Biochemical Composition of Pumpkin Seeds and Seed By-Products
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material and Growing Conditions
3.2. Seed Oil Extraction
3.3. Proximal Composition of Seeds and Seed Cakes of Pumpkin
3.4. Chemical Profile of Hydrophilic Compounds
Free Sugars
3.5. Analysis of Lipophilic Compounds
3.5.1. Tocopherols
3.5.2. Analysis of Fatty Acids
3.6. Evaluation of Bioactive Properties In Vitro
3.6.1. Oil Extracts Preparation
3.6.2. Hydroethanolic Extraction
3.6.3. Anti-Proliferative Activity
3.6.4. Antimicrobial Activity Evaluation
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perez Gutierrez, R.M. Review of Cucurbita pepo (Pumpkin) its Phytochemistry and Pharmacology. Med. Chem. 2016, 6, 12–21. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Kim, M.; Jung, J.K.; Shim, E.J.; Chung, S.M.; Park, Y.; Lee, G.P.; Sim, S.C. Genome-wide SNP discovery and core marker sets for assessment of genetic variations in cultivated pumpkin (Cucurbita spp.). Hortic. Res. 2020, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT 2019. Food and Agriculture Data. Food and Agriculture Organization of the United Nations. Available online: https://faostat.fao.org/site/567/default.aspx#ancor (accessed on 20 July 2024).
- Hussain, A.; Kausar, T.; Sehar, S.; Sarwar, A.; Ashraf, A.H.; Jamil, M.A.; Noreen, S.; Rafique, A.; Iftikhar, K.; Quddoos, M.Y.; et al. A Comprehensive review of functional ingredients, especially bioactive compounds present in pumpkin peel, flesh and seeds, and their health benefits. Food Chem. Adv. 2022, 1, 100067. [Google Scholar] [CrossRef]
- Karrar, E.; Sheth, S.; Navicha, W.B.; Wei, W.; Hassanin, H.; Abdalla, M.; Wang, X. A potential new source: Nutritional and antioxidant properties of edible oils from cucurbit seeds and their impact on human health. J. Food Biochem. 2019, 43, e12733. [Google Scholar] [CrossRef] [PubMed]
- de Escalada Pla, M.F.; Flores, S.K.; Genevois, C.E. Innovative strategies and nutritional perspectives for fortifying pumpkin tissue and other vegetable matrices with iron. Food Sci. Hum. Wellness 2020, 9, 103–111. [Google Scholar] [CrossRef]
- Adams, G.G.; Imran, S.; Wang, S.; Mohammad, A.; Kok, S.; Gray, D.A.; Channell, G.A.; Morris, G.A.; Harding, S.E. The hypoglycaemic effect of pumpkins as anti-diabetic and functional medicines. Food Res. Int. 2011, 44, 862–867. [Google Scholar] [CrossRef]
- Siano, F.; Straccia, M.C.; Paolucci, M.; Fasulo, G.; Boscaino, F.; Volpe, M.G. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. J. Sci. Food Agric. 2016, 96, 1730–1735. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Chrysargyris, A.; Petropoulos, S.A. Phytochemicals content and health effects of cultivated and underutilized species of the Cucurbitaceae Family. In Phytochemical in Vegetables: A Valuable Source of Bioactive Compounds; Petropoulos, S.A., Ferreira, I.C.F.R., Barros, L., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2018; pp. 99–165. ISBN 9781681087399. [Google Scholar]
- Brogan, D.M.; Mossialos, E. A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility. Global. Health 2016, 12, 8. [Google Scholar] [CrossRef]
- Jayaprakasam, B.; Seeram, N.P.; Nair, M.G. Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett. 2003, 189, 11–16. [Google Scholar] [CrossRef]
- Koh, W.Y.; Uthumporn, U.; Rosma, A.; Irfan, A.R.; Park, Y.H. Optimization of a fermented pumpkin-based beverage to improve Lactobacillus mali survival and α-glucosidase inhibitory activity: A response surface methodology approach. Food Sci. Hum. Wellness 2018, 7, 57–70. [Google Scholar] [CrossRef]
- Acorda, J.A.; Mangubat, I.Y.E.C.; Divina, B.P. Evaluation of the in vivo efficacy of pumpkin (Cucurbita pepo) seeds against gastrointestinal helminths of chickens. Turk. J. Vet. Anim. Sci. 2019, 43, 206–211. [Google Scholar] [CrossRef]
- Naziri, E.; Mitić, M.N.; Tsimidou, M.Z. Contribution of tocopherols and squalene to the oxidative stability of cold-pressed pumkin seed oil (Cucurbita pepo L.). Eur. J. Lipid Sci. Technol. 2016, 118, 898–905. [Google Scholar] [CrossRef]
- Sedigheh, A.; Jamal, M.S.; Mahbubeh, S.; Somayeh, K.; Mahmoud, R.; Azadeh, A.; Fatemeh, S. Hypoglycaemic and hypolipidemic effects of pumpkin (Cucurbita pepo L.) on alloxan-induced diabetic rats. Afr. J. Pharm. Pharmacol. 2011, 5, 2620–2626. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Marin, J.; Rivas, J.; Sanhueza, L.; Soto, Y.; Vera, N.; Puente-Díaz, L. Pumpkin seeds (Cucurbita maxima). A review of functional attributes and by-products. Rev. Chil. Nutr. 2019, 46, 783–791. [Google Scholar] [CrossRef]
- Brennan, C.S.; Samyue, E. Evaluation of starch degradation and textural characteristics of dietary fiber enriched biscuits. Int. J. Food Prop. 2004, 7, 647–657. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Capanoglu, E.; Adrar, N.; Catalkaya, G.; Shaheen, S.; Jaffer, M.; Giri, L.; Suyal, R.; Jugran, A.; et al. Cucurbita Plants: From Farm to Industry. Appl. Sci. 2019, 9, 3387. [Google Scholar] [CrossRef]
- Badr, S.E.A.; Shaaban, M.; Elkholy, Y.M.; Helal, M.H.; Hamza, A.S.; Masoud, M.S.; El Safty, M.M. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats. Nat. Prod. Res. 2011, 25, 1524–1539. [Google Scholar] [CrossRef] [PubMed]
- Leichtweis, M.G.; Molina, A.K.; Pires, T.C.S.; Dias, M.I.; Calhelha, R.; Bachari, K.; Ziani, B.E.C.; Oliveira, M.B.P.P.; Pereira, C.; Barros, L. Biological activity of pumpkin byproducts: Antimicrobial and antioxidant properties. Molecules 2022, 27, 8366. [Google Scholar] [CrossRef]
- Chomicki, G.; Schaefer, H.; Renner, S.S. Origin and domestication of Cucurbitaceae crops: Insights from phylogenies, genomics and archaeology. New Phytol. 2020, 226, 1240–1255. [Google Scholar] [CrossRef]
- Sun, H.; Wu, S.; Zhang, G.; Jiao, C.; Guo, S.; Ren, Y.; Zhang, J.; Zhang, H.; Gong, G.; Jia, Z.; et al. Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. Mol. Plant 2017, 10, 1293–1306. [Google Scholar] [CrossRef]
- Karanja, J.K.; Mugendi, B.J.; Khamis, F.M.; Muchugi, A.N. Nutritional composition of the pumpkin (Cucurbita spp.) seed cultivated from selected regions in Kenya. J. Hortic. Lett. 2013, 3, 17–22. [Google Scholar]
- Vinayashree, S.; Vasu, P. Biochemical, nutritional and functional properties of protein isolate and fractions from pumpkin (Cucurbita moschata var. Kashi Harit) seeds. Food Chem. 2021, 340, 128177. [Google Scholar] [CrossRef]
- Bhat, M.A.; Bhat, A. Study on Physico-Chemical Characteristics of Pumpkin Blended Cake. J. Food Process. Technol. 2013, 4, 4–9. [Google Scholar] [CrossRef]
- Zdunczyk, Z.; Minakowski, D.; Frejnagel, S.; Flis, M. Comparative study of the chemical composition and nutritional value of pumpkin seed cake, soybean meal and casein. Nahrung Food 1999, 43, 392–395. [Google Scholar] [CrossRef]
- Batool, M.; Ranjha, M.M.A.N.; Roobab, U.; Manzoor, M.F.; Farooq, U.; Nadeem, H.R.; Nadeem, M.; Kanwal, R.; Abdelgawad, H.; Al Jaouni, S.K.; et al. Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin (Cucurbita sp.). Plants 2022, 11, 1394. [Google Scholar] [CrossRef]
- Kim, M.Y.; Kim, E.J.; Kim, Y.N.; Choi, C.; Lee, B.H. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr. Res. Pract. 2012, 6, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.L.; Wang, T.; Inglett, G.E. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef]
- Rezig, L.; Chouaibi, M.; Msaada, K.; Hamdi, S. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind. Crop. Prod. 2012, 37, 82–87. [Google Scholar] [CrossRef]
- Rabrenović, B.B.; Dimić, E.B.; Novaković, M.M.; Tešević, V.V.; Basić, Z.N. The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT 2014, 55, 521–527. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, V. Nutritional, phytochemical, and antimicrobial attributes of seeds and kernels of different pumpkin cultivars. Food Front. 2022, 3, 182–193. [Google Scholar] [CrossRef]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mansour, E.H.; Dworschák, E.; Lugasi, A.; Barna, É.; Gergely, A. Nutritive value of pumpkin (Cucurbita pepo Kakai 35) seed products. J. Sci. Food Agric. 1993, 61, 73–78. [Google Scholar] [CrossRef]
- Hagos, M.; Yaya, E.E.; Chandravanshi, B.S.; Redi-Abshiro, M. Development of a 13 C NMR spectroscopic method for the determination of sucrose, fructose, and glucose in pumpkin (Cucurbita maxima). J. Food Meas. Charact. 2023, 17, 4980–4990. [Google Scholar] [CrossRef]
- Mohaammed, S.S.; Paiko, Y.B.; Mann, A.; Ndamitso, M.M.; Mathew, J.T.; Maaji, S. Proximate, Mineral and Anti-nutritional Composition of Cucurbita Maxima Fruits Parts. Niger. J. Chem. Res. 2014, 19, 37–49. [Google Scholar] [CrossRef]
- Dhenge, R.; Rinaldi, M.; Ganino, T.; Santi, S.; Ferrarese, I.; Dall’Acqua, S. Variations of polyphenols, sugars, carotenoids, and volatile constituents in pumpkin (Cucurbita moschata) during high pressure processing: A kinetic study. Innov. Food Sci. Emerg. Technol. 2022, 78, 103005. [Google Scholar] [CrossRef]
- Amin, M.Z.; Islam, T.; Uddin, M.R.; Uddin, M.J.; Rahman, M.M.; Satter, M.A. Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.). Heliyon 2019, 5, e02462. [Google Scholar] [CrossRef]
- Seymen, M.; Uslu, N.; Türkmen, Ö.; Al Juhaimi, F.; Özcan, M.M. Chemical Compositions and Mineral Contents of Some Hull-Less Pumpkin Seed and Oils. J. Am. Oil Chem. Soc. 2016, 93, 1095–1099. [Google Scholar] [CrossRef]
- Idouraine, A.; Kohlhepp, E.A.; Weber, C.W.; Warid, W.A.; Martinez-Tellez, J.J. Nutrient constituents from eight lines of naked seed squash (Cucurbita pepo L.). J. Agric. Food Chem. 1996, 44, 721–724. [Google Scholar] [CrossRef]
- Gohari Ardabili, A.; Farhoosh, R.; Haddad Khodaparast, M.H. Chemical composition and physicochemical properties of pumpkin seeds (Cucurbita pepo subsp. pepo Var. styriaka) grown in Iran. J. Agric. Sci. Technol. 2011, 13, 1053–1063. [Google Scholar]
- Nyam, K.L.; Tan, C.P.; Lai, O.M.; Long, K.; Che Man, Y.B. Physicochemical properties and bioactive compounds of selected seed oils. LWT Food Sci. Technol. 2009, 42, 1396–1403. [Google Scholar] [CrossRef]
- Montesano, D.; Blasi, F.; Simonetti, M.S.; Santini, A.; Cossignani, L. Chemical and nutritional characterization of seed oil from Cucurbita maxima L. (var. Berrettina) pumpkin. Foods 2018, 7, 30. [Google Scholar] [CrossRef]
- Moo-Huchin, V.; Estrada-Mota, I.; Estrada-Leon, R.; Fernando Cuevas-Glory, L.; Sauri-Duch, E. Chemical composition of crude oil from the seeds of pumpkin (Cucurbita spp.) and mamey sapota (Pouteria sapota Jacq.) grown in Yucatan Mexico. CYTA J. Food 2013, 11, 324–327. [Google Scholar] [CrossRef]
- Nakić, S.N.; Rade, D.; Škevin, D.; Štrucelj, D.; Mokrovčak, Ž.; Bartolić, M. Chemical characteristics of oils from naked and husk seeds of Cucurbita pepo L. Eur. J. Lipid Sci. Technol. 2006, 108, 936–943. [Google Scholar] [CrossRef]
- Nederal, S.; Škevin, D.; Kraljić, K.; Obranović, M.; Papeša, S.; Bataljaku, A. Chemical composition and oxidative stability of roasted and cold pressed pumpkin seed oils. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 1763–1770. [Google Scholar] [CrossRef]
- Procida, G.; Stancher, B.; Cateni, F.; Zacchigna, M. Chemical composition and functional characterisation of commercial pumpkin seed oil. J. Sci. Food Agric. 2013, 93, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Mitra, P.; Ramaswamy, H.S.; Chang, K.S. Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil. J. Food Eng. 2009, 95, 208–213. [Google Scholar] [CrossRef]
- Dotto, J.M.; Chacha, J.S. The potential of pumpkin seeds as a functional food ingredient: A review: Biofunctional ingredients of pumpkin seeds. Sci. Afr. 2020, 10, e00575. [Google Scholar] [CrossRef]
- Chari, K.Y.; Polu, P.R.; Shenoy, R.R. An Appraisal of Pumpkin Seed Extract in 1, 2-Dimethylhydrazine Induced Colon Cancer in Wistar Rats. J. Toxicol. 2018, 2018, 6086490. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, M.H.; Azari, Z.; Zaminy, A.; Dabirian, S.; Mehrdad, S.M.; Kondori, B.J. Anti-proliferative and apoptotic effects of hull-less pumpkin extract on human papillary thyroid carcinoma cell line. Anat. Cell Biol. 2021, 54, 104–111. [Google Scholar] [CrossRef]
- Vinayashree, S.; Hemakumar, C.; Veeranna, R.P.; Kumar, R.; Pavithra, V.; Mahendra, V.P.; Vasu, P. In Vitro Studies of Pumpkin (Cucurbita moschata var. Kashi Harit) Seed Protein Fraction(s) to Evaluate Anticancer and Antidiabetic Properties. Plant Foods Hum. Nutr. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Medjakovic, S.; Hobiger, S.; Ardjomand-Woelkart, K.; Bucar, F.; Jungbauer, A. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors. Fitoterapia 2016, 110, 150–156. [Google Scholar] [CrossRef]
- Shokrzadeh, M.; Azadbakht, M.; Ahangar, N.; Hashemi, A.; Saravi, S.S. Cytotoxicity of hydro-alcoholic extracts of Cucurbita pepo and Solanum nigrum on HepG2 and CT26 cancer cell lines. Pharmacogn. Mag. 2010, 6, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Leichtweis, M.G.; Molina, A.K.; Dias, M.I.; Calhelha, R.C.; Pires, T.C.S.P.; Pavli, O.; Oliveira, M.B.P.P.; Petropoulos, S.A.; Barros, L.; Pereira, C. Variability in Chemical Profile and Bioactivities of the Flesh of Greek Pumpkin Landraces. Horticulturae 2023, 9, 1232. [Google Scholar] [CrossRef]
- Hussain, A.; Kausar, T.; Din, A.; Murtaza, A.; Jamil, M.A.; Noreen, S.; Iqbal, M.A. Antioxidant and Antimicrobial Properties of Pumpkin (Cucurbita maxima) Peel, Flesh and Seeds Powders. J. Biol. Agric. Healthc. 2021, 6, 42–51. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Calhelha, R.C.; Rouphael, Y.; Petrović, J.; Soković, M.; Ferreira, I.C.F.R.; Barros, L. Antimicrobial properties, cytotoxic effects, and fatty acids composition of vegetable oils from purslane, linseed, luffa, and pumpkin seeds. Appl. Sci. 2021, 11, 5738. [Google Scholar] [CrossRef]
- Abd El-Aziz, A.B.; Abd El-Kalek, H.H. Antimicrobial proteins and oil seeds from pumpkin (Cucurbita moschata). Nat. Sci. 2011, 9, 105–119. [Google Scholar]
- Sener, B.; Orhan, I.; Ozcelik, B.; Kartal, M.; Aslan, S.; Ozbilen, G. Antimicrobial and Antiviral Activities of Two Seed Oil Samples of Cucurbita pepo L. and Their Fatty Acid Analysis. Nat. Prod. Commun. 2007, 2, 395–398. [Google Scholar]
- Saavedra, M.J.; Aires, A.; Dias, C.; Almeida, J.A.; De Vasconcelos, M.C.B.M.; Santos, P.; Rosa, E.A. Evaluation of the potential of squash pumpkin by-products (seeds and shell) as sources of antioxidant and bioactive compounds. J. Food Sci. Technol. 2015, 52, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Fernandes, Â.; Arampatzis, D.A.; Tsiropoulos, N.G.; Petrović, J.; Soković, M.; Barros, L.; Ferreira, I.C.F.R. Seed oil and seed oil byproducts of common purslane (Portulaca oleracea L.): A new insight to plant-based sources rich in omega-3 fatty acids. LWT Food Sci. Technol. 2020, 123, 109099. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2019; ISBN 0935584773. [Google Scholar]
- Harumi Iyda, J.; Fernandes, Â.; Calhelha, R.C.; Alves, M.J.; Ferreira, F.D.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Nutritional composition and bioactivity of Umbilicus rupestris (Salisb.)Dandy: An underexploited edible wild plant. Food Chem. 2019, 295, 341–349. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Liberal, Â.; Almeida, D.; Fernandes, Â.; Pereira, C.; Ferreira, I.C.F.R.; Vivar-Quintana, A.M.; Barros, L. Nutritional, chemical, and antioxidant screening of selected varieties of lentils (Lens culinaris spp.) from organic and conventional agriculture. J. Sci. Food Agric. 2024, 104, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.; Queiroz, M.J.R.P. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2-carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef] [PubMed]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [PubMed]
Fat | Proteins | Ash | Carbohydrates | Energy | |
---|---|---|---|---|---|
Seeds | 42.74 ± 0.09 | 37.67 ± 0.20 | 3.52 ± 0.09 | 16.07 ± 0.03 | 599.62 ± 0.10 |
Seed cake | 7.62 ± 0.08 | 58.58 ± 0.30 | 5.40 ± 0.05 | 28.40 ± 0.20 | 416.50 ± 0.40 |
Student’s t-test p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Seeds | Seed Cake | ||
---|---|---|---|
Tocopherols (mg/100 g dw) | Student’s t-test p-Value | ||
α-Tocopherol | 0.075 ± 0.004 | 0.018 ± 0.001 | <0.001 |
β-Tocopherol | 0.011 ± 0.001 | 0.079 ± 0.002 | <0.001 |
γ-Tocopherol | 6.590 ± 0.030 | 1.070 ± 0.040 | <0.001 |
δ-Tocopherol | 0.280 ± 0.010 | 0.016 ± 0.002 | <0.001 |
Total Tocopherols | 6.956 ± 0.020 | 1.183 ± 0.040 | <0.001 |
Sugar composition (g/100 g dw) | |||
Fructose | 0.20 ± 0.01 | 0.34 ± 0.01 | 0.022 |
Glucose | 0.21 ± 0.01 | 0.19 ± 0.01 | 0.178 |
Sucrose | 1.97 ± 0.04 | 2.90 ± 0.10 | <0.001 |
Trehalose | 0.26 ± 0.01 | 0.25 ± 0.01 | 0.015 |
Total Sugars | 2.64 ± 0.10 | 3.68 ± 0.10 | <0.001 |
Organic acids composition (g/100 g dw) | |||
Oxalic acid | tr | 0.006 ± 0.001 | - |
Malic acid | tr | tr | - |
Total organic acids | - | 0.006 ± 0.001 | - |
Chemical Structure | Compound Name | Seeds | Seed Cake | Seed Oil |
---|---|---|---|---|
C6:0 | caproic acid | 0.015 ± 0.001 * | 0.168 ± 0.006 * | nd |
C8:0 | caprylic acid | 0.002 ± 0.001 * | 0.022 ± 0.001 * | nd |
C10:0 | capric acid | 0.006 ± 0.001 * | 0.011 ± 0.001 * | nd |
C12:0 | lauric acid | 0.020 ± 0.001 * | 0.039 ± 0.001 * | nd |
C14:0 | myristic acid | 0.117 ± 0.004 c | 0.230 ± 0.006 a | 0.139 ± 0.006 b |
C15:0 | pentadecylic acid | 0.020 ± 0.001 * | 0.043 ± 0.001 * | nd |
C16:0 | palmitic acid | 12.200 ± 0.040 b | 13.987 ± 0.400a | 14.306 ± 0.320 a |
C16:1 | palmitoleic acid | 0.119 ± 0.004 c | 0.162 ± 0.001 a | 0.146 ± 0.001 b |
C17:0 | margaric acid | 0.094 ± 0.004 b | 0.092 ± 0.003 b | 0.104 ± 0.004 a |
C18:0 | stearic acid | 4.830 ± 0.080 c | 5.460 ± 0.020 b | 6.216 ± 0.020 a |
C18:1n9c+t | oleic acid | 37.027 ± 0.100 a | 36.270 ± 0.020 a | 21.950 ± 0.030 b |
C18:2n6c | linoleic acid | 43.890 ± 0.010 b | 41.500 ± 0.300 c | 55.460 ± 0.200 a |
C18:3n3 | α-linolenic acid | 0.242 ± 0.004 c | 0.585 ± 0.001 a | 0.330 ± 0.030 b |
C20:0 | arachidic acid | 0.359 ± 0.004 c | 0.400 ± 0.002 a | 0.394 ± 0.004 b |
C20:1 | gondoic acid | 0.192 ± 0.001 b | 0.242 ± 0.005 a | 0.114 ± 0.001 c |
C20:3n3 + C21:0 | heneicosylic and eicosatrienoic acid | 0.270 ± 0.010 * | 0.154 ± 0.005 * | nd |
C20:5n3 | eicosapentaenoic acid | 0.110 ± 0.010 * | 0.063 ± 0.001 * | nd |
C22:0 | behenic acid | 0.294 ± 0.009 b | 0.430 ± 0.020 a | 0.155 ± 0.003 c |
C22:1n9 | docosenoic acid | 0.048 ± 0.003 * | 0.016 ± 0.001 * | nd |
C22:2 | docosadienoic acid | nd | nd | 0.220 ± 0.020 |
C23:0 | tricosylic acid | 0.027 ± 0.001 c | 0.064 ± 0.001 b | 0.466 ± 0.040 a |
C24:0 | lignoceric acid | 0.118 ± 0.003 * | 0.062 ± 0.001 * | nd |
Total SFA (% of total FA) | saturated fatty acids | 18.102 ± 0.030 c | 21.048 ± 0.300 b | 21.780 ± 0.300 a |
Total MUFA (% of total FA) | monounsaturated fatty acids | 37.412 ± 0.100 a | 36.690 ± 0.010 a | 22.210 ± 0.030 b |
Total PUFA (% of total FA) | polyunsaturated fatty acids | 44.486 ± 0.090 b | 42.262 ± 0.300 c | 56.010 ± 0.200 a |
Hepatotoxicity (GI50 µg/mL) | Antiproliferative Activity (GI50 μg/mL) | ||||
---|---|---|---|---|---|
PLP2 (Porcine Liver Primary Cell Line) | HeLa (Cervical Carcinoma) | HepG2 (Hepatocellular Carcinoma) | MCF-7 (Breast Carcinoma) | NCI-H460 (Non-Small Cell Lung Cancer) | |
Seeds | non-toxic * | non-toxic | non-toxic | non-toxic | non-toxic |
Seed cake | non-toxic | non-toxic | non-toxic | non-toxic | non-toxic |
Seed oils | non-toxic | 327 ± 15 | non-toxic | non-toxic | non-toxic |
Substance | Staphylococcus aureus (ATCC 11632) | Bacillus cereus (Food Isolate) | Micrococcus flavus (ATCC 10240) | Enterobacter cloacae (ATCC 35030) | Salmonella Typhimurium (ATCC 13311) | Escherichia coli (ATCC 25922) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Seed oil | 2.0 | 4.0 | 1.0 | 2.0 | 1.0 | 2.0 | 1.0 | 2.0 | 1.0 | 2.0 | 1.0 | 2.0 |
E211 | 4.0 | 4.0 | 0.5 | 0.5 | 1.0 | 2.0 | 2.0 | 4.0 | 1.0 | 2.0 | 1.0 | 2.0 |
E224 | 1.0 | 1.0 | 2.0 | 4.0 | 1.0 | 2.0 | 0.5 | 0.5 | 1.0 | 1.0 | 0.5 | 1.0 |
Substance | Aspergillus fumigatus (ATCC 9197) | Aspergillus versicolor (ATCC 11730) | Aspergillus niger (ATCC 6275) | Penicillium funiculosum (ATCC 36839) | Penicillium verrucosum var. Cyclopium (Food Isolate) | Trichoderma viride (IAM 5061) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
Seed oil | 4.0 | 8.0 | 1.0 | 2.0 | 1.0 | 2.0 | 0.5 | 1.0 | 0.5 | 1.0 | 0.5 | 1.0 |
E211 | 1.0 | 2.0 | 2.0 | 4.0 | 1.0 | 2.0 | 1.0 | 2.0 | 2.0 | 4.0 | 1.0 | 2.0 |
E224 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 | 0.5 | 1.0 | 1.0 | 0.5 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyzos, N.; Fernandes, Â.; Calhelha, R.C.; Petrović, J.; Soković, M.; Ferreira, I.C.F.R.; Barros, L.; Petropoulos, S.A. Biochemical Composition of Pumpkin Seeds and Seed By-Products. Plants 2024, 13, 2395. https://doi.org/10.3390/plants13172395
Polyzos N, Fernandes Â, Calhelha RC, Petrović J, Soković M, Ferreira ICFR, Barros L, Petropoulos SA. Biochemical Composition of Pumpkin Seeds and Seed By-Products. Plants. 2024; 13(17):2395. https://doi.org/10.3390/plants13172395
Chicago/Turabian StylePolyzos, Nikolaos, Ângela Fernandes, Ricardo C. Calhelha, Jovana Petrović, Marina Soković, Isabel C. F. R. Ferreira, Lillian Barros, and Spyridon A. Petropoulos. 2024. "Biochemical Composition of Pumpkin Seeds and Seed By-Products" Plants 13, no. 17: 2395. https://doi.org/10.3390/plants13172395
APA StylePolyzos, N., Fernandes, Â., Calhelha, R. C., Petrović, J., Soković, M., Ferreira, I. C. F. R., Barros, L., & Petropoulos, S. A. (2024). Biochemical Composition of Pumpkin Seeds and Seed By-Products. Plants, 13(17), 2395. https://doi.org/10.3390/plants13172395