Reducing Phosphorus Loss in Short-Cycle Horticultural Production Using Activated Aluminum-Amended Substrates and Modified Fertigation Practices
Abstract
:1. Introduction
2. Results
2.1. Plant Growth and Biomass
2.2. Container Leachate
2.2.1. Leachate Volume
2.2.2. pH and Electrical Conductivity
2.2.3. Phosphorus Leachate
2.2.4. Potassium Leachate
2.2.5. Micronutrients (Calcium, Chlorine, Iron, Magnesium, Manganese, Sodium, and Sulfur)
3. Discussion
4. Materials and Methods
4.1. Substrates and Leachate Collection
4.2. Plants
4.3. Irrigation
4.4. Fertigation
4.5. Sample Collection
4.6. Growth and Quality of Marigolds
4.7. Experimental Design
4.8. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture National Agricultural Statistics Service. Pub. No. 2023-3. 2023. Available online: https://www.nass.usda.gov/Publications/Highlights/2023/Floriculture_Highlights.pdf (accessed on 15 August 2024).
- Epstein, E.; Bloom, A.J. 2005. Mineral Nutrition of Plants: Principles and Perspectives, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2005. [Google Scholar]
- Lea-Cox, J.D.; Ristvey, A.G. Why are nutrient uptake efficiencies so low in ornamental plant production? Proc. South. Nurs. Assoc. Res Conf. Annu. Rpt. 2003, 48, 116–122. [Google Scholar]
- Owen, J.S., Jr.; Warren, S.L.; Bilderback, T.E.; Albano, J.P. Phosphorus rate, leaching fraction, and substrate influence on influent quantity, effluent nutrient content, and response of a containerized woody ornamental crop. HortScience 2008, 43, 906–912. [Google Scholar] [CrossRef]
- Agro, E.; Zheng, Y. Controlled-release fertilizer application rates for container nursery crop production in Southwestern Ontario, Canada. HortScience 2014, 49, 1414–1423. [Google Scholar] [CrossRef]
- Bilderback, T. Water management is key in reducing nutrient runoff from container nurseries. HortTechnology 2002, 12, 541–544. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Caldwell, R.D. Best management practices for minimizing nitrate leaching from container-grown nurseries. Sci. World J. 2001, 1, 96–102. [Google Scholar] [CrossRef]
- Garber, M.; Ruter, J.M.; Midcap, J.; Bondari, K. Survey of container nursery irrigation practices in Georgia. HortTechnology 2002, 12, 727–731. [Google Scholar] [CrossRef]
- Yeager, T.; Wright, R.; Fare, D.; Gilliam, C.; Johnson, J.; Bilderback, T.; Zondag, R. Six state survey of container nursery nitrate nitrogen runoff. J. Environ. Hortic. 1993, 11, 206–208. [Google Scholar] [CrossRef]
- Majsztrik, J.C.; Ristvey, A.G.; Ross, D.S.; Lea-Cox, J.D. Comparative water and nutrient application rates among ornamental operations in Maryland. HortScience 2018, 53, 1364–1371. [Google Scholar] [CrossRef]
- Scoggins, H.L. Determination of optimum fertilizer concentration and corresponding substrate electrical conductivity for ten taxa of herbaceous perennials. HortScience 2005, 40, 1504–1506. [Google Scholar] [CrossRef]
- Rippy, J.F.; Nelson, P.V. Cation exchange capacity and base saturation variation among Alberta, Canada, Moss Peats. HortScience 2007, 42, 349–352. [Google Scholar] [CrossRef]
- Owen, J.S., Jr.; Warren, S.L.; Bilderback, T.E.; Albano, J.P. Industrial mineral aggregate amendment affects physical and chemical properties of pine bark substrates. HortScience 2007, 42, 1287–1294. [Google Scholar] [CrossRef]
- Bugbee, G.J.; Elliott, G.C. Leaching of nitrogen and phosphorus from potting media containing biosolids compost as affected by organic and clay amendments. Bull. Environ. Contam. Toxicol. 1998, 60, 716–723. [Google Scholar] [CrossRef]
- Broschat, T.K. Substrate Nutrient Retention and Growth of Container-grown plants in clinoptilolic zeolite-amended substrates. HortTechnology 2001, 11, 75–78. [Google Scholar] [CrossRef]
- Shreckhise, J.H.; Altland, J.E. A base layer of ferrous sulfate-amended pine bark reduces phosphorus leaching from nursery containers. Agronomy 2024, 14, 757. [Google Scholar] [CrossRef]
- Abdi, D.E.; Blanchard, J.; Fields, J.S.; Santos, L.; Beasley, L.; Beasley, J. Reducing anion nutrient leaching losses from a short cycle container-grown crop (Tagetes patula) using activated aluminum. Agriculture 2023, 13, 1028. [Google Scholar] [CrossRef]
- Scott, I.S.P.C.; Penn, C.J.; Huang, C.-H. Development of a regeneration technique for aluminum-rich and iron-rich phosphorus sorption materials. Water 2020, 12, 1784. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Feng, C.; Li, J.; Li, G. Adsorption capacity for phosphorus comparison among activated alumina, silica sand and anthracite coal. J. Water Resour. Prot. 2009, 4, 260–264. [Google Scholar] [CrossRef]
- Wu, G.; Liu, G.; Li, X.; Peng, Z.; Zhou, Q.; Qi, T. Enhanced phosphate removal with fine activated alumina synthesized from a sodium aluminate solution: Performance and mechanism. RSC Adv. 2022, 12, 4562–4571. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Liu, L.; Wang, X.; Fu, J.; Wu, Y.; Feng, C.; Wu, Y.; Shen, J. Fluoride removal performance of highly porous activated alumina. J. Sol-Gel Sci. Technol. 2022, 106, 471–479. [Google Scholar] [CrossRef]
- Garelick, H.; Dybowska, A.; Valsami-Jones, E.; Priest, N. Remediation technologies for arsenic contaminated drinking waters. J. Soils Sediments 2005, 5, 182–190. [Google Scholar] [CrossRef]
- Nicomel, N.R.; Leus, K.; Folens, K.; Van Der Voort, P.; Du Laing, G. Technologies for arsenic removal from water: Current status and future perspectives. Int. J. Environ. Res. Public Health 2015, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Sorg, T.J.; Chen, A.S.; Wang, L.; Kolisz, R. Regenerating an arsenic removal iron-bed adsorptive media system, part 1: The regeneration process. J. AWWA 2017, 109, 13–24. [Google Scholar] [CrossRef]
- International Publication Number WO02/083598A1 (US Patent No. 5,693,119). Available online: https://patents.google.com/patent/WO2002083598A1/en (accessed on 27 February 2023).
- Patent Number 6287357. Available online: https://patents.justia.com/patent/6287357 (accessed on 27 February 2023).
- He, H.; Li, Y.; He, L.-F. Aluminum toxicity and tolerance in Solanaceae plants. S. Afr. J. Bot. 2019, 123, 23–29. [Google Scholar] [CrossRef]
- Panda, S.K.; Baluška, F.; Matsumoto, H. Aluminum stress signaling in plants. Plant Signal. Behav. 2009, 4, 592–597. [Google Scholar] [CrossRef]
- Rahman, M.A.; Lee, S.-H.; Ji, H.C.; Kabir, A.H.; Jones, C.S.; Lee, K.-W. Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: Current status and opportunities. Int. J. Mol. Sci. 2018, 19, 3073. [Google Scholar] [CrossRef]
- Shetty, R.; Vidya, C.S.-N.; Prakash, N.B.; Lux, A.; Vaculík, M. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. Sci. Total Environ. 2020, 765, 142744. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.J. Crop production on acidic soils: Overcoming aluminium toxicity and phosphorus deficiency. Ann. Bot. 2010, 106, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Altland, J.E. Lime rate affects substrate ph and container-grown birch trees. Commun. Soil Sci. Plant Anal. 2019, 50, 93–101. [Google Scholar] [CrossRef]
- Wefers, K.; Misra, C. Oxides and Hydroxides of Aluminum; Alcoa Laboratories Technical Paper No. 19, Revised; Alcoa Laboratories: Pittsburgh, PA, USA, 1987. [Google Scholar]
- García-Gaytán, V.; Hernández-Mendoza, F.; Coria-Téllez, A.V.; García-Morales, S.; Sánchez-Rodríguez, E.; Rojas-Abarca, L.; Daneshvar, H. Fertigation: Nutrition, stimulation and bioprotection of the root in high performance. Plants 2018, 7, 88. [Google Scholar] [CrossRef]
- Malhotra, S.K. Water soluble fertilizers in horticultural crops—An appraisal. Indian J. Agric. Sci. 2016, 86, 1245–1256. [Google Scholar] [CrossRef]
- Paparozzi, E.T. Nutrition of floricultural crops: How far have we come? HortScience 2003, 38, 1031–1035. [Google Scholar] [CrossRef]
- Lin, Y.-L.P.; Holcomb, E.J.; Lynch, J.P. Marigold growth and phosphorus leaching in a soilless medium amended with phosphorus-charged alumina. HortScience 1996, 31, 94–98. [Google Scholar] [CrossRef]
- Borch, K.; Miller, C.; Brown, K.M.; Lynch, J.P. Improved drought tolerance in marigold by manipulation of root growth with buffered-phosphorus nutrition. HortScience 2003, 38, 212–216. [Google Scholar] [CrossRef]
Total Load (mg) of Elements Recovered in Leachate over Six Weeks | ||||||||
---|---|---|---|---|---|---|---|---|
Substrate/Fertilizer | AA0 | AA2 | AA4 | AA6 | PL0 | PL2 | PL4 | PL6 |
Element: | ||||||||
Calcium | 94.4 (±14.5) | 84.4 (±7.57) | 89.7 (±12.1) | 86.3 (±5.42) | 103.3 (±5.83) | 87.7 (±5.29) | 87.2 (±10.2) | 109.6 (±6.22) |
Chlorine | 113.9 (±8.61) | 110.6 (±6.44) | 112.6 (±3.44) | 107.1 (±5.36) | 112.9 (±2.50) | 97.8 (±2.59) | 95.2 (±4.31) | 102.5 (±4.63) |
Iron | 0.66 (±0.08) C | 0.63 (±0.04) C | 0.66 (±0.07) BC | 0.68 (±0.04) BC | 1.11 (±0.06) A | 0.93 (±0.04) AB | 0.88 (±0.06) ABC | 0.89 (±0.06) ABC |
Magnesium | 32.5 (±4.95) | 30.8 (±2.02) | 29.0 (±2.56) | 33.2 (±2.46) | 37.3 (±0.77) | 33.8 (±3.08) | 33.9 (±4.28) | 32.4 (±1.52) |
Manganese | 0.015 (±0.004) | 0.012 (±0.003) | 0.009 (±0.001) | 0.005 (±0.001) | 0.014 (±0.002) | 0.009 (±0.001) | 0.010 (±0.004) | 0.007 (±0.001) |
Phosphorus | 0.68 (±0.16) C | 2.20 (±0.10) C | 2.68 (±0.39) C | 3.20 (±0.70) C | 20.8 (±0.92) B | 26.2 (±1.10) A | 30.0 (±1.79) A | 30.6 (±1.44) A |
Potassium | 238.4 (±32.1) | 225.1 (±12.3) | 212.7 (±16.2) | 234.9 (±15.1) | 211.8 (±6.04) | 188.0 (±8.55) | 194.8 (±17.5) | 187.0 (±3.77) |
Sodium | 412.3 (±25.7) AB | 429.9 (±27.4) AB | 451.6 (±9.60) A | 397.1 (±10.7) AB | 367.2 (±11.1) B | 371.7 (±9.58) B | 374.3 (±17.1) AB | 380.6 (±13.7) AB |
Sulfur | 283.0 (±39.7) | 290.5 (±15.1) | 285.1 (±13.8) | 299.4 (±14.7) | 247.1 (±4.15) | 218.6 (±18.7) | 213.6 (±21.3) | 219.1 (±5.14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdi, D.E.; Beasley, J.; Fields, J. Reducing Phosphorus Loss in Short-Cycle Horticultural Production Using Activated Aluminum-Amended Substrates and Modified Fertigation Practices. Plants 2024, 13, 2473. https://doi.org/10.3390/plants13172473
Abdi DE, Beasley J, Fields J. Reducing Phosphorus Loss in Short-Cycle Horticultural Production Using Activated Aluminum-Amended Substrates and Modified Fertigation Practices. Plants. 2024; 13(17):2473. https://doi.org/10.3390/plants13172473
Chicago/Turabian StyleAbdi, Damon Edward, Jeffrey Beasley, and Jeb Fields. 2024. "Reducing Phosphorus Loss in Short-Cycle Horticultural Production Using Activated Aluminum-Amended Substrates and Modified Fertigation Practices" Plants 13, no. 17: 2473. https://doi.org/10.3390/plants13172473
APA StyleAbdi, D. E., Beasley, J., & Fields, J. (2024). Reducing Phosphorus Loss in Short-Cycle Horticultural Production Using Activated Aluminum-Amended Substrates and Modified Fertigation Practices. Plants, 13(17), 2473. https://doi.org/10.3390/plants13172473