The Sustainable Use of Halophytes in Salt-Affected Land: State-of-the-Art and Next Steps in a Saltier World
Abstract
:1. Agriculture in a Saltier World: Challenges and Opportunities
2. Halophytes as Model Species for Understanding Salt Tolerance
3. The Economic Potential of Halophyte Use: Key Attributes, Challenges, and Main Research Gaps
4. Halophytes on the European Policy Agenda
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Global Symposium on Salt-Affected Soils: Outcome Document. In Global Symposium on Salt-Affected Soils: Outcome Document; FAO: Rome, Italy, 2022. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- FAO. Status of the World’s Soil Resources Main Report. In Intergovernmental Technical Panel on Soils (ITPS); FAO: Rome, Italy, 2015. [Google Scholar]
- Copernicus. Observer: ESOTC 2023—Europe Experienced an Extraordinary Year of Extremes with Record-Breaking Heatwaves, Wildfires, Floods, and Drought; European Centre for Medium-Range Weather Forecasts: Brussels, Belgium, 2024; Available online: https://www.copernicus.eu/en/news/news/observer-esotc-2023-europe-experienced-extraordinary-year-extremes-record-breaking (accessed on 24 June 2024).
- Confagricoltura. Crisi Idrica e Cuneo Salino nel Delta del Po—Richiesta Stato di Emergenza; Confagricoltura: Rovigo, Italy, 2022; Available online: https://www.confagricolturaro.it/confagricoltura-informa/ambiente/ambiente-caccia-e-pesca/crisi-idrica-e-cuneo-salino-nel-delta-del-po-richiesta-stato-di-emergenza/ (accessed on 24 June 2024).
- FAOSTAT. Food and Agriculture Data. 2024. Available online: http://faostat.fao.org/site/375/default.aspx (accessed on 24 June 2024).
- Vellinga, P.; Negacz, K.; Anisimov, A.; Bokhorst, T.; Misdorp, R.; Sapkota, T.; van Bodegom, P. Saline Agriculture: A Call to Action. In Future of Sustainable Agriculture in Saline Environments; Negacz, K., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 3–12. [Google Scholar]
- De Vos, A.; van Straten, G.; Oosterbaan, R.; Rozema, R.; van Bodegom, P. Crop Salt Tolerance under Controlled Field Conditions in The Netherlands, Based on Trials Conducted at Salt Farm Texel; Salt Farm Texel: Hoornderweg, The Netherlands, 2016. [Google Scholar]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point; Synthesis Report 2021; FAO: Rome, Italy, 2021. [Google Scholar]
- Qadir, M.; Noble, A.D.; Oster, J.D.; Schubert, S.; Ghafoor, A.; Saqib, M. Economics of Salt-Induced Land Degradation and Restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Liu, M.; Lin, X.; Zhou, Y.; Zhou, X.; Ling, S.; Su, D.; Li, T.; Li, L.; Wu, Y. Crop Halophytism: An Environmentally Sustainable Solution for Global Food Security. Trends Plant Sci. 2020, 25, 630–634. [Google Scholar] [CrossRef]
- Ben Hamed, K.; Castagna, A.; Ranieri, A.; Garcia-Caparros, P.; Santin, M.; Hernandez, J.A.; Barba Espin, G. Halophyte Based Mediterranean Agriculture in the Contexts of Food Insecurity and Global Climate Change. Environ. Exp. Bot. 2021, 191, 104601. [Google Scholar] [CrossRef]
- Jurado-Mañogil, C.; Barba Espin, G.; Hernandez, J.A.; Diaz-Vivancos, P. Comparative Metabolomic Analysis between Tomato and Halophyte Plants under Intercropping Conditions. Physiol. Plant. 2023, 175, e13971. [Google Scholar] [CrossRef]
- Barcia-Piedras, J.M.; Garrido, A.M.; Navarro, E.; Redondo-Gómez, S. Effect of Prior Salt Experience on Desalination Capacity of the Halophyte Arthrocnemum Macrostachyum. Desalination 2019, 463, 50–54. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Fujita, M. Potential Use of Halophytes to Remediate Saline Soils. BioMed Res. Int. 2014, 2014, 589341. [Google Scholar] [CrossRef]
- Garza-Torres, R.; Mora-Olivo, A.; Lira-Saldivar, R.H.; Montes-Avila, J.; Medina-Hernández, J.; González-González, R. Environmental and Management Considerations for Adopting the Halophyte Salicornia Bigelovii Torr. as a Sustainable Seawater-Irrigated Crop. Sustainability 2020, 12, 707. [Google Scholar] [CrossRef]
- Wijbenga, J.; De Zilte Smaak, S. Case Study—Stichting De Zilte Smaak. In Future of Sustainable Agriculture in Saline Environments; Negacz, K., Ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Haj-Amor, Z.; Hamdi, W.; Smida, I.; Jedidi, N.; Gallali, T. Soil Salinity and Its Associated Effects on Soil Microorganisms, Greenhouse Gas Emissions, Crop Yield, Biodiversity and Desertification: A Review. Sci. Total Environ. 2022, 843, 156946. [Google Scholar] [CrossRef] [PubMed]
- Ten Dam, R.; Vellinga, P.; Negacz, K. From Experiment to Market Development: A Case Study of Prospects and Value Chain of Saline Agriculture in Terschelling, the Netherlands. NJAS Impact Agric. Life Sci. 2023, 95, 2211541. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Hussain, T.; Gul, B.; Khan, M.A. Effects of Salinity Stress on Chloroplast Structure and Function. Cells 2021, 10, 2023. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Puthur, J.T. Seed Priming as a Cost-Effective Technique for Developing Plants with Cross Tolerance to Salinity Stress. Plant Physiol. Biochem. 2021, 162, 247–257. [Google Scholar] [CrossRef]
- Dalton, F.N.; Maggio, A.; Piccinni, G. Simulation of Shoot Chloride Accumulation: Separation of Physical and Biochemical Processes Governing Plant Salt Tolerance. Plant Soil 2000, 219, 1–11. [Google Scholar] [CrossRef]
- Grigore, M.-N.; Toma, C. Definition and Classification of Halophytes. In Anatomical Adaptations of Halophytes: A Review of Classic Literature and Recent Findings; Grigore, M.-N., Toma, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–28. [Google Scholar]
- Sharma, S.K.; Gupta, I.C. Saline Environment and Plant Growth; Agro Botanical Publishers: Bikaner, India, 1986. [Google Scholar]
- Böhm, J.; Messerer, M.; Müller, H.M.; Scholz-Starke, J.; Gradogna, A.; Schumacher, K.; Kovermann, P.; Geilfus, C.M. Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium Quinoa. Curr. Biol. 2018, 28, 3075–3085.e7. [Google Scholar] [CrossRef] [PubMed]
- Colin, L.; Sachetto-Martins, G.; Lau, S.; Higaki, T.; Derbyshire, P.; Tindall, E.; Nibau, C. The Cell Biology of Primary Cell Walls during Salt Stress. Plant Cell 2023, 35, 201–217. [Google Scholar] [CrossRef]
- Dschida, W.J.; Platt-Aloia, K.A.; Thomson, W.W. Epidermal Peels of Avicennia Germinans (L.) Stearn: A Useful System to Study the Function of Salt Glands. Ann. Bot. 1992, 70, 501–509. [Google Scholar] [CrossRef]
- Bazihizina, N.; Colmer, T.D.; Barrett-Lennard, E.G. Friend or Foe? Chloride Patterning in Halophytes. Trends Plant Sci. 2019, 24, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Bachani, J.; Singh, M.; Makde, K.; Verma, V.; Kumari, N.; Baluska, F.; Bhatla, S.C. Insight into Calcium Signalling in Salt Stress Response. S. Afr. J. Bot. 2022, 151, 1–8. [Google Scholar] [CrossRef]
- Wu, H.; Shabala, L.; Liu, X.; Azzarello, E.; Zhou, M.; Pandolfi, C.; Chen, Z.-H.; Bose, J.; Mancuso, S.; Shabala, S. It Is Not All about Sodium: Revealing Tissue Specificity and Signalling Roles of Potassium in Plant Responses to Salt Stress. Plant Soil 2018, 431, 1–17. [Google Scholar] [CrossRef]
- Demidchik, V.; Shabala, S.; Isayenkov, S.; Cuin, T.A.; Pottosin, I. Stress-Induced Electrolyte Leakage: The Role of K+-Permeable Channels and Involvement in Programmed Cell Death and Metabolic Adjustment. J. Exp. Bot. 2014, 65, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Grabov, A. Plant KT/KUP/HAK Potassium Transporters: Single Family—Multiple Functions. Ann. Bot. 2007, 99, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Ragel, P.; Raddatz, N.; Leidi, E.O.; Quintero, F.J.; Pardo, J.M. The CBL-Interacting Protein Kinase CIPK23 Regulates HAK5-Mediated High-Affinity K+ Uptake in Arabidopsis Roots. Plant Physiol. 2015, 169, 2863–2873. [Google Scholar]
- Zhao, Y.; Qi, Z.; Berkowitz, G.A. Teaching an Old Hormone New Tricks: Cytosolic Ca2+ Elevation Involvement in Plant Brassinosteroid Signal Transduction Cascades. Plant Physiol. 2013, 163, 555–565. [Google Scholar] [CrossRef]
- Roychoudhury, A.; Paul, S.; Basu, S. Cross-Talk between Abscisic Acid-Dependent and Abscisic Acid-Independent Pathways during Abiotic Stress. Plant Cell Rep. 2013, 32, 985–1006. [Google Scholar] [CrossRef]
- Edel, K.H.; Kudla, J. Integration of Calcium and ABA Signaling. Curr. Opin. Plant Biol. 2016, 33, 83–91. [Google Scholar] [CrossRef]
- Thorne, S.J.; Hartley, S.E.; Maathuis, F.J.M. Is Silicon a Panacea for Alleviating Drought and Salt Stress in Crops? Front. Plant Sci. 2020, 11, 1221. [Google Scholar] [CrossRef] [PubMed]
- Bosnic, P.; Teh, S.-J.; Pavlovic, I.; Samardzic, J.; Bell, R.W.; Huang, L.; Nikolic, M. Silicon Mediates Sodium Transport and Partitioning in Maize under Moderate Salt Stress. Environ. Exp. Bot. 2018, 155, 681–687. [Google Scholar] [CrossRef]
- Melino, V.; Tester, M. Salt-Tolerant Crops: Time to Deliver. Annu. Rev. Plant Biol. 2023, 74, 671–696. [Google Scholar] [CrossRef]
- Shabala, S. Learning from Halophytes: Physiological Basis and Strategies to Improve Abiotic Stress Tolerance in Crops. Ann. Bot. 2013, 112, 1209–1221. [Google Scholar] [CrossRef]
- Raven, J.A. Tansley Review No. 2: Regulation of pH and Generation of Osmolarity in Vascular Plants: A Cost-Benefit Analysis in Relation to Efficiency of Use of Energy, Nitrogen and Water. New Phytol. 1985, 101, 25–77. [Google Scholar] [CrossRef] [PubMed]
- Apse, M.P.; Aharon, G.S.; Snedden, W.A.; Blumwald, E. Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis. Science 1999, 285, 1256–1258. [Google Scholar] [CrossRef]
- Valenzuela, F.J.; Manosalva, P.; Tapia, P.; Borie, F.; Meier, S.; Vogel, H.; Martínez, J.P. Plant Responses to Heterogeneous Salinity: Agronomic Relevance and Research Priorities. Ann. Bot. 2022, 129, 499–518. [Google Scholar] [CrossRef] [PubMed]
- Bazihizina, N.; Barrett-Lennard, E.G.; Colmer, T.D. Plant Growth and Physiology under Heterogeneous Salinity. Plant Soil 2012, 354, 1–19. [Google Scholar] [CrossRef]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Monihan, S.M.; McGee, R.; Jordan, M.; Hollister, R.D.; Burgess, S.J.; Michalczyk, M.; Han, H.; Edmond, C.; Broadley, M.R.; Gilliham, M.; et al. Linking Duplication of a Calcium Sensor to Salt Tolerance in Eutrema Salsugineum. Plant Physiol. 2019, 179, 1176–1192. [Google Scholar] [CrossRef]
- Liang, X.; Zhu, J.; Zhang, J.; Zuo, Y.; Ma, D.; Tian, Y.; Wu, J.; Yan, H.; Liu, X.; Lin, H.; et al. Designing Salt Stress-Resilient Crops: Current Progress and Future Challenges. J. Integr. Plant Biol. 2024, 66, 303–329. [Google Scholar] [CrossRef] [PubMed]
- Bartels, D.; Dinakar, C. Balancing Salinity Stress Responses in Halophytes and Non-Halophytes: A Comparison between Thellungiella and Arabidopsis Thaliana. Funct. Plant Biol. 2013, 40, 819–831. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Plant Salt Tolerance: Adaptations in Halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Xu, B.; Athman, A.; Conn, S.J.; Jordans, C.; Byrt, C.S.; Hare, R.A.; Tyerman, S.D.; Tester, M.; et al. Energy Costs of Salt Tolerance in Crop Plants. New Phytol. 2020, 225, 1072–1090. [Google Scholar] [CrossRef]
- Graus, D.; Schroeder, J.I.; Maurel, C.; Dolan, L.; Braun, D.M.; Benfey, P.N.; Salt, D.E.; Tester, M. High V-PPase Activity Is Beneficial under High Salt Loads, but Detrimental without Salinity. New Phytol. 2018, 219, 1421–1432. [Google Scholar] [CrossRef] [PubMed]
- Van den Burg, S.; Roeleveld, A.; van den Berg, H. Knowledge Gaps on How to Adapt Crop Production under Changing Saline Circumstances in the Netherlands. Sci. Total Environ. 2024, 915, 170118. [Google Scholar] [CrossRef] [PubMed]
- Bechtold, U. Plant Life in Extreme Environments: How Do You Improve Drought Tolerance? Front. Plant Sci. 2018, 9, 543. [Google Scholar] [CrossRef] [PubMed]
- Panta, S.; Flowers, T.; Lane, P.; Doyle, R.; Haros, G.; Shabala, S. Halophyte Agriculture: Success Stories. Environ. Exp. Bot. 2014, 107, 71–83. [Google Scholar] [CrossRef]
- Ventura, Y.; Wuddineh, W.A.; Myrzabayeva, M.; Alikulov, Z.; Khozin-Goldberg, I.; Shpigel, M.; Samocha, T.M.; Sagi, M. The Development of Halophyte-Based Agriculture: Past and Present. Ann. Bot. 2015, 115, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Rozema, J.; Flowers, T. Crops for a Salinized World. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef]
- Öztürk, M.; Altay, V.; Güvensen, A. Sustainable Use of Halophytic Taxa as Food and Fodder: An Important Genetic Resource in Southwest Asia. In Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes; Hasanuzzaman, M., Nahar, K., Öztürk, M., Eds.; Springer: Singapore, 2019; pp. 235–257. [Google Scholar]
- El Shaer, H.M. Halophytes as Cash Crops for Animal Feeds in Arid and Semi-Arid Regions. In Biosaline Agriculture and Salinity Tolerance in Plants; Birkhäuser: Basel, Switzerland, 2006. [Google Scholar]
- Ritchie, H.; Rosado, P.; Roser, M. Energy Production and Consumption. 2020. Available online: https://ourworldindata.org/energy-production-consumption (accessed on 24 June 2024).
- Wicke, B.; Dornburg, V.; Junginger, M.; Faaij, A. The Global Technical and Economic Potential of Bioenergy from Salt-Affected Soils. Energy Environ. Sci. 2011, 4, 2669–2681. [Google Scholar] [CrossRef]
- Barkla, B.J.; Farzana, T.; Rose, T.J. Commercial Cultivation of Edible Halophytes: The Issue of Oxalates and Potential Mitigation Options. Agronomy 2024, 14, 242. [Google Scholar] [CrossRef]
- Ekanayake, S.; Yau, H.; Wanasundara, J.; Rodríguez, P.C.; Samarathunga, J.; Sagar, S.; Chua, S.; Wichuk, K.; Mubarak, A. From Salt Pan to Saucepan: Salicornia, a Halophytic Vegetable with an Array of Potential Health Benefits. Food Front. 2023, 4, 641–676. [Google Scholar] [CrossRef]
- El Shaer, H.M. Halophytes and Salt-Tolerant Plants as Potential Forage for Ruminants in the Near East Region. Small Rumin. Res. 2010, 91, 3–12. [Google Scholar] [CrossRef]
- Singh, D.; Buhmann, A.K.; Flowers, T.J.; Seal, C.E.; Papenbrock, J. Salicornia as a Crop Plant in Temperate Regions: Selection of Genetically Characterized Ecotypes and Optimization of Their Cultivation Conditions. AoB Plants 2014, 6, plu071. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- Seppic. Available online: https://www.seppic.com (accessed on 24 June 2024).
- Copalis. Available online: http://www.copalis.fr (accessed on 24 June 2024).
- Boutiquecosmetiques. Available online: http://www.boutiquecosmetiques.com (accessed on 24 June 2024).
- The Body Shop. Available online: https://www.thebodyshop.com (accessed on 24 June 2024).
- Ríos, S.; Obón, C.; Martínez-Francés, V.; Verde, A.; Ariza, D.; Laguna, E. Halophytes as Food. In Handbook of Halophytes; Grigore, M.N., Ed.; Springer: Cham, Switzerland, 2021; pp. 235–257. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazihizina, N.; Papenbrock, J.; Aronsson, H.; Ben Hamed, K.; Elmaz, Ö.; Dafku, Z.; Custódio, L.; Rodrigues, M.J.; Atzori, G.; Negacz, K. The Sustainable Use of Halophytes in Salt-Affected Land: State-of-the-Art and Next Steps in a Saltier World. Plants 2024, 13, 2322. https://doi.org/10.3390/plants13162322
Bazihizina N, Papenbrock J, Aronsson H, Ben Hamed K, Elmaz Ö, Dafku Z, Custódio L, Rodrigues MJ, Atzori G, Negacz K. The Sustainable Use of Halophytes in Salt-Affected Land: State-of-the-Art and Next Steps in a Saltier World. Plants. 2024; 13(16):2322. https://doi.org/10.3390/plants13162322
Chicago/Turabian StyleBazihizina, Nadia, Jutta Papenbrock, Henrik Aronsson, Karim Ben Hamed, Özkan Elmaz, Zenepe Dafku, Luísa Custódio, Maria João Rodrigues, Giulia Atzori, and Katarzyna Negacz. 2024. "The Sustainable Use of Halophytes in Salt-Affected Land: State-of-the-Art and Next Steps in a Saltier World" Plants 13, no. 16: 2322. https://doi.org/10.3390/plants13162322
APA StyleBazihizina, N., Papenbrock, J., Aronsson, H., Ben Hamed, K., Elmaz, Ö., Dafku, Z., Custódio, L., Rodrigues, M. J., Atzori, G., & Negacz, K. (2024). The Sustainable Use of Halophytes in Salt-Affected Land: State-of-the-Art and Next Steps in a Saltier World. Plants, 13(16), 2322. https://doi.org/10.3390/plants13162322