Effect of Combined Application of Wood Vinegar Solution and Biochar on Saline Soil Properties and Cotton Stress Tolerance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site and Test Soil
2.2. Physicochemical Properties of BC and WV for Testing
2.3. Experimental Design
2.4. Sample Analyses
2.5. Statistical Analysis
3. Results and Analyses
3.1. Changes in Soil Properties
3.2. Characteristics of Changes in Soil Nutrient Content
3.3. Characteristics of Changes in Plant Morphological Indicators and Biomass
3.3.1. Changes in Agronomic Indicators and Biomass of Plants
3.3.2. Characteristics of Changes in Plant Photosynthetic Rate
3.4. Characteristics of Changes in Plant Enzyme Activities
3.5. Characterisation of Changes in Soil Enzyme Activities
3.6. Correlation Analysis
4. Discussion
4.1. BC and WV Application Affect Soil Properties
4.2. BC and WV Application Affect Soil Nutrient Content
4.3. BC and WV Application Affected Plant Morphological Photosynthetic Indexes and Biomass
4.4. BC and WV Applications Affect Plant Enzyme Activities
4.5. Application of BC and WV Affects Soil Enzyme Activities
4.6. Comprehensive Evaluation Analysis of Different Treatments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, Y.-S.; Ahn, B.J.; Kim, G.-H. Extraction of chromium, copper, and arsenic from CCA-treated wood by using wood vinegar. Bioresour. Technol. 2012, 120, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.K.; Lin, C.; Hoang, H.G.; Bui, X.T.; Ngo, H.H.; Tran, H.-T. Investigation of biochar amendments on odor reduction and their characteristics during food waste co-composting. Sci. Total Environ. 2023, 865, 161128. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Yang, L.; Lei, X.; Zhang, W.; Ai, Z.; Yang, Z.; Zhan, H.; Yang, J.; Yuan, X.; Peng, H. Machine learning predicting and engineering the yield, N content, and specific surface area of biochar derived from pyrolysis of biomass. Biochar 2022, 4, 63. [Google Scholar] [CrossRef]
- He, K.; He, G.; Wang, C.; Zhang, H.; Xu, Y.; Wang, S.; Kong, Y.; Zhou, G.; Hu, R. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl. Soil Ecol. 2020, 155, 103674. [Google Scholar] [CrossRef]
- Wang, S.; Gao, P.; Zhang, Q.; Shi, Y.; Guo, X.; Lv, Q.; Wu, W.; Zhang, X.; Li, M.; Meng, Q. Application of biochar and organic fertilizer to saline-alkali soil in the Yellow River Delta: Effects on soil water, salinity, nutrients, and maize yield. Soil Use Manag. 2022, 38, 1679–1692. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, Z.S.; Li, M.; Wu, H.T. Effects of short-term biochar addition on the structural characteristics of soil microbial communities in degraded saline wetlands. Soil Crops 2023, 12, 225–233. [Google Scholar]
- Tan, G.; Yu, H.-Q. Rethinking biochar: Black gold or not? Nat. Rev. Mater. 2024, 9, 4–5. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, R.; Zhang, Q.; Zhao, J.; Li, F.; Luo, X.; Xing, B. Pyroligneous acid mitigated dissemination of antibiotic resistance genes in soil. Environ. Int. 2020, 145, 106158. [Google Scholar] [CrossRef]
- Zhang, L.D.; Huo, P.J.; Liang, J.M.; Guo, T.; Fan, X.L.; Sun, S.L. Research progress on preparation process and efficiency technology of biomass-based wood vinegar liquid. J. For. Eng. 2023, 8, 27–36. [Google Scholar]
- Quan, X.; Shan, J.; Xing, Y.; Peng, C.; Wang, H.; Ju, Y.C.; Zhao, W.; Fan, J. New horizons in the application of a neglected biomass pyrolysis byproduct: A marked simultaneous decrease in ammonia and carbon dioxide emissions. J. Clean. Prod. 2021, 297, 126626. [Google Scholar] [CrossRef]
- Ofoe, R.; Qin, D.; Gunupuru, L.R.; Thomas, R.H.; Abbey, L. Effect of pyroligneous acid on the productivity and nutritional quality of greenhouse tomato. Plants 2022, 11, 1650. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Liu, L.; Liu, B.; Zheng, H.; Meng, W.; Liu, Y.; Zhang, X.; Ma, X.; Sun, C.; Luo, X. Hormetic effect of pyroligneous acids on the conjugative transfer of plasmid-mediated multi-antibiotic resistance genes within the bacterial genus. ACS Environ. Au 2022, 3, 105–120. [Google Scholar] [CrossRef]
- Yuan, Y.; Kong, Q.; Zheng, Y.; Zheng, H.; Liu, Y.; Cheng, Y.; Zhang, X.; Li, Z.; You, X.; Li, Y. Co-application of biochar and pyroligneous acid improved peanut production and nutritional quality in coastal soil. Environ. Technol. 2022, 28, 102886. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Liu, B.; Liu, Q.; Zheng, H.; You, X.; Sun, K.; Luo, X.; Li, F. Comparative study of individual and co-application of biochar and wood vinegar on blueberry fruit yield and nutritional quality. Chemosphere 2020, 246, 125699. [Google Scholar] [CrossRef]
- NSO Announcement on Cotton Production in 2023. China Information News 2023, 12, 001. [CrossRef]
- ul Shahid, Z.; Ali, M.; Shahzad, K.; Danish, S.; Alharbi, S.A.; Ansari, M.J. Enhancing maize productivity by mitigating alkaline soil challenges through acidified biochar and wastewater irrigation. Sci. Rep. 2023, 13, 20800. [Google Scholar] [CrossRef]
- Sun, S.N.; Yan, X.B.; Yin, F.H. Status and Prospect of Improvement and Comprehensive Utilisation of Saline and Alkaline Land on Coastal Beaches in China. China Grassl. J. 2024, 14, 1–13. [Google Scholar]
- Wei, B.H.; Shen, Z.Y.; Zhou, J.; Zhou, L.Z.; Hu, B. Effectiveness and Mechanism of Chalk Tillage for Saline Soil Improvement. Soils 2020, 52, 699–703. [Google Scholar]
- Taha, F.; Bhat, N. Selection of ornamental and landscape plants for the implementation of the National Greenery Plan of Kuwait. In New Technologies for Soil Reclamation Desert Greenery, Amherst; Scientific Publishers: Amherst, MA, USA, 2002; pp. 27–44. [Google Scholar]
- Aragüés, R.; Medina, E.; Zribi, W.; Clavería, I.; Álvaro-Fuentes, J.; Faci, J. Soil salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrig. Sci. 2015, 33, 67–79. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Z.; Chen, R.; Jiang, W.; Yin, C.; Mao, Z.; Wang, Y. Biochar promotes the growth of apple seedlings by adsorbing phloridzin. Sci. Hortic. 2022, 303, 111187. [Google Scholar] [CrossRef]
- Han, Q.; Fu, Y.; Qiu, R.; Ning, H.; Liu, H.; Li, C.; Gao, Y. Carbon amendments shape the bacterial community structure in salinized farmland soil. Microbiol. Spectr. 2023, 11, e01012-22. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Wang, Z.Q.; Zhou, K.; Qian, S.; Bian, Y.R.; He, W.X.; Lu, J.L. Effects of wood vinegar solution on microbial population and enzyme activities in alkaline soil. China Environ. Sci. 2017, 37, 696–701. [Google Scholar]
- Han, J.H.; Sun, Y.B.; Zhang, L.K.; Wang, W.D.; Li, Y.M. Effect of biochar and humic acid on the physico-chemical properties of saline soils. Agric. Res. Arid Areas 2020, 38, 121–127. [Google Scholar]
- Song, X.; Razavi, B.S.; Ludwig, B.; Zamanian, K.; Zang, H.; Kuzyakov, Y.; Dippold, M.A.; Gunina, A. Combined biochar and nitrogen application stimulates enzyme activity and root plasticity. Sci. Total Environ. 2020, 735, 139393. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Publishing House: Beijing, China, 2000. [Google Scholar]
- Wang, Z.; Sun, Z.J.; El-Sawy, S. Effectiveness of amending alkalized soil and improving the yield of oil sunflower by combining seabird biochar with wood vinegar solution. Environ. Sci. 2021, 42, 6078–6090. [Google Scholar]
- Pan, J.; Xiao, H.; Cheng, W.J.; Wang, L.J.; Lu, W.L. Effect of soil irrigation with wood vinegar solution on soil nutrients, yield and quality of tomato. Soils Fertil. Sci. China 2016, 61–64+77. [Google Scholar]
- Zhou, H.J.; Geng, Y.Q.; Cong, R.C.; Li, Y.F.; Liu, D. Effect of wood vinegar solution on chemical properties, enzyme activities and correlation of saline soils. Soil Bull. 2016, 47, 105–111. [Google Scholar]
- Feng, Y.; Feng, Y.; Liu, Q.; Chen, S.; Hou, P.; Poinern, G.; Jiang, Z.; Fawcett, D.; Xue, L.; Lam, S.S. How does biochar aging affect NH3 volatilization and GHGs emissions from agricultural soils? Environ. Pollut. 2022, 294, 118598. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, K.; Han, L.; Chen, Y.; Liu, J.; Xing, B. Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging, and soil clay content. Soil Biol. Biochem. 2022, 169, 108657. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Y.; Chen, C.; Xiang, Y.; Rezaei Rashti, M.; Li, Y.; Deng, Q.; Zhang, R. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: A meta-analysis of field studies. GCB Bioenergy 2021, 13, 1859–1873. [Google Scholar] [CrossRef]
- Sharma, T.; Dreyer, I.; Kochian, L.; Piñeros, M.A. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front. Plant Sci. 2016, 7, 1488. [Google Scholar] [CrossRef] [PubMed]
- Fachini, J.; de Figueiredo, C.C.; do Vale, A.T. Assessing potassium release in natural silica sand from novel K-enriched sewage sludge biochar fertilizers. Environ. Manag. 2022, 314, 115080. [Google Scholar] [CrossRef]
- Tian, J.; Kuang, X.; Tang, M.; Chen, X.; Huang, F.; Cai, Y.; Cai, K. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition. Sci. Total Environ. 2021, 779, 146556. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Yang, H.W.; Chen, Y.H.; Lv, C.L.; Bi, R.X.; Zhang, X.Y.; Ma, M.T. Progress in the activation and utilization of soil phosphorus by organic acids. J. Agro-Environ. Sci. 2022, 41, 1391–1399. [Google Scholar]
- Zhang, M.; Riaz, M.; Liu, B.; Xia, H.; El-Desouki, Z.; Jiang, C. Two-year study of biochar: Achieving excellent capability of potassium supply via altering clay mineral composition and potassium-dissolving bacteria activity. Sci. Total Environ. 2020, 717, 137286. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, S.; Chen, M.; Liu, J.; Ding, X. Innovatio. A sustainable option: Biochar addition can improve soil phosphorus retention and rice yield in saline-alkaline soil. Environ. Technol. 2021, 24, 102070. [Google Scholar]
- Zhou, R.H.; Zhu, Z.J.; Huang, M.Y.; Zhang, F.; Zhai, Y.M. Hydropower. Effect of different particle sizes and amount of biochar on saline soil and tomato. China Rural Water Hydropowe 2022, 175–180. [Google Scholar]
- Jiang, L.N.; So, L.N.; Liang, L.N.; Li, C.; Zhang, N.N.; Sun, X.Y.; Li, Y.M. Effects of basal application of biochar-based fertilizer on yield, quality, nutrient uptake and soil properties of Chinese cabbage. Soil Fertil. China 2023, 23–31. [Google Scholar]
- Zhang, Y.F.; Liu, Z.H.; Tian, S.Z.; Bian, W.F.; Dong, L.; Tan, D.S.; Li, R.Q. Effect of water-soluble fertilizer containing wood vinegar solution on the growth of wheat under dry and hot wind stresses. Soils 2021, 53, 499–504. [Google Scholar]
- Hou, J.; Zhang, J.; Liu, X.; Ma, Y.; Wei, Z.; Wan, H.; Liu, F. Effect of biochar addition and reduced irrigation regimes on growth, physiology, and water use efficiency of cotton plants under salt stress. Ind. Crop Prod. 2023, 198, 116702. [Google Scholar] [CrossRef]
- Zhang, K.K.; Yu, Q.; Zhu, K.M.; Ji, X.C.; Hu, L.Y.; Bi, J.G.; Luo, L.J. Effects of different initiators on seed germination and seedling growth of ‘Drought Superior 73’ under drought stress. Shanghai J. Agricultur. 2022, 38, 128–133. [Google Scholar]
- Amirahmadi, E.; Mohammad Hojjati, S.; Kammann, C.; Ghorbani, M.; Biparva, P. The potential effectiveness of biochar application to reduce soil Cd bioavailability and encourage oak seedling growth. Appl. Sci. 2020, 10, 3410. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Q.; Zheng, H.; Li, M.; Liu, Y.; Wang, X.; Peng, Y.; Luo, X.; Li, F.; Li, X. Biochar as a sustainable tool for improving the health of salt-affected soil. Soil Environ. Health 2023, 1, 100033. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.N.; Meng, J.; Yang, Q.G.; Zhang, X.Y.; Kang, Z.K.; Zhou, G.C. Effect of the combined action of wood vinegar solution and sodium naphthalene acetate on photosynthetic characteristics and yield of peanut. Agric. Res. Arid Areas 2017, 35, 185–191. [Google Scholar]
- Zhang, X.X. Cold Resistance Analysis and Molecular Markers Associated with Cold Resistance in Cabbage-Type Winter Oilseed Rape. Master’s Thesis, Northwest Agriculture and Forestry University, Yangling, China, 2014. [Google Scholar]
- Liu, J.; Wu, Y.; Dong, G.; Zhu, G.; Zhou, G. Progress of research on the physiology and molecular regulation of sorghum growth under salt stress by gibberellin. Int. J. Mol. Sci. 2023, 24, 6777. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Liu, Z.H.; Tian, S.Z.; Bian, W.F.; Dong, L.; Li, R.Q. Effect of synergistic application of sprayed wood vinegar solution and organic water-soluble fertilizer on resistance of wheat to dry and hot winds. Soil Fertil. China 2021, 4, 234–240. [Google Scholar]
- Wang, Z.; Zhao, Y.; Hou, Y.; Tang, G.; Zhang, R.; Yang, Y.; Yan, X.; Fan, K. A thrombin-activated peptide-templated enzyme for remedying ischemic stroke via thrombolytic and neuroprotective actions. Adv. Mater. Process. 2024, 36, 2210144. [Google Scholar] [CrossRef]
- Zhang, S.; Hou, J.; Zhang, X.; Cheng, L.; Hu, W.; Zhang, Q. ThroWBin-Activated Peptide-Templated Nanozyme for Remedying Ischemic Stroke via ThroWBolytic and Neuroprotective Actions. Bioresour. Technol. 2023, 387, 129673. [Google Scholar]
- Wang, H.H.; Li, K.R.; Hou, H.W. Progress of research on the enhancement of plant stress tolerance by oleuropein lactones. Agric. Res. Arid Areas 2005, 23, 213–219. [Google Scholar]
- Jiang, Y.; Rong, H.; Wang, Y.; Liu, S.; Xu, P.; Luo, Z.; Guo, L.; Zhu, T.; Rong, H.; Wang, D. Single-atom cobalt nano zymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res. 2023, 16, 9752–9759. [Google Scholar] [CrossRef]
- Liu, X.H.; Liu, X.H.; Zheng, H.; Jing, Y.F.; Zhou, W.H.; Yu, H.T.; Qian, H.; Ye, X.F. Mitigating effects of biochar on sodium chloride stress in tobacco seedlings. China Tob. J. 2022, 28, 52–62. [Google Scholar] [CrossRef]
- Shang, C.; Ma, C.H.; Zhai, C.X.; Li, Y.Z.; Dong, W.Q.; Cui, S.P.; Hou, L.B.; Jia, Y.L. Changes in malondialdehyde (MDA) levels during induction of disease resistance in maize. N. China J. Agric. 2007, 22, 29–32. [Google Scholar]
- Chen, J.T.; Wu, P.R.; Liu, X.Y.; Zhang, S.Y.; Liu, L.; Wang, Y.B.; Li, C.F. Mitigation effects of biochar on salinity stress in sugar beet under nitrogen reduction conditions. J. Plant Nutr. Fertil. 2020, 26, 1492–1500. [Google Scholar]
- Zhao, J.W.; Zhang, Y.P.; Liu, H.H.; Zhu, L.B.; Fan, Z.Y.; Yang, Z.T. Effects of exogenous humic acid on the breeding, photosynthetic characteristics and nitrogen metabolism of strawberry seedlings. J. Hebei Agric. Univ. 2023, 46, 46–51. [Google Scholar]
- Zhang, J.; Zhang, L.; Qiu, S. Biochar amendment benefits 15N fertilizer retention and rhizosphere N enrichment in a maize-soil system. Geoderma 2022, 412, 115713. [Google Scholar] [CrossRef]
- Qin, Q.Q.; Wang, F.; Wang, X.; Zhou, J.Y. Effects of wood vinegar solution with other amendments on soil nutrients and growth of roasted tobacco. China Tob. Sci. 2020, 41, 15–19. [Google Scholar]
- Yang, W.Q.; Song, G.Y.; Han, Y.P. Theoretical system of soil ecology and its research areas. J. Ecol. 2000, 4, 53. [Google Scholar]
- Kong, T.; Zheng, S.; Na, B.J.; Lin, J.Y.; Zhang, L.S.; Meng, J. Effect of wood vinegar solution on the yield and soil enzyme activity of Brassica napus in low and medium fertility soils of northwestern Liaoning Province, China. Soil Water Conserv. Bull. 2018, 38, 52–57. [Google Scholar]
- Shang, J.; Geng, Z.C.; Wang, Y.L.; Chen, X.S.; Zhao, J. Effect of biochar application on micro biomass carbon, nitrogen and enzyme activities in (soil Lou) soil. Chin. Agric. Sci. 2016, 49, 1142–1151. [Google Scholar]
- Nannipieri, P.; Smalla, K. Nucleic Acids and Proteins in Soil; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kerner, P.; Struhs, E.; Mirkouei, A.; Aho, K.; Lohse, K.A.; Dungan, R.S.; You, Y. Microbial Responses to Biochar Soil Amendment and Influential Factors: A Three-level Meta-analysis. Environ. Sci. Technol. 2023, 57, 19838–19848. [Google Scholar] [CrossRef]
- Chen, Y.L.; Luo, Y.F.; Wan, Z.Y.; Wan, Q.S.; Zou, Y.Z.; Wu, Y.G. Effects of combined modifier-plant remediation on physic-chemical properties, enzyme activities and microbial community structure of red mud. J. Ecol. 2024, 1–10. [Google Scholar]
- Ma, M.; Chen, Y.; Su, R.; Liu, Z.; He, J.; Zhou, W.; Gu, M.; Yan, M.; Li, Q. In situ synthesis of Fe-N co-doped carbonaceous nanocomposites using biogas residue as an effective persulfate activator for remediation of aged petroleum contaminated soils. Hazard. Mater. 2022, 435, 128963. [Google Scholar] [CrossRef] [PubMed]
- Haj-Amor, Z.; Araya, T.; Kim, D.-G.; Bouri, S.; Lee, J.; Ghiloufi, W.; Yang, Y.; Kang, H.; Jhariya, M.K.; Banerjee, A. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Sci. Total Environ. 2022, 843, 156946. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.M.; Ye, J.R.; Liu, H.; Zhou, M.S.; Liu, S.L.; Zhao, Y.; Liu, F. Effect of wood vinegar solution on physicochemical properties and morphological transformation of Cd in Cd-contaminated calcareous soil. J. Soil Water Conserv. 2022, 36, 327–332. [Google Scholar]
- Zhao, Y. Effects of Different Treatments of Rice Straw on Nitrogen Supply Capacity and Enzyme Activity of Coastal Saline Rice Soil. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2018. [Google Scholar]
- Wang, W.H.; Jiang, Z.H.; Zhang, J.; Zhang, L.; Guo, Y.X.; Deng, J.; Jin, Y.Z.; Li, C.X. Effect of biochar on inter-root soil enzyme activity and yield of soybean. In Soils and Fertilizers Sciences in China; 2023; pp. 147–153. [Google Scholar]
Test Cycle | Treatment No. | pH | Total Water-Soluble Salt (g·kg−1) | Conductivity (mS/cm) | Total Exchangeable Salts (cmol·kg−1) | Sodium Adsorption Ratio |
---|---|---|---|---|---|---|
30 days | CK | 9.15 ± 0.01 c | 1.30 ± 0.24 c | 0.15 ± 0.06 c | 7.55 ± 0.11 b | 1.38 ± 0.14 b |
BC1 | 9.40 ± 0.04 b | 3.51 ± 0.11 b | 1.01 ± 0.02 b | 8.41 ± 0.23 a | 7.55 ± 0.41 a | |
BC2 | 9.83 ± 0.06 a | 5.21 ± 0.24 a | 1.60 ± 0.02 a | 8.52 ± 0.20 a | 8.91 ± 0.98 a | |
WV1 | 9.15 ± 0.01 c | 1.32 ± 0.25 c | 0.15 ± 0.05 c | 7.54 ± 0.10 b | 1.38 ± 0.13 b | |
WV2 | 9.15 ± 0.01 c | 1.29 ± 0.24 c | 0.14 ± 0.04 c | 7.55 ± 0.11 b | 1.38 ± 0.14 b | |
WB1 | 9.41 ± 0.04 b | 3.54 ± 0.14 b | 1.08 ± 0.07 b | 8.41 ± 0.23 a | 7.53 ± 0.40 a | |
WB2 | 9.86 ± 0.04 a | 5.25 ± 0.22 a | 1.60 ± 0.02 a | 8.53 ± 0.19 a | 8.95 ± 1.00 a | |
60 days | CK | 8.28 ± 0.05 b | 9.11 ± 0.01 a | 2.31 ± 0.01 a | 12.87 ± 0.57 g | 11.04 ± 0.15 a |
BC1 | 8.35 ± 0.02 b | 6.35 ± 0.07 c | 1.98 ± 0.01 b | 15.87 ± 0.57 f | 9.70 ± 0.15 b | |
BC2 | 8.54 ± 0.02 a | 7.34 ± 0.09 b | 1.87 ± 0.01 c | 18.87 ± 0.57 e | 9.83 ± 0.09 b | |
WV1 | 7.32 ± 0.02 e | 6.20 ± 0.04 c | 1.68 ± 0.01 d | 21.87 ± 0.57 d | 9.50 ± 0.23 b | |
WV2 | 6.27 ± 0.03 f | 5.71 ± 0.02 d | 1.50 ± 0.01 e | 24.87 ± 0.57 c | 9.27 ± 0.23 b | |
WB1 | 8.06 ± 0.03 c | 4.51 ± 0.06 e | 0.90 ± 0.04 g | 27.87 ± 0.57 b | 9.15 ± 0.79 b | |
WB2 | 7.83 ± 0.03 d | 5.90 ± 0.09 d | 1.28 ± 0.01 f | 30.87 ± 0.57 a | 9.30 ± 0.03 b | |
90 days | CK | 8.00 ± 0.02 e | 9.98 ± 0.03 a | 2.85 ± 0.01 a | 13.93 ± 0.12 a | 23.17 ± 5.90 a |
BC1 | 8.22 ± 0.01 b | 6.73 ± 0.09 e | 1.95 ± 0.01 c | 13.70 ± 0.03 a | 10.76 ± 0.16 b | |
BC2 | 8.34 ± 0.01 a | 7.64 ± 0.02 c | 1.72 ± 0.01 d | 13.72 ± 0.10 a | 12.01 ± 0.75 b | |
WV1 | 8.09 ± 0.01 d | 7.32 ± 0.02 d | 1.64 ± 0.01 d | 12.10 ± 0.30 b | 10.32 ± 0.14 b | |
WV2 | 6.31 ± 0.04 f | 7.10 ± 0.03 d | 1.64 ± 0.01 d | 11.75 ± 0.38 bc | 9.43 ± 0.13 b | |
WB1 | 8.18 ± 0.02 bc | 6.49 ± 0.07 e | 1.75 ± 0.01 d | 12.04 ± 0.08 b | 8.70 ± 0.14 b | |
WB2 | 8.11 ± 0.01 cd | 8.71 ± 0.17 b | 2.15 ± 0.10 b | 11.06 ± 0.28 c | 9.60 ± 0.36 b |
Index Value | Positive Ideal Solution | Negative Ideal Solution | Comprehensive Score | Sort |
---|---|---|---|---|
CK | 0.918 | 0.327 | 0.262 | 7 |
BC1 | 0.795 | 0.383 | 0.325 | 6 |
BC2 | 0.645 | 0.531 | 0.451 | 4 |
WV1 | 0.735 | 0.378 | 0.339 | 5 |
WV2 | 0.542 | 0.597 | 0.524 | 3 |
WB1 | 0.525 | 0.64 | 0.549 | 2 |
WB2 | 0.455 | 0.831 | 0.646 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Tang, G.; Xu, W.; Zhang, Y.; Ning, S.; Yu, P.; Zhu, J.; Wu, Q.; Yu, P. Effect of Combined Application of Wood Vinegar Solution and Biochar on Saline Soil Properties and Cotton Stress Tolerance. Plants 2024, 13, 2427. https://doi.org/10.3390/plants13172427
Yang L, Tang G, Xu W, Zhang Y, Ning S, Yu P, Zhu J, Wu Q, Yu P. Effect of Combined Application of Wood Vinegar Solution and Biochar on Saline Soil Properties and Cotton Stress Tolerance. Plants. 2024; 13(17):2427. https://doi.org/10.3390/plants13172427
Chicago/Turabian StyleYang, Liu, Guangmu Tang, Wanli Xu, Yunshu Zhang, Songrui Ning, Pujia Yu, Jie Zhu, Qingsong Wu, and Peng Yu. 2024. "Effect of Combined Application of Wood Vinegar Solution and Biochar on Saline Soil Properties and Cotton Stress Tolerance" Plants 13, no. 17: 2427. https://doi.org/10.3390/plants13172427
APA StyleYang, L., Tang, G., Xu, W., Zhang, Y., Ning, S., Yu, P., Zhu, J., Wu, Q., & Yu, P. (2024). Effect of Combined Application of Wood Vinegar Solution and Biochar on Saline Soil Properties and Cotton Stress Tolerance. Plants, 13(17), 2427. https://doi.org/10.3390/plants13172427