic Survey and Cold-Induced Expression Patterns of bHLH Transcription Factors in Liriodendron chinense (Hemsl) Sarg. Forests 2022, 13, 518. [Google Scholar] [CrossRef]
- Jin, C.; Huang, X.-S.; Li, K.-Q.; Yin, H.; Li, L.-T.; Yao, Z.-H.; Zhang, S.-L. Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes. Front. Plant Sci. 2016, 7, 441. [Google Scholar] [CrossRef]
- Feng, X.-M.; Zhao, Q.; Zhao, L.-L.; Qiao, Y.; Xie, X.-B.; Li, H.-F.; Yao, Y.-X.; You, C.-X.; Hao, Y.-J. The Cold-Induced Basic Helix-Loop-Helix Transcription Factor Gene MdCIbHLH1 encodes an ICE-like Protein in Apple. BMC Plant Biol. 2012, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Liu, J.-H. The Transcription Factor CsbHLH18 of Sweet Orange Functions in Modulation of Cold Tolerance and Homeostasis of Reactive Oxygen Species by Regulating the Antioxidant Gene. J. Exp. Bot. 2018, 69, 2677–2692. [Google Scholar] [CrossRef]
- Yang, X.; Wang, R.; Hu, Q.; Li, S.; Mao, X.; Jing, H.; Zhao, J.; Hu, G.; Fu, J.; Liu, C. DlICE1, a Stress-Responsive Gene from Dimocarpus longan, Enhances Cold Tolerance in Transgenic Arabidopsis. Plant Physiol. Biochem. 2019, 142, 490–499. [Google Scholar] [CrossRef]
- Huang, X.-S.; Wang, W.; Zhang, Q.; Liu, J.-H. A Basic Helix-Loop-Helix Transcription Factor, PtrbHLH, of Poncirus trifoliata Confers Cold Tolerance and Modulates Peroxidase-Mediated Scavenging of Hydrogen Peroxide. Plant Physiol. 2013, 162, 1178–1194. [Google Scholar] [CrossRef]
- Huang, D.; Dai, W. Molecular Characterization of the Basic Helix-Loop-Helix (bHLH) Genes That Are Differentially Expressed and Induced by Iron Deficiency in Populus. Plant Cell Rep. 2015, 34, 1211–1224. [Google Scholar] [CrossRef]
- Xu, H.-M.; Wang, Y.; Chen, F.; Zhang, X.-Z.; Han, Z.-H. Isolation and Characterization of the Iron-Regulated MxbHLH01 Gene in Malus xiaojinensis. Plant Mol. Biol. Rep. 2011, 29, 936–942. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Zhang, C.-L.; Zhang, R.-F.; Wang, G.-L.; Li, Y.-Y.; Hao, Y.-J. The SUMO E3 Ligase MdSIZ1 Targets MdbHLH104 to Regulate Plasma Membrane H+-ATPase Activity and Iron Homeostasis. Plant Physiol. 2019, 179, 88–106. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Qiu, J.-Y.; Hui, Q.-L.; Xu, Y.-Y.; He, Y.-Z.; Peng, L.-Z.; Fu, X.-Z. Systematic Analysis of the Basic/Helix-Loop-Helix (bHLH) Transcription Factor Family in Pummelo (Citrus grandis) and Identification of the Key Members Involved in the Response to Iron Deficiency. BMC Genom. 2020, 21, 233. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Y.; Yuan, M.; Zhang, X.; Xu, X.; Han, Z. Characterization of MxFIT, an Iron Deficiency Induced Transcriptional Factor in Malus xiaojinensis. Plant Physiol. Biochem. 2014, 75, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Multi-Omics Analysis Reveals the Mechanism of bHLH130 Responding to Low-Nitrogen Stress of Apple Rootstock. Plant Physiol. 2023, 191, 1305–1323. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, S.; Wang, S.; Zhao, X.; Li, K.; Chen, S.; Qu, G. A Genome Wide Transcriptional Study of Populus alba x P. Tremula var. Glandulosa in Response to Nitrogen Deficiency Stress. Physiol. Mol. Biol. Plants 2021, 27, 1277–1293. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, Y.; Li, L.; Yi, N.; Liu, Y.; Qaseem, M.F.; Li, H.; Wu, A.-M. Physiological and Transcriptomic Responses to Nitrogen Deficiency in Neolamarckia cadamba. Front. Plant Sci. 2021, 12, 747121. [Google Scholar] [CrossRef]
- Sun, J.; Jin, C.; Zou, J.; Li, X.; Wang, M.; Yang, C.; Li, L.; Jin, H. Transcriptome-Based Mining and Expression Profiling of Low-Nitrogen-Responsive Transcription Factors in Yellowhorn (Xanthoceras Sorbifolia Bunge); Research Square: Durham, NC, USA, 2022. [Google Scholar]
- Li, T.; Feng, Z.; Yang, Y.; Li, M.; Li, G.; You, C.; Gao, W.; Wang, X. Functional Identification of the bHLH Transcription Factor MdSAT1 in the Phosphate Deficiency Response. Fruit Res. 2023, 3, 26. [Google Scholar] [CrossRef]
- Bai, Q.; Duan, B.; Ma, J.; Fen, Y.; Sun, S.; Long, Q.; Lv, J.; Wan, D. Co-expression of PalbHLH1 and PalMYB90 Genes from Populus alba Enhances Pathogen Resistance in Poplar by Increasing the Flavonoid Content. Front. Plant Sci. 2020, 10, 1772. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zong, X.; Wang, J.; Wei, H.; Chen, X.; Liu, Q. Transcriptomic Analysis Reveals Insights into the Response to Hop Stunt Viroid (HSVd) in Sweet Cherry (Prunus avium L.) Fruits. PeerJ 2020, 8, e10005. [Google Scholar] [CrossRef]
- Wu, H.; Sun, Y.; Ma, L.; Cheng, S.; Lv, D.; Hao, J.; Han, L. Microbial Exopolysaccharide EPS66A Inducing Walnut (Juglans regia) Resistance to Bacterial Blight. Food Chem. 2024, 435, 137551. [Google Scholar] [CrossRef] [PubMed]
- Treutter, D. Significance of Flavonoids in Plant Resistance: A Review. Environ. Chem. Lett. 2006, 4, 147–157. [Google Scholar] [CrossRef]
- Barry, K.M.; Davies, N.W.; Mohammed, C.L. Effect of Season and Different Fungi on Phenolics in Response to Xylem Wounding and Inoculation in Eucalyptus nitens. For. Pathol. 2002, 32, 163–178. [Google Scholar] [CrossRef]
- Ullah, C.; Tsai, C.; Unsicker, S.B.; Xue, L.; Reichelt, M.; Gershenzon, J.; Hammerbacher, A. Salicylic Acid Activates Poplar Defense against the Biotrophic Rust Fungus Melampsora larici-populina via Increased Biosynthesis of Catechin and Proanthocyanidins. New Phytol. 2019, 221, 960–975. [Google Scholar] [CrossRef]
- Dietz, K.-J.; Zörb, C.; Geilfus, C.M. Drought and Crop Yield. Plant Biol. 2021, 23, 881–893. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Rengasamy, P. Soil Salinization. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Adhikari, L.; Baral, R.; Paudel, D.; Min, D.; Makaju, S.O.; Poudel, H.P.; Acharya, J.P.; Missaoui, A.M. Cold Stress in Plants: Strategies to Improve Cold Tolerance in Forage Species. Plant Stress 2022, 4, 100081. [Google Scholar] [CrossRef]
- Sanghera, G.S.; Wani, S.H.; Hussain, W.; Singh, N.B. Engineering Cold Stress Tolerance in Crop Plants. Curr. Genom. 2011, 12, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Pessarakli, M. (Ed.) Handbook of Plant and Crop Stress, 2nd ed.; Soils, Plants, and the Environment; Revised and Expanded; Marcel Dekker: New York, NY, USA, 1999; Volume 19, pp. 441–464. [Google Scholar]
- Hou, Q.; Shen, T.; Yu, R.; Deng, H.; Wen, X.; Qiao, G. Functional Analysis of Sweet Cherry PavbHLH106 in the Regulation of Cold Stress. Plant Cell Rep. 2024, 43, 7. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Ohta, M.; Kanrar, S.; Lee, B.; Hong, X.; Agarwal, M.; Zhu, J.-K. ICE1: A Regulator of Cold-Induced Transcriptome and Freezing Tolerance in Arabidopsis. Genes Dev. 2003, 17, 1043–1054. [Google Scholar] [CrossRef]
- Wisniewski, M.; Nassuth, A.; Teulières, C.; Marque, C.; Rowland, J.; Cao, P.B.; Brown, A. Genomics of Cold Hardiness in Woody Plants. Crit. Rev. Plant Sci. 2014, 33, 92–124. [Google Scholar] [CrossRef]
- Hwarari, D.; Guan, Y.; Ahmad, B.; Movahedi, A.; Min, T.; Hao, Z.; Lu, Y.; Chen, J.; Yang, L. ICE-CBF-COR Signaling Cascade and Its Regulation in Plants Responding to Cold Stress. Int. J. Mol. Sci. 2022, 23, 1549. [Google Scholar] [CrossRef]
- Thomashow, M.F. Plant Cold Acclimation: Freezing Tolerance Genes and Regulatory Mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 571–599. [Google Scholar] [CrossRef]
- Wang, N.; Yang, C.; Pan, Z.; Liu, Y.; Peng, S. Boron Deficiency in Woody Plants: Various Responses and Tolerance Mechanisms. Front. Plant Sci. 2015, 6, 916. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.K.; Rani, M.; Bansal, N.; Gayatri; Venkatesh, K.; Mandal, P.K. Nitrate Starvation Induced Changes in Root System Architecture, Carbon: Nitrogen Metabolism, and miRNA Expression in Nitrogen-Responsive Wheat Genotypes. Appl. Biochem. Biotechnol. 2015, 177, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Rennenberg, H.; Herschbach, C. Phosphorus Nutrition of Woody Plants: Many Questions–Few Answers. Plant Biol. 2013, 15, 785–788. [Google Scholar] [CrossRef]
- Zhao, Q.; Ren, Y.; Wang, Q.; Yao, Y.; You, C.; Hao, Y. Overexpression of MdbHLH104 Gene Enhances the Tolerance to Iron Deficiency in Apple. Plant Biotechnol. J. 2016, 14, 1633–1645. [Google Scholar] [CrossRef]
Stress | bHLH TF | Species | Reference |
---|---|---|---|
Drought | MdPIF3 | Malus domestica | [102] |
MdCIB1 | [103] | ||
MdSAT1 | [104] | ||
MdbHLH130 | [92] | ||
PebHLH35 | Populus euphratica | [105] | |
PxbHLH02 | Populus simonii × P. nigra | [106] | |
ThbHLH1 | Tamarix hispida | [79] | |
HhbHLH2 | Hibiscus hamabo | [107] | |
MrbHLHp10 | Myrica rubra | [108] | |
PtrbHLH66 | Poncirus trifoliata (L.) Raf. | [109] | |
MabHLH144-like TFs | Morus alba L. | [110] | |
CibHLH96 | citrus | [111] | |
SlbHLH | Selaginella lepidophylla | [112] | |
Increased Salinity | PsPRE1 | Populus simonii ‘Tongliao1’ | [113] |
MdSAT1 | Malus domestica | [104] | |
SlbHLHopt | Selaginella lepidophylla | [112] | |
CfICE1 | Cryptomeria fortunei | [114] | |
ThbHLH1 | Tamarix hispida | [79] | |
Low Temperature | MrbHLH10 | Myrica rubra | [108] |
CfICE1 | Cryptomeria fortunei | [114] | |
RmICE1 | Rosa multiflora Thunb. | [115] | |
PsbHLH42 | Prunus sibirica | [48] | |
LcbHLH24 | Liriodendron chinense | [116] | |
PubHLH1 | Pyrus ussuriensis | [117] | |
MdCIbHLH1 | Malus domestica | [118] | |
CsbHLH18 | Citrus sinensis | [119] | |
DlICE1 | Dimocarpus longan | [120] | |
PtrbHLH | Poncirus trifoliata | [121] | |
Nutrient Deficiency | PtFIT | Populus tremula | [122] |
MxbHLH01 | Malus xiaojinensis | [123] | |
MdbHLH104 | Malus domestica | [124] | |
CgbHLH16,63 | Citrus Grandis | [125] | |
MxFIT | Malus xiaojinensis | [126] | |
MhbHLH130 | Malus domestica | [127] | |
bHLH TFs | Poplar 84 K (Populus alba × P. tremula var. glandulosa) | [128] | |
bHLH1,30,81,72,45,21 | Neolamarckia cadamba | [129] | |
bHLH (MYC2-like) | Xanthoceras Sorbifolia Bunge | [130] | |
MdAST1 | Malus domestica | [131] | |
Biotic Stress | PalbHLH1 | Populus alba var. pyramidalis | [132] |
10 bHLH genes | Prunus avium L. | [133] | |
bHLH TFs | Juglans regia | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, T.; Shu, X.; Ning, C.; Li, Y.; Wang, Z.; Wang, T.; Zhuang, W. Functions and Regulatory Mechanisms of bHLH Transcription Factors during the Responses to Biotic and Abiotic Stresses in Woody Plants. Plants 2024, 13, 2315. https://doi.org/10.3390/plants13162315
Yan T, Shu X, Ning C, Li Y, Wang Z, Wang T, Zhuang W. Functions and Regulatory Mechanisms of bHLH Transcription Factors during the Responses to Biotic and Abiotic Stresses in Woody Plants. Plants. 2024; 13(16):2315. https://doi.org/10.3390/plants13162315
Chicago/Turabian StyleYan, Tengyue, Xiaochun Shu, Chuanli Ning, Yuhang Li, Zhong Wang, Tao Wang, and Weibing Zhuang. 2024. "Functions and Regulatory Mechanisms of bHLH Transcription Factors during the Responses to Biotic and Abiotic Stresses in Woody Plants" Plants 13, no. 16: 2315. https://doi.org/10.3390/plants13162315
APA StyleYan, T., Shu, X., Ning, C., Li, Y., Wang, Z., Wang, T., & Zhuang, W. (2024). Functions and Regulatory Mechanisms of bHLH Transcription Factors during the Responses to Biotic and Abiotic Stresses in Woody Plants. Plants, 13(16), 2315. https://doi.org/10.3390/plants13162315