Exploring Metabolomics to Innovate Management Approaches for Fall Armyworm (Spodoptera frugiperda [J.E. Smith]) Infestation in Maize (Zea mays L.)
Abstract
:1. Introduction
2. Fall Armyworm—A Major Pest
Why Metabolomics?
3. Metabolomics Approaches to Unveil the Plant’s Chemical Orchestra
3.1. GC-MS and LC-MS
3.2. Other Techniques
3.3. Biochemical Reactions
4. Primary and Secondary Metabolites
4.1. Phenolic Compounds
4.1.1. Flavonoids
4.1.2. Tannins
4.2. Terpenoids
4.3. DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one)
4.4. Glucosinolates
5. Feeding Impacts of Metabolites for FAW
6. Metabolomic Response for Different Strains of FAW
7. Future Prospects
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FAW | Fall armyworm |
DIMBOA | 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one |
SA | Salicylic acid |
JA | Jasmonic acid |
JA | Jasmonoyl-Isoleucine |
ABA | Abscisic acid |
C Strain | Corn strain |
R Strain | Rice strain |
IAA | Indole acetic acid |
DEG | Differential expressed gene |
DEM | Differential expressed metabolites |
SH | Solanum habrochaites |
AC | Ailsa Craig |
PAL | Phenylalanine |
CEW | Corn earworm |
PA | Piperonylic acid |
References
- Mooventhan, P.; Baskaran, R.; Kaushal, J.; Kumar, J. Integrated Management of Fall Armyworm in Maize; NIBSM Publication: Raipur, India, 2019; NIBSM/TB/2019-01. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 1 June 2024).
- Lodha, T.D.; Hembram, P.; Nitile Tep, J.B. Proteomics: A Successful approach to understand the molecular mechanism of plant-pathogen interaction. Am. J. Plant Sci. 2013, 4, 1212–1226. [Google Scholar] [CrossRef]
- Reddy, Y.; Trivedi, S. Maize Production Technology; Agrotech Publishing Academy: Udaipur, Indian, 2008; pp. 190–192. [Google Scholar]
- Jaba, J.; Sathish, K.; Mishra, S.P. Biology of Fall armyworm Spodoptera frugiperda (J.E. Smith) on artificial diets. Indian J. Entomol. 2020, 82, 543. [Google Scholar] [CrossRef]
- Nagoshi, R.N. Can the Amount of Corn Acreage Predict Fall armyworm (Lepidoptera: Noctuidae) Infestation levels in nearby cotton? J. Econ. Entomol. 2009, 102, 210–218. [Google Scholar] [CrossRef]
- Aruna Balla, B.M.; Bagade, P.; Rawal, N. Yield losses in maize (Zea mays L.) due to fall armyworm infestation and potential based interventions for its control. J. Entomol. Zool. Stud. 2019, 7, 920–927. [Google Scholar]
- Ganiger, P.; Yeshwanth, H.; Muralimohan, K.; Vinay, N.; Kumar, A.; Chandrashekara, K. Occurrence of the new invasive pest, fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr. Sci. 2018, 115, 621–623. [Google Scholar] [CrossRef]
- Williams, W.P.; Davis, F.M. Registration of Mp704 germplasm line of maize (Reg. No. GP116). Crop Sci. 1982, 22, 1269–1270. [Google Scholar] [CrossRef]
- Williams, W.; Davis, F. Response of corn to artificial infestation with fall armyworm and southwestern corn borer larvae. Southwest. Entomol. 1990, 15, 163–169. [Google Scholar]
- Prasanna, B.; Huesing, J.E.; Peschke, V.M.; Nagoshi, R.N.; Jia, X.; Wu, K.; Trisyono, Y.A.; Tay, T.; Watson, A.; Day, R. Fall Armyworm in Asia: Invasion, Impacts, and Strategies for Sustainable Management; CIMMYT: Veracruz, Mexico, 2021. [Google Scholar]
- Prasanna, B.M.; Bruce, A.; Beyene, Y.; Makumbi, D.; Gowda, M.; Asim, M.; Martinelli, S.; Head, G.P.; Parimi, S. Host plant resistance for fall armyworm management in maize: Relevance, Status and Prospects in Africa and Asia. Theor. Appl. Genet. 2022, 135, 3897–3916. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.; Cheremond, E.; Brandvain, Y.; Van Tassel, D.; Murrell, E. Weight Gain of Spodoptera frugiperda Larvae (Lepidoptera: Noctuidae) on leaf and floral tissues of Silphium integrifolium (Asterales: Asteraceae) differs by plant genotype. Environ. Entomol. 2022, 51, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Allwood, J.W.; Williams, A.; Uthe, H.; van Dam, N.M.; Mur, L.A.; Grant, M.R.; Pétriacq, P. Unravelling plant responses to stress—The importance of targeted and untargeted metabolomics. Metabolites 2021, 11, 558. [Google Scholar] [CrossRef]
- Warburton, M.L.; Woolfolk, S.W.; Smith, J.S.; Hawkins, L.K.; Castano-Duque, L.; Lebar, M.D.; Williams, W.P. Genes and Genetic mechanisms contributing to fall armyworm resistance in maize. Plant Genome 2023, 16, e20311. [Google Scholar] [CrossRef]
- Cao Caamaño, A.; Gesteiro Portas, N.; Santiago Carabelos, R.; Malvar Pintos, R.A.; Butrón Gómez, A.M. Maize kernel metabolome involved in resistance to fusarium ear rot and fumonisin contamination. Front. Plant Sci. 2023, 14, 1160092. [Google Scholar]
- Kim, S.; Van den Broeck, L.; Karre, S.; Choi, H.; Christensen, S.A.; Wang, G.; Jo, Y.; Cho, W.K.; Balint-Kurti, P. Analysis of the transcriptomic, metabolomic, and gene regulatory responses to Puccinia sorghi in maize. Mol. Plant Pathol. 2021, 22, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Sharanabasappa, S.; Kalleshwaraswamy, C.; Asokan, R.; Swamy, H.M.; Maruthi, M.; Pavithra, H.; Kavita Hegde, K.H.; Shivaray Navi, S.N.; Prabhu, S.; Goergen, G. First Report of the Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in india. Pest Manag. Hortic. Ecosyst. 2018, 24, 23–29. [Google Scholar]
- Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J. Fall armyworm: Impacts and Implications for africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef]
- De Groote, H.; Kimenju, S.C.; Munyua, B.; Palmas, S.; Kassie, M.; Bruce, A. Spread and impact of fall armyworm (Spodoptera frugiperda [J.E. Smith]) in maize production areas of kenya. Agric. Ecosyst. Environ. 2020, 292, 106804. [Google Scholar] [CrossRef]
- Kumela, T.; Simiyu, J.; Sisay, B.; Likhayo, P.; Mendesil, E.; Gohole, L.; Tefera, T. Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int. J. Pest Manag. 2019, 65, 1–9. [Google Scholar] [CrossRef]
- Midega, C.A.; Pittchar, J.O.; Pickett, J.A.; Hailu, G.W.; Khan, Z.R. A Climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J.E. Smith), in maize in East Africa. Crop Prot. 2018, 105, 10–15. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Brévault, T.; Carrière, Y. Insect resistance to Bt Crops: Lessons from the first billion acres. Nat. Biotechnol. 2013, 31, 510–521. [Google Scholar] [CrossRef]
- Harrison, R.D.; Thierfelder, C.; Baudron, F.; Chinwada, P.; Midega, C.; Schaffner, U.; Van Den Berg, J. Agro-Ecological options for fall armyworm (Spodoptera frugiperda [J.E. Smith]) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J. Environ. Manag. 2019, 243, 318–330. [Google Scholar] [CrossRef]
- Trdan, S.; Laznik, Ž.; Bohinc, T. Thirty years of research and professional work in the field of biological control (predators, parasitoids, entomopathogenic and parasitic nematodes) in slovenia: A Review. Appl. Sci. 2020, 10, 7468. [Google Scholar] [CrossRef]
- Kasoma, C.; Shimelis, H.; Laing, M.D.; Shayanowako, A.; Mathew, I. Combining ability of maize genotypes for fall armyworm (Spodoptera frugiperda [J.E. Smith]) resistance, yield and yield-related traits. Crop Prot. 2021, 149, 105762. [Google Scholar] [CrossRef]
- Patel, M.K.; Pandey, S.; Kumar, M.; Haque, M.I.; Pal, S.; Yadav, N.S. Plants metabolome study: Emerging tools and techniques. Plants 2021, 10, 2409. [Google Scholar] [CrossRef]
- Yactayo-Chang, J.P.; Mendoza, J.; Willms, S.D.; Rering, C.C.; Beck, J.J.; Block, A.K. Zea mays L. Volatiles that influence oviposition and feeding behaviors of Spodoptera frugiperda. J. Chem. Ecol. 2021, 47, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Henagamage, A.; Ranaweera, M.; Peries, C.; Premetilake, M. Repellent, antifeedant and toxic effects of plants-extracts against Spodoptera frugiperda Larvae (Fall armyworm). Biocatal. Agric. Biotechnol. 2023, 48, 102636. [Google Scholar] [CrossRef]
- Bibiano, C.S.; Alves, D.S.; Freire, B.C.; Bertolucci, S.K.V.; Carvalho, G.A. Toxicity of essential oils and pure compounds of lamiaceae species against Spodoptera frugiperda (Lepidoptera: Noctuidae) and their safety for the nontarget organism Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Crop Prot. 2022, 158, 106011. [Google Scholar] [CrossRef]
- Yactayo-Chang, J.P.; Broadhead, G.T.; Housler, R.J.; Resende, M.F., Jr.; Verma, K.; Louis, J.; Basset, G.J.; Beck, J.J.; Block, A.K. Maize terpene synthase 1 impacts insect behavior via the production of monoterpene volatiles β-myrcene and linalool. Phytochemistry 2024, 218, 113957. [Google Scholar] [CrossRef] [PubMed]
- Muchlinski, A.; Chen, X.; Lovell, J.T.; Köllner, T.G.; Pelot, K.A.; Zerbe, P.; Ruggiero, M.; Callaway III, L.; Laliberte, S.; Chen, F. Biosynthesis and emission of stress-induced volatile terpenes in roots and leaves of switchgrass (Panicum virgatum L.). Front. Plant Sci. 2019, 10, 1144. [Google Scholar] [CrossRef]
- Nakata, R.; Kimura, Y.; Aoki, K.; Yoshinaga, N.; Teraishi, M.; Okumoto, Y.; Huffaker, A.; Schmelz, E.A.; Mori, N. Inducible de novo biosynthesis of isoflavonoids in soybean leaves by Spodoptera litura derived elicitors: Tracer techniques aided by high resolution lcms. J. Chem. Ecol. 2016, 42, 1226–1236. [Google Scholar] [CrossRef]
- Zhou, S.; Richter, A.; Jander, G. Beyond Defense: Multiple functions of benzoxazinoids in maize metabolism. Plant Cell Physiol. 2018, 59, 1528–1537. [Google Scholar] [CrossRef]
- Vanambathina, P.; Rachaputi, R.C.; Sultanbawa, Y.; Phan, A.D.T.; Henry, R.J.; Brier, H. Biochemical basis of resistance to pod borer (Helicoverpa armigera) in australian wild relatives of pigeonpea. Legume Sci. 2021, 3, e101. [Google Scholar] [CrossRef]
- Aboshi, T.; Ishiguri, S.; Shiono, Y.; Murayama, T. Flavonoid glycosides in malabar spinach Basella alba inhibit the growth of Spodoptera litura Larvae. Biosci. Biotechnol. Biochem. 2018, 82, 9–14. [Google Scholar] [CrossRef]
- Ingber, D.A.; Christensen, S.A.; Alborn, H.T.; Hiltpold, I. Detecting the conspecific: Herbivory-induced olfactory cues in the fall armyworm (Lepidoptera: Noctuidae). Metabolites 2021, 11, 583. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ma, C.; Jia, R.; Zhang, H.; Zhao, Y.; Yue, H.; Li, H.; Jiang, X. Different responses of two maize cultivars to Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae infestation provide insights into their differences in resistance. Front. Plant Sci. 2023, 14, 1065891. [Google Scholar] [CrossRef]
- Choudhury, S.; Panda, P.; Sahoo, L.; Panda, S.K. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal. Behav. 2013, 8, e23681. [Google Scholar] [CrossRef]
- Quan, L.; Zhang, B.; Shi, W.; Li, H. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol. 2008, 50, 2–18. [Google Scholar] [CrossRef]
- Tyagi, S.; Shah, A.; Karthik, K.; Rathinam, M.; Rai, V.; Chaudhary, N.; Sreevathsa, R. Reactive oxygen species in plants: An invincible fulcrum for biotic stress mitigation. Appl. Microbiol. Biotechnol. 2022, 106, 5945–5955. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.N.; Martins, L.O.; Reis, L.C.; Fernandes, M.G.; de Paula Quintão Scalon, S. Resistance of cowpea genotypes to Spodoptera frugiperda (Lepidoptera: Noctuidae) and its relationship to resistance-related enzymes. J. Econ. Entomol. 2020, 113, 2521–2529. [Google Scholar] [CrossRef]
- Nadarajah, K.K. ROS homeostasis in abiotic stress tolerance in plants. Int. J. Mol. Sci. 2020, 21, 5208. [Google Scholar] [CrossRef]
- Somegowda, M.; Raghavendra, S.; Sridhara, S.; Rajeshwara, A.N.; Pramod, S.N.; Shivashankar, S.; Lin, F.; El-Abedin, T.K.Z.; Wani, S.H.; Elansary, H.O. Defensive mechanisms in cucurbits against Melon fly (Bactrocera cucurbitae) infestation through excessive production of defensive enzymes and antioxidants. Molecules 2021, 26, 6345. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, W.; Chen, Y.; Zhao, Y.; Zhang, S.; Shi, F.; Khalil-Ur-Rehman, M.; Nieuwenhuizen, N.J. Transcriptomics and antioxidant analysis of two chinese chestnut (Castanea mollissima BL.) varieties provides new insights into the mechanisms of resistance to Gall wasp (Dryocosmus kuriphilus) infestation. Front. Plant Sci. 2022, 13, 874434. [Google Scholar] [CrossRef] [PubMed]
- Gulsen, O.; Eickhoff, T.; Heng-Moss, T.; Shearman, R.; Baxendale, F.; Sarath, G.; Lee, D. Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus. Arthropod-Plant Interact. 2010, 4, 45–55. [Google Scholar] [CrossRef]
- Kawano, T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 2003, 21, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Rathinam, M.; Mishra, P.; Mahato, A.K.; Singh, N.K.; Rao, U.; Sreevathsa, R. Comparative transcriptome analyses provide novel insights into the differential response of pigeonpea (Cajanus cajan L.) and its wild relative (Cajanus platycarpus [Benth.] Maesen) to herbivory by Helicoverpa armigera (Hubner). Plant Mol. Biol. 2019, 101, 163–182. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef]
- Ramaswamy, N.K.; Behere, A.G.; Nair, P.M. A novel pathway for the synthesis of solanidine in the isolated chloroplast from greening potatoes. Eur. J. Biochem. 1976, 67, 275–282. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef]
- Fraenkel, G.S. The raison d’etre of secondary plant substances: These odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science 1959, 129, 1466–1470. [Google Scholar] [CrossRef]
- Singh, G.M.; Xu, J.; Schaefer, D.; Day, R.; Wang, Z.; Zhang, F. Maize Diversity for Fall armyworm Resistance in a Warming World. Crop Sci. 2022, 62, 1–19. [Google Scholar] [CrossRef]
- Zhao, H. Effects of processing stages on the profile of phenolic compounds in beer. In Processing and Impact on Active Components in Food; Academic Press: Cambridge, MA, USA, 2015; pp. 533–539. [Google Scholar]
- Gan, R.-Y.; Chan, C.-L.; Yang, Q.-Q.; Li, H.-B.; Zhang, D.; Ge, Y.-Y.; Gunaratne, A.; Ge, J.; Corke, H. Bioactive compounds and beneficial functions of sprouted grains. In Sprouted Grains; AACC International Press: Saint Paul, MN, USA, 2019; pp. 191–246. [Google Scholar]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022, 23, 2690. [Google Scholar] [CrossRef]
- La Camera, S.; Gouzerh, G.; Dhondt, S.; Hoffmann, L.; Fritig, B.; Legrand, M.; Heitz, T. Metabolic reprogramming in plant innate immunity: The contributions of phenylpropanoid and oxylipin pathways. Immunol. Rev. 2004, 198, 267–284. [Google Scholar] [CrossRef]
- Deshmukh, S.S.; Prasanna, B.; Kalleshwaraswamy, C.; Jaba, J.; Choudhary, B. Fall armyworm (Spodoptera frugiperda). Polyphagous Pests Crops 2021, 82, 349–372. [Google Scholar]
- Younus, M.; Hasan, M.M.; Ali, S.; Saddq, B.; Sarwar, G.; Ullah, M.I.; Maqsood, A.; Ahmar, S.; Mora-Poblete, F.; Hassan, F. Extracts of Euphorbia nivulia buch.-ham showed both phytotoxic and insecticidal capacities against Lemna minor L. and Oxycarenus hyalinipennis Costa. PLoS ONE 2021, 16, e0250118. [Google Scholar] [CrossRef]
- Dixit, G.; Praveen, A.; Tripathi, T.; Yadav, V.K.; Verma, P.C. Herbivore-responsive cotton phenolics and their impact on insect performance and biochemistry. J. Asia-Pac. Entomol. 2017, 20, 341–351. [Google Scholar] [CrossRef]
- Dowd, P.F.; Sattler, S.E. Helicoverpa Zea (Lepidoptera: Noctuidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae) responses to Sorghum bicolor (Poales: Poaceae) tissues from lowered lignin lines. J. Insect Sci. 2015, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Sambangi, P.; Rani, P.U. Physiological effects of resveratrol and coumaric acid on two major groundnut pests and their egg parasitoid behavior. Arch. Insect Biochem. Physiol. 2016, 91, 230–245. [Google Scholar] [CrossRef]
- Kovalikova, Z.; Kubes, J.; Skalicky, M.; Kuchtickova, N.; Maskova, L.; Tuma, J.; Vachova, P.; Hejnak, V. Changes in content of polyphenols and ascorbic acid in leaves of white cabbage after pest infestation. Molecules 2019, 24, 2622. [Google Scholar] [CrossRef]
- Kousar, B.; Bano, A.; Khan, N. PGPR modulation of secondary metabolites in tomato infested with Spodoptera litura. Agronomy 2020, 10, 778. [Google Scholar] [CrossRef]
- Gautam, S.; Chimni, S.S.; Arora, S.; Sohal, S.K. Toxic effects of purified phenolic compounds from Acacia nilotica against common cutworm. Toxicon 2021, 203, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Samiksha; Robin; Arora, S.; Sohal, S.K. Chemical profiling of polyphenols in extracts from bark of Acacia nilotica (Linn.) and their efficacy against Spodoptera litura (Fab.). Arch. Phytopathol. Plant Prot. 2018, 51, 41–53. [Google Scholar] [CrossRef]
- Punia, A.; Chauhan, N.S.; Singh, D.; Kesavan, A.K.; Kaur, S.; Sohal, S.K. Effect of gallic acid on the larvae of Spodoptera litura and its Parasitoid Bracon hebetor. Sci. Rep. 2021, 11, 531. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.S.; Sohal, S.K. Disruptive effect of pyrogallol on development of Spodoptera litura (Fab.) Larvae. J. Biopestic. 2018, 11, 7–13. [Google Scholar] [CrossRef]
- Punia, A.; Chauhan, N.S.; Kaur, S.; Sohal, S.K. Effect of ellagic acid on the larvae of Spodoptera litura (Lepidoptera: Noctuidae) and its Parasitoid Bracon hebetor (Hymenoptera: Braconidae). J. Asia-Pac. Entomol. 2020, 23, 660–665. [Google Scholar] [CrossRef]
- Movva, V.; Pathipati, U.R. Feeding-induced phenol production in Capsicum annuum L. Influences Spodoptera litura F. larval growth and physiology. Arch. Insect Biochem. Physiol. 2017, 95, e21387. [Google Scholar] [CrossRef] [PubMed]
- Punia, A.; Singh, V.; Thakur, A.; Chauhan, N.S. Impact of caffeic acid on growth, development and biochemical physiology of insect pest, Spodoptera litura (Fabricius). Heliyon 2023, 9, e14593. [Google Scholar] [CrossRef]
- War, A.R.; Sharma, S.P.; Sharma, H.C. Differential induction of flavonoids in groundnut in response to Helicoverpa armigera and Aphis craccivora Infestation. Int. J. Insect Sci. 2016, 8, IJIS-S39619. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, K.; Jindal, J. Status of phenolic metabolism and α-Amylase inhibitor in maize under Chilo partellus infestation. Cereal Res. Commun. 2022, 50, 865–873. [Google Scholar] [CrossRef]
- Sau, A.K.; Dhillon, M.K.; Trivedi, N. Activation of antioxidant defense in maize in response to attack by Sesamia inferens (Walker). Phytoparasitica 2022, 50, 1043–1058. [Google Scholar] [CrossRef]
- Soujanya, P.L.; Sekhar, J.; Ratnavathi, C.; Karjagi, C.G.; Shobha, E.; Suby, S.; Yathish, K.; Sunil, N.; Rakshit, S. Induction of cell wall phenolic monomers as part of direct defense response in maize to pink stem borer (Sesamia inferens [Walker]) and non-insect interactions. Sci. Rep. 2021, 11, 14770. [Google Scholar] [CrossRef]
- Grover, S.; Shinde, S.; Puri, H.; Palmer, N.; Sarath, G.; Sattler, S.E.; Louis, J. Dynamic regulation of phenylpropanoid pathway metabolites in modulating sorghum defense against fall armyworm. Front. Plant Sci. 2022, 13, 1019266. [Google Scholar] [CrossRef]
- Chatterjee, D.; Lesko, T.; Peiffer, M.; Elango, D.; Beuzelin, J.; Felton, G.W.; Chopra, S. Sorghum and Maize flavonoids are detrimental to growth and survival of fall armyworm Spodoptera frugiperda. J. Pest Sci. 2023, 96, 1551–1567. [Google Scholar] [CrossRef]
- Li, A.-M.; Wang, M.; Chen, Z.-L.; Qin, C.-X.; Liao, F.; Wu, Z.; He, W.-Z.; Lakshmanan, P.; Pan, Y.-Q.; Huang, D.-L. Integrated transcriptome and metabolome analysis to identify sugarcane gene defense against fall armyworm (Spodoptera frugiperda) herbivory. Int. J. Mol. Sci. 2022, 23, 13712. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, M.; Verghese, A.; Shivashankar, S.; Chakravarthy, A.; Sumathi, M.; Kandakoor, S. Does change in tannin content in mango (Mangifera indica) fruits influence the extent of fruit fly (Bactrocera dorsalis [Hendel]) Herbivory. J. Entomol. Zool. Stud. 2017, 5, 381–385. [Google Scholar]
- Liu, H.; Cheng, Y.; Wang, X.; Francis, F.; Wang, Q.; Liu, X.; Zhang, Y.; Chen, J. Biochemical and morphological mechanisms underlying the performance and preference of fall armyworm (Spodoptera frugiperda) on wheat and faba bean plants. Insects 2022, 13, 317. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Rasmann, S.; Hiltpold, I.; Ali, J. The role of root-produced volatile secondary metabolites in mediating soil interactions. In Advances in Selected Plant Physiology Aspects; IntechOpen: London, UK, 2012; ISBN 953-51-0557-4. [Google Scholar]
- Unsicker, S.B.; Kunert, G.; Gershenzon, J. Protective Perfumes: The role of vegetative volatiles in plant defense against herbivores. Curr. Opin. Plant Biol. 2009, 12, 479–485. [Google Scholar] [CrossRef]
- Gouinguené, S.P.; Turlings, T.C. The Effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 2002, 129, 1296–1307. [Google Scholar] [CrossRef] [PubMed]
- Loreto, F.; Schnitzler, J.-P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010, 15, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef]
- Mumm, R.; Posthumus, M.A.; Dicke, M. Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant Cell Environ. 2008, 31, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Glauser, G.; Marti, G.; Villard, N.; Doyen, G.A.; Wolfender, J.; Turlings, T.C.; Erb, M. Induction and detoxification of maize 1, 4-benzoxazin-3-ones by insect herbivores. Plant J. 2011, 68, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Malook, S.U.; Liu, X.-F.; Ma, C.; Qi, J.; Liu, W.; Zhou, S. Transcriptomic responses of fall armyworms (Spodoptera frugiperda) Feeding on a resistant maize inbred line xi502 with high benzoxazinoid content. Agronomy 2021, 11, 2503. [Google Scholar] [CrossRef]
- Hu, L.; Wu, Z.; Robert, C.A.; Ouyang, X.; Züst, T.; Mestrot, A.; Xu, J.; Erb, M. Soil chemistry determines whether defensive plant secondary metabolites promote or suppress herbivore growth. Proc. Natl. Acad. Sci. USA 2021, 118, e2109602118. [Google Scholar] [CrossRef]
- Kudjordjie, E.N.; Sapkota, R.; Steffensen, S.K.; Fomsgaard, I.S.; Nicolaisen, M. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome 2019, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Santiago, R.; Cao, A.; Butrón, A.; López-Malvar, A.; Rodríguez, V.M.; Sandoya, G.V.; Malvar, R.A. Defensive changes in maize leaves induced by feeding of mediterranean corn borer larvae. BMC Plant Biol. 2017, 17, 44. [Google Scholar] [CrossRef] [PubMed]
- Shavit, R.; Batyrshina, Z.S.; Dotan, N.; Tzin, V. Cereal aphids differently affect benzoxazinoid levels in durum wheat. PLoS ONE 2018, 13, e0208103. [Google Scholar] [CrossRef]
- Bohinc, T.; Ban, G.S.; Ban, D.; Trdan, S. Glucosinolates in plant protection strategies: A Review. Arch. Biol. Sci. 2012, 64, 821–828. [Google Scholar] [CrossRef]
- Singh, A. Glucosinolates and plant defense. In Glucosinolates; Springer International Publishing: Cham, Switzerland, 2017; pp. 237–246. [Google Scholar]
- Lv, Q.; Li, X.; Fan, B.; Zhu, C.; Chen, Z. The cellular and subcellular organization of the glucosinolate–myrosinase system against herbivores and pathogens. Int. J. Mol. Sci. 2022, 23, 1577. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, V.; Zalucki, J.M.; Raguschke, B.; Gershenzon, J.; Heckel, D.G.; Zalucki, M.P.; Vassão, D.G. So much for glucosinolates: A generalist does survive and develop on brassicas, but at what cost? Plants 2021, 10, 962. [Google Scholar] [CrossRef]
- Chuang, W.-P.; Ray, S.; Acevedo, F.E.; Peiffer, M.; Felton, G.W.; Luthe, D.S. Herbivore cues from the fall armyworm (Spodoptera frugiperda) larvae trigger direct defenses in maize. Mol. Plant-Microbe Interact. 2014, 27, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.C.; Seidl-Adams, I.; Engelberth, J.; Hunter, C.T.; Alborn, H.; Tumlinson, J.H. Herbivorous caterpillars can utilize three mechanisms to alter green leaf volatile emission. Environ. Entomol. 2019, 48, 419–425. [Google Scholar] [CrossRef]
- Pashley, D.P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex? Ann. Entomol. Soc. Am. 1986, 79, 898–904. [Google Scholar] [CrossRef]
- Levy, H.C.; Garcia-Maruniak, A.; Maruniak, J.E. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: Pcr-rflp of cytochrome oxidase C subunit I gene. Fla. Entomol. 2002, 85, 186–190. [Google Scholar] [CrossRef]
- Yan, Y.; Christensen, S.; Isakeit, T.; Engelberth, J.; Meeley, R.; Hayward, A.; Emery, R.N.; Kolomiets, M.V. Disruption of opr7 and opr8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 2012, 24, 1420–1436. [Google Scholar] [CrossRef]
- Israni, B.; Haenniger, S.; Raguschke, B.; Reichelt, M.; Gershenzon, J.; Vassão, D.G. Influence of plant defense signaling and innate insect metabolic differences to the overall performance of fall armyworm (Spodoptera frugiperda) Corn and Rice Strains on Maize as a Host. bioRxiv 2024. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. Oxylipins and strobilurins as protective chemical agents to generate abiotic stress tolerance in plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 483–490. [Google Scholar]
- Kallenbach, M.; Gilardoni, P.A.; Allmann, S.; Baldwin, I.T.; Bonaventure, G. C12 derivatives of the hydroperoxide lyase pathway are produced by product recycling through lipoxygenase-2 in Nicotiana attenuata Leaves. New Phytol. 2011, 191, 1054–1068. [Google Scholar] [CrossRef] [PubMed]
- Marti, G.; Erb, M.; Boccard, J.; Glauser, G.; Doyen, G.R.; Villard, N.; ROBERT, C.A.M.; Turlings, T.C.; Rudaz, S.; Wolfender, J. Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant Cell Environ. 2013, 36, 621–639. [Google Scholar] [CrossRef]
- Schopf, R. The effect of secondary needle compounds on the development of phytophagous insects. For. Ecol. Manag. 1986, 15, 55–64. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Li, X.; Zhang, Y.; Chen, X.; Liu, J.; Qiua, Y.; Wang, A. Integration of metabolomics and transcriptomics reveals the regulation mechanism of the phenylpropanoid biosynthesis pathway in insect resistance traits in Solanum habrochaites. Hortic. Res. 2024, 11, uhad277. [Google Scholar] [CrossRef]
- Xu, J.; van Herwijnen, Z.O.; Dräger, D.B.; Sui, C.; Haring, M.A.; Schuurink, R.C. SlMYC1 regulates type VI glandular trichome formation and terpene biosynthesis in tomato glandular cells. Plant Cell 2018, 30, 2988–3005. [Google Scholar] [CrossRef] [PubMed]
- De Geyter, E.; Smagghe, G.; Rahbé, Y.; Geelen, D. Triterpene saponins of Quillaja saponaria show strong aphicidal and deterrent activity against the pea aphid (Acyrthosiphon pisum). Pest Manag. Sci. 2012, 68, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Byrne, P.; McMullen, M.; Snook, M.; Wiseman, B.; Widstrom, N.; Coe, E. genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.). Genetics 1998, 149, 1997–2006. [Google Scholar] [CrossRef] [PubMed]
Feature | Targeted | Non-Targeted |
---|---|---|
Focus | Particular, a predetermined group of metabolites | The broad spectrum of unknown and known metabolites |
Analytical technique | Usually LC-MS/MS, GC-MS | Various techniques like LC-MS, GC-MS, NMR |
Data complexity | Lower | Higher, requires advanced data processing and analysis tools |
Quantification | Absolute quantification is possible for known metabolites | Relative quantification, identification of unknown metabolites |
Applications | Biomarker discovery, metabolic pathway analysis, targeted gene expression studies | Metabolite discovery, phenotypic characterization, plant stress response analysis |
Cost | Less expensive due to focused analysis | More expensive due to broader analysis and complex data processing |
Other Major Biotic Stress | Metabolites/Compounds | Role/Function | Role in Resistance/Susceptibility | Reference |
---|---|---|---|---|
Helicoverpa zea | Homogalacturonan breakdown | Cell wall modification | Weakening the cell wall and hindering insect feeding | [15] |
Epicuticular wax formation | Cuticle reinforcement | Providing a physical barrier against insect penetration | ||
Gibberellic acid synthesis | Plant growth regulation | Modulating plant growth to deter insect infestation | ||
Fatty acid production | Lipid metabolism | Contributing to the formation of a physical barrier and defense signaling | ||
Cellulose biosynthesis | Cell wall synthesis | Strengthening cell walls and hindering insect feeding | ||
Phospholipase activity | Lipid metabolism | Contributing to the formation of a physical barrier and defense signaling | ||
DIMBOA glucoside biosynthesis | Benzoxazinoid synthesis | Antibiosis, producing toxic substances for insect deterrence | ||
Coumarin biosynthesis | Secondary metabolite synthesis | Antibiosis, producing toxic substances for insect deterrence | ||
Anthocyanin biosynthesis | Secondary metabolite synthesis | Antibiosis, producing toxic substances for insect deterrence | ||
Fusarium verticillioides | Aminoacyl-tRNA biosynthesis | Protein synthesis | Enriched in both resistant and susceptible RILs | [16] |
Cysteine metabolism | Sulfur-containing amino acid metabolism | Enriched in both resistant and susceptible RILs | ||
Methionine metabolism | Sulfur-containing amino acid metabolism; detoxification | Enriched in resistant RILs; potential accumulation of detoxification metabolites | ||
Arginine metabolism | Nitrogen metabolism | Enriched in both resistant and susceptible RILs | ||
Proline metabolism | Osmoprotectant; stress response | Enriched in both resistant and susceptible RILs | ||
Glutathione metabolism | Antioxidant; detoxification | Enriched in both resistant and susceptible RILs | ||
Lipid metabolism (including phosphatidylcholines) | Membrane integrity; reactive oxygen species (ROS) scavenging | Changes more significant in resistant RILs at 10 days after infection (dat) | ||
Auxin homeostasis | Plant hormone regulation | Higher accumulation in resistant RILs | ||
Phenylpropanoid pathway | Secondary metabolite synthesis | Upregulated in resistant RILs | ||
Isoquinoline metabolism | Secondary metabolite synthesis | Differential accumulation at 10 dat, potential involvement in resistance | ||
Octadecadienoic acid derivative | Lipid metabolism; signaling molecule | Differential accumulation at 10 dat, potential involvement in resistance | ||
Sinapic acid | Phenylpropanoid compound | Differential accumulation at 10 dat, potential involvement in resistance | ||
Ferulic acid | Phenolic compound; antioxidant | Discriminant at 3 dat, potential involvement in early cell damage response | ||
Benzoxazinoid metabolism | Secondary metabolite synthesis; insecticidal properties | Discriminant at 3 dat, potential involvement in early cell damage response | ||
Puccinia sorghi | Phytohormones (e.g., ethylene, abscisic acid, jasmonic acid) | Regulation of plant defense responses | Fine-tuning defenses mediated by JA against herbivores | [17] |
Alkaloid compounds | Likely involved in defense mechanisms | Accumulation observed after prolonged feeding | ||
Benzoxazinoids and kauralexins | Antibiotic-acting compounds | Not increased after prolonged feeding | ||
Amino acids | Substrate for the biosynthesis of defense compounds | Control accumulation of likely alkaloid compounds | ||
Glutathione-related compounds (e.g., L-Cys-Gly, reduced glutathione) | Antioxidant and detoxification functions | Lower levels observed due to the higher expression of detoxification-related enzymes | ||
Dehydroascorbic acid (DHA) | Oxidized form of ascorbic acid | Accumulates due to lower levels of reduced glutathione | ||
Monodehydroascorbate reductase | Enzyme involved in maintaining ascorbic acid levels | Overexpressed to control ascorbic acid levels |
Crop | Pest | Instrument | Compounds Induced by Herbivory | References |
---|---|---|---|---|
Zea mays L. | Spodoptera frugiperda | - | Monoterpene, Monoterpene alcohols, Homoterpenes, Sesquiterpenes (E)-β-Caryophyllene | [28] |
Tagetes erecta L. | Spodoptera frugiperda | FITR | Terpenoids, tannins, Phenols, alkaloid, flavanol | [29] |
Hyptis marrubioides & Ocimum basilicum L. | Spodoptera frugiperda | GC-MS | Linalool, α-thujone, 1,8-cineole | [30] |
Zea mays L. | Spodoptera frugiperda | - | Monoterpene volatiles β-myrone, linalool | [31] |
Panicum virgatum L. | Spodoptera frugiperda | GC-MS | Monoterpenes, sesquiterspens | [32] |
Crop | Insect | Instrument | Metabolties Studied/Identified | Resistance Compounds | Reference |
---|---|---|---|---|---|
Glycine max L. | Spodoptera litura | LRLC-MS + HPLC | Diadzein, 4,7, dihydroxy flavone, genistein, kaemferol, apigenin, forrononetin, soyabean flavonoid aglycones | Isoflavones | [33] |
Glycine max L. | Spodoptera litura | HPLC | Seven isoflavonoods, cyclitol, two sterol derivatives, three triterpenoids | Isoflavonoid, Diadzein | [34] |
Cajanus cajan L. | Helicoverpa armigera | LC-MS | Total protein content | Flavonoid Isoorientin | [35] |
Amaranthus cruentus L. | Spodoptera litura | - | - | Flavonoid glycosides, vitexin, vitexin-2 | [36] |
Crop | Insect | Instrument | Metabolites Studied/Identified | Resistance Molecules | Reference |
---|---|---|---|---|---|
Solanum lycopersicum L. | Spodoptera litura | TLC, HPLC, FTIR | P-Kaempferol, rutin, caffeic acid, p-courmaric acid, Flavonoid Glycoside | Kaempferol, coumaric acid | [64] |
Acacia nilotica L. | Spodoptera litura | HPLC, NMS-MS | - | Catechin. Chlorogenic acid, umbelliferone | [65] |
Acacia nilotica L. | Spodoptera litura | UHPLC | - | 11 phenolic compounds | [66] |
Acacia nilotica L. | Spodoptera litura | UHPLC | - | Ferulic acid | [67] |
Acacia nilotica L. | Spodoptera litura | UHPLC | - | Pyrogallol | [68] |
Acacia nilotica L. | Spodoptera litura | UHPLC | - | Gallic acid | [67] |
Acacia nilotica L. | Spodoptera litura | UHPLC | - | Ellagic acid | [69] |
Capsicum annum L. | Spodoptera litura | HPLC | - | Protein carboxyl content and acetyl cholinesterase activity | [70] |
Acorus calamus L. | Spodoptera litura | HPLC | - | Caffeic acid | [71] |
Arachis hypogaea L. | Spodoptera litura | HPLC | Phenols | Cholrogenic, syringic, quercitin, ferrulic acid | [72] |
Zea mays L. | Spodoptera litura | - | - | Alpha amylase and higher content of phenolic compounds | [73] |
Zea mays L. | Spodoptera litura | - | - | Total phenols and tannins | [74] |
Zea mays L. | Spodoptera litura | UFLC | - | P-comaric acidFerulic acid | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desika, J.; Yogendra, K.; Hepziba, S.J.; Patne, N.; Vivek, B.S.; Ravikesavan, R.; Nair, S.K.; Jaba, J.; Razak, T.A.; Srinivasan, S.; et al. Exploring Metabolomics to Innovate Management Approaches for Fall Armyworm (Spodoptera frugiperda [J.E. Smith]) Infestation in Maize (Zea mays L.). Plants 2024, 13, 2451. https://doi.org/10.3390/plants13172451
Desika J, Yogendra K, Hepziba SJ, Patne N, Vivek BS, Ravikesavan R, Nair SK, Jaba J, Razak TA, Srinivasan S, et al. Exploring Metabolomics to Innovate Management Approaches for Fall Armyworm (Spodoptera frugiperda [J.E. Smith]) Infestation in Maize (Zea mays L.). Plants. 2024; 13(17):2451. https://doi.org/10.3390/plants13172451
Chicago/Turabian StyleDesika, Jayasaravanan, Kalenahalli Yogendra, Sundararajan Juliet Hepziba, Nagesh Patne, Bindiganavile Sampath Vivek, Rajasekaran Ravikesavan, Sudha Krishnan Nair, Jagdish Jaba, Thurapmohideen Abdul Razak, Subbiah Srinivasan, and et al. 2024. "Exploring Metabolomics to Innovate Management Approaches for Fall Armyworm (Spodoptera frugiperda [J.E. Smith]) Infestation in Maize (Zea mays L.)" Plants 13, no. 17: 2451. https://doi.org/10.3390/plants13172451
APA StyleDesika, J., Yogendra, K., Hepziba, S. J., Patne, N., Vivek, B. S., Ravikesavan, R., Nair, S. K., Jaba, J., Razak, T. A., Srinivasan, S., & Shettigar, N. (2024). Exploring Metabolomics to Innovate Management Approaches for Fall Armyworm (Spodoptera frugiperda [J.E. Smith]) Infestation in Maize (Zea mays L.). Plants, 13(17), 2451. https://doi.org/10.3390/plants13172451