Elevated CO2 and Nitrogen Supply Boost N Use Efficiency and Wheat (T. aestivum cv. Yunmai) Growth and Differentiate Soil Microbial Communities Related to Ammonia Oxidization
Abstract
:1. Introduction
2. Results
2.1. Variation in Plant Growth Characteristics
2.2. Variation in Basic Photosynthetic Characteristics
2.3. Variation in Tissue N Concentrations
2.4. Changes in Soil pH, Organic Matter, and Concentrations of NH4+ and NO3−
2.5. Nitrogen Use Efficiency
2.6. Characters of Relationships between Soil Inorganic N and Plant N
2.7. Soil Microbial Community Composition and Species Abundance
3. Discussion
3.1. Nitrogen Supply Generally Rebalanced the Effects of eCO2 on Wheat Growth
3.2. Elevated CO2 Changed the Decreasing Trend of N Supply on Photosynthesis Parameters
3.3. Nitrogen Supply Mitigated the Reduction of Seed N Accumulation with eCO2 Treatment
3.4. Elevated CO2 Decreased Active Nitrogen under Both N0 and N100
3.5. Elevated CO2 Increased N Use Efficiency for Plant Growth but Not for Yield Production under N100
3.6. Influence of eCO2 and N100 on the Relative Abundance and Structure of N Cycling Microorganisms
4. Materials and Methods
4.1. Description of the Experiment Site
4.2. Design and Description of Custom-Built Chambers
4.3. Designs of Experiment and Preparation of Materials
4.4. Measurement of Photosynthetic Parameters
- Pn is the leaf net photosynthetic rate (μmol CO2 m−2 s−1);
- E is the transpiration rate (μmol H2O m−2 s−1); and
- WUEi is the instantaneous water use efficiency at the leaf scale (μmol CO2 μmol−1 H2O).
4.5. Preparation of Plant and Soil Samples
4.6. Determination of Plant and Soil Chemical Characters
4.7. Calculations of Nitrogen Use Efficiency
4.8. Analysis of Soil Bacterial and Archaeal Community Based on Illumina Sequencing
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campbell, J.E.; Berry, J.A.; Seibt, U.; Smith, S.J.; Montzka, S.A.; Launois, T.; Belviso, S.; Bopp, L.; Laine, M. Large historical growth in global terrestrial gross primary production. Nature 2017, 544, 84–87. [Google Scholar] [CrossRef]
- Changing State of the Climate System. Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 287–422. [Google Scholar]
- Mardani, A.; Streimikiene, D.; Cavallaro, F.; Loganathan, N.; Khoshnoudi, M. Carbon dioxide (CO2) emissions and economic growth: A systematic review of two decades of research from 1995 to 2017. Sci. Total Environ. 2019, 649, 31–49. [Google Scholar] [CrossRef]
- Ruan, Y.; Kuzyakov, Y.; Liu, X.; Zhang, X.; Xu, Q.; Guo, J.; Guo, S.; Shen, Q.; Yang, Y.; Ling, N. Elevated temperature and CO2 strongly affect the growth strategies of soil bacteria. Nat. Commun. 2023, 14, 391. [Google Scholar] [CrossRef]
- Blandino, M.; Badeck, F.W.; Giordano, D.; Marti, A.; Rizza, F.; Scarpino, V.; Vaccino, P. Elevated CO2 impact on common wheat (Triticum aestivum L.) yield, wholemeal quality, and sanitary risk. J. Agric. Food Chem. 2020, 68, 10574–10585. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Cui, J.; Zhang, Q.; Li, L.; Huang, L.; Hong, S. Unraveling the role of vegetation CO2 physiological forcing on climate zone shifts in China. Geophys. Res. Lett. 2024, 51, e2023GL107826. [Google Scholar] [CrossRef]
- Houshmandfar, A.; Fitzgerald, G.J.; O’Leary, G.; Tausz-Posch, S.; Fletcher, A.; Tausz, M. The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO2. Physiol. Plant. 2018, 163, 516–529. [Google Scholar] [CrossRef]
- Hazard, B.; Trafford, K.; Lovegrove, A.; Griffiths, S.; Uauy, C.; Shewry, P. Strategies to improve wheat for human health. Nat. Food 2020, 1, 475–480. [Google Scholar] [CrossRef]
- Wang, X.Z.; Li, X.N.; Zhong, Y.Y.; Blennow, A.; Liang, K.H.; Liu, F.L. Effects of elevated CO2 on grain yield and quality in five wheat cultivars. J. Agron. Crop Sci. 2022, 208, 733–745. [Google Scholar] [CrossRef]
- Torres, A.; Avila, C.; Stoddard, F.; Cubero, J. Genetics, Genomics and Breeding of Cool Season Grain Legumes, 1st ed.; Taylor Francis Group: Boca Raton, FL, USA, 2012; pp. 50–97. [Google Scholar]
- Ainsworth, E.A.; Rogers, A.; Nelson, R.; Long, S.P. Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated CO2 in the field with single gene substitutions in Glycine max. Agric. Forest Meteorol. 2004, 122, 85–94. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Lei, Q.; Luo, J.; Lindsey, S.; Zhang, J.; Zhai, L.; Wu, S.; Zhang, J.; Liu, X.; et al. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain. Sci. Total Environ. 2018, 618, 1173–1183. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Zhu, Q.; Zeng, M.; Shen, J.; Shi, X.; Liu, X.; Zhang, F.; de Vries, W. Impacts of nitrogen fertilizer type and application rate on soil acidification rate under a wheat-maize double cropping system. J. Environ. Manag. 2020, 270, 110888. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Wang, J.; Liu, X.; Liu, Y.; Zhang, Y.; Uwiragiye, Y.; Elrys, A.; Zhang, J.; Cai, Z.; Cheng, Y.; et al. Warming-induced stimulation of soil N2O emissions counteracted by elevated CO2 from nine-year agroecosystem temperature and free air carbon dioxide enrichment. Environ. Sci. Technol. 2024, 58, 6215–6225. [Google Scholar] [CrossRef]
- Martin, L.; Carlo, C.; Alessandra, L.; Francesco, L. Global climate change and tree nutrition: Effects of elevated CO2 and temperature. Tree Physiol. 2010, 30, 1209–1220. [Google Scholar]
- Luo, Y.; Su, B.; Currie, W.S.; Dukes, J.S.; Finzi, A.C.; Hartwig, U.; Hungate, B.; McMurtrie, R.E.; Oren, R.; Parton, W.J.; et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 2004, 54, 731–739. [Google Scholar] [CrossRef]
- Nguyen, L.T.T.; Broughton, K.; Osanai, Y.; Anderson, I.C.; Bange, M.P.; Tissue, D.T.; Singh, B.K. Effects of elevated temperature and elevated CO2 on soil nitrification and ammonia-oxidizing microbial communities in field-grown crop. Sci. Total Environ. 2019, 675, 81–89. [Google Scholar] [CrossRef]
- Drigo, B.; Kowalchuk, G.A.; van Veen, J.A. Climate change goes underground: Effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol. Fert. Soils 2008, 44, 667–679. [Google Scholar] [CrossRef]
- Drigo, B.; Kowalchuk, G.A.; Knapp, B.A.; Pijl, A.S.; Boschker, H.T.S.; van Veen, J.A. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob. Chang. Biol. 2013, 19, 621–636. [Google Scholar] [CrossRef]
- Gschwendtner, S.; Leberecht, M.; Engel, M.; Kublik, S.; Dannenmann, M.; Polle, A.; Schloter, M. Effects of elevated atmospheric CO2 on microbial community structure at the plant-soil interface of young beech trees (Fagus sylvatica L.) grown at two sites with contrasting climatic conditions. Microb. Ecol. 2015, 69, 867–878. [Google Scholar] [CrossRef]
- Diaz, S.; Grime, J.P.; Harris, J.; McPherson, E. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 1993, 364, 616–617. [Google Scholar] [CrossRef]
- Zak, D.R.; Pregitzer, K.S.; Curtis, P.S.; Teeri, J.A.; Fogel, R.; Randlett, D.L. Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 1993, 151, 105–117. [Google Scholar] [CrossRef]
- Hamonts, K.; Clough, T.J.; Stewart, A.; Clinton, P.W.; Richardson, A.E.; Wakelin, S.A.; O’Callaghan, M.; Condron, L.M. Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat. FEMS Microbiol. Ecol. 2013, 83, 568–584. [Google Scholar] [CrossRef]
- Shen, L.-d.; Yang, Y.-l.; Liu, J.-q.; Hu, Z.-h.; Liu, X.; Tian, M.-h.; Yang, W.-t.; Jin, J.-h.; Wang, H.-y.; Wang, Y.-y.; et al. Different responses of ammonia-oxidizing archaea and bacteria in paddy soils to elevated CO2 concentration. Environ. Pollut. 2021, 286, 117558. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Piceno, Y.; Deng, Y.; Xu, M.; Lu, Z.; DeSantis, T.; Andersen, G.; Hobbie, S.E.; Reich, P.B.; Zhou, J. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. ISME J. 2012, 6, 259–272. [Google Scholar] [CrossRef]
- Roux, X.; Bouskill, N.; Niboyet, A.; Barthes, L.; Dijkstra, P.; Field, C.; Hungate, B.; Lerondelle, C.; Pommier, T.; Tang, J.; et al. Predicting the responses of soil nitrite-oxidizers to multi-factorial global change: A trait-based approach. Front. Microbiol. 2016, 7, 628. [Google Scholar] [CrossRef]
- Simonin, M.; Roux, X.; Poly, F.; Lerondelle, C.; Hungate, B.; Nunan, N.; Niboyet, A. Coupling between and among ammonia oxidizers and nitrite oxidizers in grassland mesocosms submitted to elevated CO2 and nitrogen supply. Microb. Ecol. 2015, 70, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Chen, Y.; Zheng, X.; Su, Y.; Li, M. Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption. Environ. Sci. Technol. 2016, 50, 9915–9922. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Yong, J.W.H.; Wang, Q.; Ma, J.; He, X. Higher atmospheric CO2 levels favor C3 plants over C4 plants in utilizing ammonium as a nitrogen source. Front. Plant Sci. 2020, 11, 537443. [Google Scholar] [CrossRef]
- Shi, S.; Luo, X.; Wen, M.; Dong, X.; Sharifi, S.; Xie, D.; He, X. Funneliformis mosseae improves growth and nutrient accumulation in wheat by facilitating soil nutrient uptake under elevated CO2 at daytime, not nighttime. J. Fungi 2021, 7, 458. [Google Scholar] [CrossRef]
- Jost, L. Independence of alpha and beta diversities. Ecology 2010, 91, 1969–1974. [Google Scholar] [CrossRef]
- Sayed, A.A.S.; Kumar, M.; Pandey, R.; Kumar, S.; Pal, M. Elevated CO2 exposure enhances P-uptake, plant biomass and grain yield in wheat genotypes. Plant Physiol. Rep. 2022, 27, 695–701. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Chen, H.Y.H.; Ruan, H. Responses of C:N stoichiometry in plants, soil, and microorganisms to nitrogen addition. Plant Soil 2020, 456, 277–287. [Google Scholar] [CrossRef]
- Jauregui, I.; Rivero-Marcos, M.; Aranjuelo, I.; Aparicio-Tejo, P.M.; Lasa, B.; Ariz, I. Could ammonium nutrition increase plant C-sink strength under elevated CO2 conditions? Plant Sci. 2022, 320, 111277. [Google Scholar] [CrossRef] [PubMed]
- Gardi, M.W.; Haussmann, B.I.G.; Malik, W.A.; Högy, P. Effects of elevated atmospheric CO2 and its interaction with temperature and nitrogen on yield of barley (Hordeum vulgare L.): A meta-analysis. Plant Soil 2022, 475, 535–550. [Google Scholar] [CrossRef]
- Menzel, C.M. Climate change increases net CO2 assimilation in the leaves of strawberry, but not yield. J. Hortic. Sci. Biotech. 2024, 99, 233–266. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A.; et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef]
- Sang, Y.X.; Huang, L.; Wang, X.H.; Keenan, T.F.; Wang, C.Z.; He, Y. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 2021, 373, eabg4420. [Google Scholar] [CrossRef]
- Broberg, M.C.; Högy, P.; Feng, Z.; Pleijel, H. Effects of elevated CO2 on wheat yield: Non-linear response and relation to site productivity. Agronomy 2019, 9, 243. [Google Scholar] [CrossRef]
- Helman, D.; Bonfil, D.J. Six decades of warming and drought in the world’s top wheat-producing countries offset the benefits of rising CO2 to yield. Sci. Rep. 2022, 12, 7921. [Google Scholar] [CrossRef]
- Shaheen, H.; Mustafa, A.; Ulfat, A. Chapter 6—Crop production in response to elevated CO2: Grain yield and quality. In Sustainable Crop Productivity and Quality Under Climate Chang; Liu, F., Li, X., Hogy, P., Jiang, D., Brestic, M., Liu, B., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 91–101. [Google Scholar]
- Li, C.; Chang, Y.; Luo, Y.; Li, W.; Jin, M.; Wang, Y.; Cui, H.; Sun, S.; Li, Y.; Wang, Z. Nitrogen regulates stem lodging resistance by breaking the balance of photosynthetic carbon allocation in wheat. Field Crop Res. 2023, 296, 108908. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Lin, J.; Wang, L.; Jia, Z.; Zhang, R. Optimal nitrogen management to achieve high wheat grain yield, grain protein content, and water productivity: A meta-analysis. Agr. Water Manag. 2023, 290, 108587. [Google Scholar] [CrossRef]
- Fathi, A. Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A review. Agrisost 2022, 28, 1–8. [Google Scholar] [CrossRef]
- He, H.; Wu, Z.; Liu, C.; Jiang, Q.; Ke, H.; Cao, Y.; Li, Q.; Hu, Z. An elevated CO2 concentration improves the photosynthetic efficiency and grain yield of rice plants but concurrently increases the nitrogen fertilizer. J. Soil Sci. Plant Nut. 2024, 24, 3377–3388. [Google Scholar] [CrossRef]
- Singh, M.; Singh, H.; Kumar, A.; Kumar, N.; Kumar, M.; Barthwal, S.; Thakur, A. Soil nitrogen availability determines the CO2 fertilization effect on tree species (Neolamarckia cadamba): Growth and physiological evidence. Environ. Sustain. 2024, 7, 53–60. [Google Scholar] [CrossRef]
- Ye, J.Y.; Tian, W.H.; Jin, C.W. Nitrogen in plants: From nutrition to the modulation of abiotic stress adaptation. Stress Biol. 2022, 2, 4. [Google Scholar] [CrossRef]
- Lv, C.; Huang, Y.; Sun, W.; Yu, L.; Hu, Z. Elevated CO2 raises the temperature optimum of photosynthesis and thus promotes net photosynthesis of winter wheat and rice. Physiol. Plant. 2022, 174, e13757. [Google Scholar] [CrossRef]
- Zong, Y.; Zhang, H.; Li, P.; Zhang, D.; Lin, W.; Xue, J.; Gao, Z.; Hao, X. Effects of elevated atmospheric CO2 concentration and temperature on photosynthetic characteristics, carbon and nitrogen metabolism in flag leaves and yield of winter wheat in North China. Scientia Agricultura Sinica 2021, 54, 4984–4995, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Toreti, A.; Deryng, D.; Tubiello, F.N.; Müller, C.; Kimball, B.A.; Moser, G.; Boote, K.; Asseng, S.; Pugh, T.A.M.; Vanuytrecht, E.; et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 2020, 1, 775–782. [Google Scholar] [CrossRef]
- Bloom, A.J.; Burger, M.; A. Kimball, B.; J. Pinter, P., Jr. Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nat. Clim. Chang. 2014, 4, 477–480. [Google Scholar] [CrossRef]
- Carreras Navarro, E.; Lam, S.K.; Trębicki, P. Elevated carbon dioxide and nitrogen impact wheat and its aphid pest. Front. Plant Sci. 2020, 11, 605337. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, P.; Qi, B.; Xu, G.; Zhang, L.; Ma, J.; Li, C. Effects of different nitrogen application amounts and seedling densities on nitrogen accumulation and transport in winter wheat at anthesis stage. Chin. J. Eco-Agric. 2016, 24, 131–141, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Heil, J.; Vereecken, H.; Brüggemann, N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eur. J. Soil Sci. 2016, 67, 23–39. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Yu, Z.; Xie, Z.; Liu, J.; Wang, G.; Liu, X.; Wu, J.; Stephen, J.h.; Jin, J. Nitrogen cycling in the crop-soil continuum in response to elevated atmospheric CO2 concentration and temperature -a review. Sci. Agric. Sin. 2021, 54, 1684–1701, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Qiqi, W.; Hu, X.; Ma, C.; Xue, Y.; Wang, C.; Xu, M.; Zhang, W. Change of soil fertility and productivity of purple soil in Western China in recent 30 years. J. Plant Nutr. Fertil. 2018, 24, 1492–1499, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, X.; Hu, B.; Chu, C. Nitrogen assimilation in plants: Current status and future prospects. J. Genet. Genom. 2022, 49, 394–404. [Google Scholar] [CrossRef]
- Kou, T.; Zhu, J.; Xie, Z.; Hasegawa, T.; Heiduk, K. Effect of elevated atmospheric CO2 concentration on soil and root respiration in winter wheat by using a respiration partitioning chamber. Plant Soil 2007, 299, 237–249. [Google Scholar] [CrossRef]
- Molefe, R.R.; Amoo, A.E.; Babalola, O.O. Communication between plant roots and the soil microbiome; involvement in plant growth and development. Symbiosis 2023, 90, 231–239. [Google Scholar] [CrossRef]
- Sung, J.; Kim, W.; Oh, T.-K.; So, Y.-S. Nitrogen (N) use efficiency and yield in rice under varying types and rates of N source: Chemical fertilizer, livestock manure compost and food waste-livestock manure compost. Appl. Biol. Chem. 2023, 66, 4. [Google Scholar] [CrossRef]
- Liao, J.; Li, Z.; Wang, J.; Tian, D.; Tian, D.; Niu, S. Nitrogen use efficiency of terrestrial plants in China: Geographic patterns, evolution, and determinants. Ecol. Process. 2021, 10, 69. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, J.; Huang, W.; Manevski, K.; Olesen, J.E.; Rees, R.M.; Hu, S.; Li, W.; Kersebaum, K.-C.; Louarn, G.; et al. Farm-scale practical strategies to increase nitrogen use efficiency and reduce nitrogen footprint in crop production across the North China Plain. Field Crop Res. 2022, 283, 108526. [Google Scholar] [CrossRef]
- Panayotova, G.; Kostadinova, S. Partial factor productivity of nitrogen fertilizer on grain and grain protein yield of durum wheat cultivars. Agric. Sci. Technol. 2016, 8, 28–36. [Google Scholar] [CrossRef]
- You, L.; Ros, G.H.; Chen, Y.; Shao, Q.; Young, M.D.; Zhang, F.; de Vries, W. Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices. Nat. Commun. 2023, 14, 5747. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F. Effects of elevated CO2 and heat on wheat grain quality. Plants 2021, 10, 1027. [Google Scholar] [CrossRef]
- Yadav, D.S.; Jaiswal, B.; Gautam, M.; Agrawal, M. Soil acidification and its impact on plants. In Plant Responses to Soil Pollution; Singh, P., Singh, S.K., Prasad, S.M., Eds.; Springer: Singapore, 2020; pp. 1–26. [Google Scholar]
- Raut, N.; Dörsch, P.; Sitaula, B.K.; Bakken, L.R. Soil acidification by intensified crop production in South Asia results in higher N2O/(N2 + N2O) product ratios of denitrification. Soil Biol. Biochem. 2012, 55, 104–112. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, C.; Su, Y.; Peng, W.; Lu, R.; Liu, Y.; Huang, H.; He, X.; Yang, M.; Zhu, S. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agr. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Burns, D.A.; Riva-Murray, K. A new look at liming as an approach to accelerate recovery from acidic deposition effects. Sci. Total Environ. 2016, 562, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, H.; Sato, K.; Sase, H.; Dong, Y.; Hu, M.; Duan, L.; Sunwoo, Y.; Suzuki, K.; Tang, X. Development of science and policy related to acid deposition in East Asia over 30 years. Ambio 2022, 51, 1800–1818. [Google Scholar] [CrossRef]
- Hu, Z.; Delgado-Baquerizo, M.; Fanin, N.; Chen, X.; Zhou, Y.; Du, G.; Hu, F.; Jiang, L.; Hu, S.; Liu, M. Nutrient-induced acidification modulates soil biodiversity-function relationships. Nat. Commun. 2024, 15, 2858. [Google Scholar] [CrossRef]
- Hu, H.-W.; Macdonald, C.A.; Trivedi, P.; Anderson, I.C.; Zheng, Y.; Holmes, B.; Bodrossy, L.; Wang, J.-T.; He, J.-Z.; Singh, B.K. Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems. Soil Biol. Biochem. 2016, 92, 1–15. [Google Scholar] [CrossRef]
- Huang, L.; Chakrabarti, S.; Cooper, J.; Perez, A.; John, S.M.; Daroub, S.H.; Martens-Habbena, W. Ammonia-oxidizing archaea are integral to nitrogen cycling in a highly fertile agricultural soil. ISME Commun. 2021, 1, 19. [Google Scholar] [CrossRef]
- Alves, R.J.E.; Minh, B.Q.; Urich, T.; von Haeseler, A.; Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 2018, 9, 1517. [Google Scholar] [CrossRef] [PubMed]
- Isric, N. FAO—Unesco Soil Map of the World: Revised Legend with Corrections and Updates; ISRIC: Wageningen, The Netherlands, 1997. [Google Scholar]
- Wei, X.; Wanasundara, J.P.D.; Shand, P. Short-term germination of faba bean (Vicia faba L.) and the effect on selected chemical constituents. Appl. Food Res. 2022, 2, 100030. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, L.; Liang, C.; Hu, X.; Yaosheng, W.; Gong, D.; Zheng, S.; Huang, Y.; He, Q.; Cui, N. Leaf- and ecosystem-scale water use efficiency and their controlling factors of a kiwifruit orchard in the humid region of Southwest China. Agr. Water Manag. 2022, 260, 107329. [Google Scholar] [CrossRef]
- Beer, C.; Ciais, P.; Reichstein, M.; Baldocchi, D.; Law, B.E.; Papale, D.; Soussana, J.F.; Ammann, C.; Buchmann, N.; Frank, D.; et al. Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob. Biogeochem. Cycles 2009, 23, GB2018. [Google Scholar] [CrossRef]
- Hay, R.K.M. Harvest index: A review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 1995, 126, 197–216. [Google Scholar] [CrossRef]
- Donald, C.M.; Hamblin, J. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv. Agron. 1976, 28, 361–405. [Google Scholar] [CrossRef]
- Shidan, B. Soil Agricultural Chemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Goldman, E.; Jacobs, R. Determination of nitrates by ultraviolet absorption. J. AWWA 1961, 53, 187–191. [Google Scholar] [CrossRef]
- Jianhong, Y.; Chenglin, W.; Henglin, D. Soil Agrochemical Analysis and Environmental Monitoring Techniques; China Land Press: Beijing, China, 2008; pp. 18–64. (In Chinese) [Google Scholar]
- Schwab, C.; Gänzle, M. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears. Can. J. Microbiol. 2011, 57, 177–185. [Google Scholar] [CrossRef]
- Jiang, X.T.; Peng, X.; Deng, G.H.; Sheng, H.F.; Wang, Y.; Zhou, H.W.; Tam, N.F. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 2013, 66, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Huhe; Chen, X.; Hou, F.; Wu, Y.; Cheng, Y. Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities. Front. Microbiol. 2017, 8, 606. [Google Scholar] [CrossRef] [PubMed]
REN (%) | AEN (g g−1) | PEN (g g−1) | PFPN (g g−1) | |
---|---|---|---|---|
aCO2 | 37.35 ± 2.27 x | 8.89 ± 0.89 x | 23.89 ± 3.1 x | 0.15 ± 0.01 x |
eCO2 | 34.24 ± 5.44 x | 10.84 ± 3.16 x | 31.3 ± 6.02 x | 0.14 ± 0.03 x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Lin, H.; Wang, F.; Shi, S.; Sharifi, S.; Wang, S.; Ma, J.; He, X. Elevated CO2 and Nitrogen Supply Boost N Use Efficiency and Wheat (T. aestivum cv. Yunmai) Growth and Differentiate Soil Microbial Communities Related to Ammonia Oxidization. Plants 2024, 13, 2345. https://doi.org/10.3390/plants13172345
Dong X, Lin H, Wang F, Shi S, Sharifi S, Wang S, Ma J, He X. Elevated CO2 and Nitrogen Supply Boost N Use Efficiency and Wheat (T. aestivum cv. Yunmai) Growth and Differentiate Soil Microbial Communities Related to Ammonia Oxidization. Plants. 2024; 13(17):2345. https://doi.org/10.3390/plants13172345
Chicago/Turabian StyleDong, Xingshui, Hui Lin, Feng Wang, Songmei Shi, Sharifullah Sharifi, Shuai Wang, Junwei Ma, and Xinhua He. 2024. "Elevated CO2 and Nitrogen Supply Boost N Use Efficiency and Wheat (T. aestivum cv. Yunmai) Growth and Differentiate Soil Microbial Communities Related to Ammonia Oxidization" Plants 13, no. 17: 2345. https://doi.org/10.3390/plants13172345
APA StyleDong, X., Lin, H., Wang, F., Shi, S., Sharifi, S., Wang, S., Ma, J., & He, X. (2024). Elevated CO2 and Nitrogen Supply Boost N Use Efficiency and Wheat (T. aestivum cv. Yunmai) Growth and Differentiate Soil Microbial Communities Related to Ammonia Oxidization. Plants, 13(17), 2345. https://doi.org/10.3390/plants13172345