Semi-Arid Environmental Conditions and Agronomic Traits Impact on the Grain Quality of Diverse Maize Genotypes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Climate Characterisation
2.2. Agronomical Traits
2.3. Grain Physical–Chemical Characteristics
2.4. Variance Components for Grain Physical–Chemical Characteristics
3. Materials and Methods
3.1. Genetic Material and Experimental Design
3.2. Agronomical Traits
3.3. Grain Physical Properties
3.4. Flour Chemical Traits
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaudhary, D.P.; Kumar, S.; Yadav, O.P. Nutritive Value of Maize: Improvements, Applications and Constraints. In Maize: Nutrition Dynamics and Novel Uses; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–17. [Google Scholar]
- Barreto, C.A.V.; das Graças Dias, K.O.; de Sousa, I.C.; Azevedo, C.F.; Nascimento, A.C.C.; Guimarães, L.J.M.; Guimarães, C.T.; Pastina, M.M.; Nascimento, M. Genomic Prediction in Multi-Environment Trials in Maize Using Statistical and Machine Learning Methods. Sci. Rep. 2024, 14, 1062. [Google Scholar] [CrossRef]
- Koç, İ. Changes That May Occur in Temperature, Rain, and Climate Types Due to Global Climate Change: The Example of Düzce. Turk. J. Agric.-Food Sci. Technol. 2021, 9, 1545–1554. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in Precipitation with Climate Change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M. Ground Water and Climate Change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Lee, C.-C.; Zeng, M.; Luo, K. How Does Climate Change Affect Food Security? Evidence from China. Environ. Impact Assess. Rev. 2024, 104, 107324. [Google Scholar] [CrossRef]
- TAO, Z.; WANG, D.; CHANG, X.; WANG, Y.; YANG, Y.; ZHAO, G. Effects of Zinc Fertilizer and Short-Term High Temperature Stress on Wheat Grain Production and Wheat Flour Proteins. J. Integr. Agric. 2018, 17, 1979–1990. [Google Scholar] [CrossRef]
- He, F.; Thiele, B.; Santhiraraja-Abresch, S.; Watt, M.; Kraska, T.; Ulbrich, A.; Kuhn, A.J. Effects of Root Temperature on the Plant Growth and Food Quality of Chinese Broccoli (Brassica oleracea Var. Alboglabra bailey). Agronomy 2020, 10, 702. [Google Scholar] [CrossRef]
- Kusainova, A.A.; Mezentseva, O.V.; Tusupbekov, Z.A. Influence of Precipitation Variability and Temperature Conditions on the Yield of Grain Crops in Northern Kazakhstan. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 548, p. 042026. [Google Scholar]
- McDonald, A.J.; Keil, A.; Srivastava, A.; Craufurd, P.; Kishore, A.; Kumar, V.; Paudel, G.; Singh, S.; Singh, A.K.; Sohane, R.K. Time Management Governs Climate Resilience and Productivity in the Coupled Rice–Wheat Cropping Systems of Eastern India. Nat. Food 2022, 3, 542–551. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Folberth, C.; Skalsky, R.; Li, H.; Liu, Y.; Balkovic, J. Limiting Global Warming to 2 °C Benefits Building Climate Resilience in Rice-Wheat Systems in India through Crop Calendar Management. Agric. Syst. 2024, 213, 103806. [Google Scholar] [CrossRef]
- Biasutti, C.A.; Balzarini, M.B. Predicción Del Rendimiento de Híbridos de Maíz (Zea mays L.) En Ambientes de Siembra Tardía. BAG J. Basic Appl. Genet. 2017, 28, 19–26. [Google Scholar]
- Ndhlela, T.; Herselman, L.; Magorokosho, C.; Setimela, P.; Mutimaamba, C.; Labuschagne, M. Genotype× Environment Interaction of Maize Grain Yield Using AMMI Biplots. Crop Sci. 2014, 54, 1992–1999. [Google Scholar] [CrossRef]
- Katsenios, N.; Sparangis, P.; Chanioti, S.; Giannoglou, M.; Leonidakis, D.; Christopoulos, M.V.; Katsaros, G.; Efthimiadou, A. Genotype× Environment Interaction of Yield and Grain Quality Traits of Maize Hybrids in Greece. Agronomy 2021, 11, 357. [Google Scholar] [CrossRef]
- Sharma, S.; Carena, M.J. Grain Quality in Maize (Zea mays L.): Breeding Implications for Short-Season Drought Environments. Euphytica 2016, 212, 247–260. [Google Scholar] [CrossRef]
- Huang, C.; Duiker, S.W.; Deng, L.; Fang, C.; Zeng, W. Influence of Precipitation on Maize Yield in the Eastern United States. Sustainability 2015, 7, 5996–6010. [Google Scholar] [CrossRef]
- Kothiyal, S.; Kaur, J. A Critical Analysis of the Effect of Projected Temperature and Rainfall for Differential Sowing of Maize Cultivars under RCP 4.5 and RCP 6.0 Scenarios for Punjab. Theor. Appl. Climatol. 2023, 151, 329–354. [Google Scholar] [CrossRef]
- Bolsa de Cereales de Córdoba. La Agroindustria Cordobesa 2020–2021: Un Diagnóstico Para Mejorar Las Decisiones. Available online: https://www.bccba.org.ar/wp-content/uploads/2022/02/Anuario-DI-2021.pdf (accessed on 3 July 2024).
- Sibanda, M.; Mushunje, A.; Mutengwa, C.S. An Evaluation on the Profitability of Growing Improved Maize Open Pollinated Varieties in the Eastern Cape Province, South Africa. J. Dev. Agric. Econ. 2016, 8, 1–13. [Google Scholar]
- Kljak, K.; Novaković, K.; Zurak, D.; Jareš, M.; Pamić, S.; Duvnjak, M.; Grbeša, D. Physical properties of kernels from modern maize hybrids used in Croatia. J. Cent. Eur. Agric. 2020, 21, 543–553. [Google Scholar] [CrossRef]
- Philippeau, C.; Landry, J.; Michalet-Doreau, B. Influence of the Protein Distribution of Maize Endosperm on Ruminal Starch Degradability. J. Sci. Food Agric. 2000, 80, 404–408. [Google Scholar] [CrossRef]
- Nguma, E.; Murayama, D.; Munthali, C.; Onishi, K.; Mori, M.; Tani, M.; Palta, J.P.; Koaze, H.; Aiuchi, D. Effect of Kernel Type on Hardness and Interrelationship with Endosperm Chemical Components of Malawian Local Maize (Zea mays L.) Varieties during Storage. Afr. J. Agric. Res. 2020, 16, 1449–1457. [Google Scholar]
- Cabañas-Ojeda, J.A.; Mejia-Abaunza, N.J.J.; Lozano-Cruz, P.A.; Aragão-Netto, V.; Brown, S.; Rubio, A.; Fahrenholz, A.; Oviedo-Rondón, E.O. Corn Kernel Hardness and Drying Temperature Affect Particle Size Post-Hammer-Milling and Pellet Quality in Broiler and Swine Diets. Anim. Feed Sci. Technol. 2023, 304, 115744. [Google Scholar] [CrossRef]
- Nemati, A.; Sedghi, M.; Sharifi, R.S.; Seiedi, M.N. Investigation of Correlation between Traits and Path Analysis of Corn (Zea mays L.) Grain Yield at the Climate of Ardabil Region (Northwest Iran). Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 194–198. [Google Scholar]
- Jamshidian, P.; Golparvar, A.R.; Naderi, M.R.; Darkhal, H. Phenotypic Correlations and Path Analysis between Ear Yield and Other Associated Characters in Corn Hybrids (Zea mays L.). Int. J. Farming Allied Sci. 2013, 2, 1273–1276. [Google Scholar]
- Cerrudo, A.; Martinez, D.; Izquierdo, N.G.; Cirilo, A.G.; Laserna, M.P.; Reinoso, L.; Valentinuz, O.; Balbi, C.; Andrade, F.H. Environment, Management, and Genetic Contributions to Maize Kernel Hardness and Grain Yield. Crop Sci. 2017, 57, 2788–2798. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Vyn, T.J. Physiological Perspectives of Changes over Time in Maize Yield Dependency on Nitrogen Uptake and Associated Nitrogen Efficiencies: A Review. Field Crops Res. 2012, 133, 48–67. [Google Scholar] [CrossRef]
- Šeremešić, M.S.M.; Radosavljević, M.M.; Srdić, J.Ž.; Tomičić, Z.M.; Đuragić, O.M. Physical Traits and Nutritional Quality of Selected Serbian Maize Genotypes Differing in Kernel Hardness and Colour. Food Feed Res. 2019, 46, 51–60. [Google Scholar] [CrossRef]
- Amegbor, I.K.; van Biljon, A.; Shargie, N.; Tarekegne, A.; Labuschagne, M.T. Heritability and Associations among Grain Yield and Quality Traits in Quality Protein Maize (QPM) and Non-QPM Hybrids. Plants 2022, 11, 713. [Google Scholar] [CrossRef]
- Ramana Reddy, Y.; Ravi, D.; Ramakrishna Reddy, C.; Prasad, K.V.S.V.; Zaidi, P.H.; Vinayan, M.T.; Blümmel, M. A Note on the Correlations between Maize Grain and Maize Stover Quantitative and Qualitative Traits and the Implications for Whole Maize Plant Optimization. Field Crops Res. 2013, 153, 63–69. [Google Scholar] [CrossRef]
- Werle, A.J.K.; Ferreira, F.R.A.; Pinto, R.J.B.; Mangolin, C.A.; Scapim, C.A.; Gonçalves, L.S.A. Diallel Analysis of Maize Inbred Lines for Grain Yield, Oil and Protein Content. Crop Breed. Appl. Biotechnol. 2014, 14, 23–28. [Google Scholar] [CrossRef]
- Butts-Wilmsmeyer, C.J.; Seebauer, J.R.; Singleton, L.; Below, F.E. Weather during Key Growth Stages Explains Grain Quality and Yield of Maize. Agronomy 2019, 9, 16. [Google Scholar] [CrossRef]
- Chen, G.-X.; Zhen, S.-M.; Liu, Y.-L.; Yan, X.; Zhang, M.; Yan, Y.-M. In Vivo Phosphoproteome Characterization Reveals Key Starch Granule-Binding Phosphoproteins Involved in Wheat Water-Deficit Response. BMC Plant Biol. 2017, 17, 168. [Google Scholar] [CrossRef]
- Scrob, S.; Muste, S.; Has, I.; Muresan, C.; Socaci, S.; Fărcas, A. The Biochemical Composition and Correlation Estimates for Grain Quality in Maize. J. Agroaliment. Process. Technol. 2014, 20, 150–155. [Google Scholar]
- Jahangirlou, M.R.; Akbari, G.A.; Alahdadi, I.; Soufizadeh, S.; Parsons, D. Grain Quality of Maize Cultivars as a Function of Planting Dates, Irrigation and Nitrogen Stress: A Case Study from Semiarid Conditions of Iran. Agriculture 2020, 11, 11. [Google Scholar] [CrossRef]
- Song, K.; Kim, H.C.; Shin, S.; Kim, K.-H.; Moon, J.-C.; Kim, J.Y.; Lee, B.-M. Transcriptome Analysis of Flowering Time Genes under Drought Stress in Maize Leaves. Front. Plant Sci. 2017, 8, 267. [Google Scholar] [CrossRef] [PubMed]
- Franks, S.J.; Sim, S.; Weis, A.E. Rapid Evolution of Flowering Time by an Annual Plant in Response to a Climate Fluctuation. Proc. Natl. Acad. Sci. USA 2007, 104, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Narváez-González, E.D.; Figueroa-Cárdenas, J.D.D.; Taba, S.; Sánchez, F.R. Kernel Microstructure of Latin American Races of Maize and Their Thermal and Rheological Properties. Cereal Chem. 2006, 83, 605–610. [Google Scholar] [CrossRef]
- Martínez, R.D.; Cirilo, A.G.; Cerrudo, A.; Andrade, F.H.; Reinoso, L.; Valentinuz, O.R.; Balbi, C.N.; Izquierdo, N.G. Changes of Starch Composition by Postflowering Environmental Conditions in Kernels of Maize Hybrids with Different Endosperm Hardness. Eur. J. Agron. 2017, 86, 71–77. [Google Scholar] [CrossRef]
- Beckles, D.M.; Thitisaksakul, M. How Environmental Stress Affects Starch Composition and Functionality in Cereal Endosperm. Starch-Stärke 2014, 66, 58–71. [Google Scholar] [CrossRef]
- Caballero-Rothar, N.N.; Borrás, L.; Gerde, J.A. Physical and Chemical Kernel Traits Affect Starch Digestibility and Glycemic Index of Cooked Maize Flours. Food Chem. 2022, 369, 130953. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Cheng, R.; Sun, X.; Wang, Y.; Tang, J.; Liu, Z. Inheritance Effect of Protein Content in Maize Kernels and Its Relation to Yield. Acta Agron. Sin. 2009, 35, 755–760. [Google Scholar] [CrossRef]
- Mansilla, P.S.; Bongianino, N.F.; Nazar, M.C.; Pérez, G.T. Agronomic and Chemical Description of Open-Pollinated Varieties of Opaque-2 and Purple Maize (Zea mays L.) Adapted to Semiarid Region of Argentina. Genet. Resour. Crop Evol. 2021, 68, 2351–2366. [Google Scholar] [CrossRef]
- Fang, H.; Fu, X.; Ge, H.; Zhang, A.; Shan, T.; Wang, Y.; Li, P.; Wang, B. Genetic Basis of Maize Kernel Oil-Related Traits Revealed by High-Density SNP Markers in a Recombinant Inbred Line Population. BMC Plant Biol. 2021, 21, 344. [Google Scholar] [CrossRef]
- Mason, S.C.; D’croz-Mason, N.E. Agronomic Practices Influence Maize Grain Quality. J. Crop Prod. 2002, 5, 75–91. [Google Scholar] [CrossRef]
- Ndlovu, N.; Spillane, C.; McKeown, P.C.; Cairns, J.E.; Das, B.; Gowda, M. Genome-Wide Association Studies of Grain Yield and Quality Traits under Optimum and Low-Nitrogen Stress in Tropical Maize (Zea mays L.). Theor. Appl. Genet. 2022, 135, 4351–4370. [Google Scholar] [CrossRef]
- Ngaboyisonga, C.; Njoroge, K. Quality Protein Maize under Low-Nitrogen and Drought: Genotype by Environment Interaction for Grain and Protein Qualities. Agric. J. 2014, 9, 68–76. [Google Scholar]
- Letchworth, M.B.; Lambert, R.J. Pollen Parent Effects on Oil, Protein, and Starch Concentration in Maize Kernels. Crop Sci. 1998, 38, 363–367. [Google Scholar] [CrossRef]
- Tanaka, W.; Mantese, A.I.; Maddonni, G.A. Pollen Source Effects on Growth of Kernel Structures and Embryo Chemical Compounds in Maize. Ann. Bot. 2009, 104, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fernie, A.R.; Yang, X. Using Systems Metabolic Engineering Strategies for High-Oil Maize Breeding. Curr. Opin. Biotechnol. 2023, 79, 102847. [Google Scholar] [CrossRef] [PubMed]
- Ertiro, B.T.; Twumasi-Afriyie, S.; Blümmel, M.; Friesen, D.; Negera, D.; Worku, M.; Abakemal, D.; Kitenge, K. Genetic Variability of Maize Stover Quality and the Potential for Genetic Improvement of Fodder Value. Field Crops Res. 2013, 153, 79–85. [Google Scholar] [CrossRef]
- Özdemir, E.; Sade, B. Genetic Analysis of Some Quality Traits in Maize. Adnan Menderes Üniv. Ziraat Fak. Derg. 2019, 16, 193–199. [Google Scholar] [CrossRef]
- Li, H.; Wang, M.; Li, W.; He, L.; Zhou, Y.; Zhu, J.; Che, R.; Warburton, M.L.; Yang, X.; Yan, J. Genetic Variants and Underlying Mechanisms Influencing Variance Heterogeneity in Maize. Plant J. 2020, 103, 1089–1102. [Google Scholar] [CrossRef] [PubMed]
- Al-Naggar, A.; Atta, M.; Ahmed, M.; Younis, A. Heterosis and Combining Ability of Maize (Zea mays L.) Grain Protein, Oil and Starch Content and Yield as Affected by Water Stress. Arch. Curr. Res. Int. 2016, 4, ACRI.27508. [Google Scholar] [CrossRef]
- Njeri, S.G.; Makumbi, D.; Warburton, M.L.; Diallo, A.; Jumbo, M.B.; Chemining’wa, G. Genetic Analysis of Tropical Quality Protein Maize (Zea mays L.) Germplasm. Euphytica 2017, 213, 261. [Google Scholar] [CrossRef]
- Cyplik, A.; Sobiech, A.; Tomkowiak, A.; Bocianowski, J. Genetic Parameters for Selected Traits of Inbred Lines of Maize (Zea mays L.). Appl. Sci. 2022, 12, 6961. [Google Scholar] [CrossRef]
- Williams, P.J.; Kucheryavskiy, S. Classification of Maize Kernels Using NIR Hyperspectral Imaging. Food Chem. 2016, 209, 131–138. [Google Scholar] [CrossRef]
- Ordóñez, M.R.; Gely, M.C.; Pagano, A.M. Estudio de Las Propiedades Físicas y de La Cinética de Secado de Granos de Maíz Colorado Duro. Av. Cienc. Ing. 2012, 3, 153–171. [Google Scholar]
- Palacios-Rojas, N. Calidad Nutricional e Industrial de Maíz. In Protocolos; CIMMYT: Ciudad de México, Mexico, 2018; pp. 37–39. [Google Scholar]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Nanda, A.; Mohapatra, B.B.; Mahapatra, A.P.K.; Mahapatra, A.P.K.; Mahapatra, A.P.K. Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. Int. J. Stat. 2021, 6, 59–65. [Google Scholar] [CrossRef]
- Corbeil, R.R.; Searle, S.R. Restricted Maximum Likelihood (REML) Estimation of Variance Components in the Mixed Model. Technometrics 1976, 18, 31–38. [Google Scholar] [CrossRef]
- Harville, D.A. Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems. J. Am. Stat. Assoc. 1977, 72, 320–338. [Google Scholar] [CrossRef]
- Schaeffer, L.R.; Wilton, J.W.; Thompson, R. Simultaneous Estimation of Variance and Covariance Components from Multitrait Mixed Model Equations. Biometrics 1978, 34, 199–208. [Google Scholar] [CrossRef]
- Meyer, K. Maximum Likelihood Estimation of Variance Components for a Multivariate Mixed Model with Equal Design Matrices. Biometrics 1985, 41, 153–165. [Google Scholar] [CrossRef] [PubMed]
Genotype | Ger. | Plh (m) | He (m) | Sd (cm) | Ed (cm) | Nr | Ngr | El (cm) | TT (°C d) | Yield (kg/ha) |
---|---|---|---|---|---|---|---|---|---|---|
AX882 | H | 1.94 ± 0.36 a | 0.71 ± 0.19 a | 2.03 ± 0.39 a | 4.50 ± 0.55 a | 15.00 ± 1.68 a | 31.20 ± 6.22 a | 14.89 ± 2.31 a | 946.20 ± 81.23 a | 7071.10 ± 4741.44 ab |
P1815 | 2.02 ± 0.43 a | 0.79 ± 0.35 b | 2.13 ± 0.46 a | 4.19 ± 0.58 a | 14.88 ± 1.96 a | 29.85 ± 8.74 a | 14.01 ± 2.98 a | 1044.05 ± 83.75 b | 5806.34 ± 3896.20 a | |
P2089 | 2.22 ± 0.50 b | 0.86 ± 0.29 b | 2.14 ± 0.49 a | 4.49 ± 0.61 a | 15.13 ± 2.13 a | 32.85 ± 10.76 a | 14.85 ± 3.90 a | 1047.28 ± 73.53 b | 8083.48 ± 5307.75 b | |
B4 | L | 1.80 ± 0.23 ab | 0.87 ± 0.22 ab | 2.44 ± 0.45 a | 4.03 ± 0.56 a | 14.25 ± 1.61 a | 25.45 ± 1.24 ab | 14.09 ± 2.11 a | 979.28 ± 73.26 d | 3297.58 ± 1137.80 ab |
BCOT | 2.00 ± 0.59 ab | 1.00 ± 0.25 b | 2.85 ± 0.18 c | 3.88 ± 0.72 a | 13.55 ± 1.65 a | 34.00 ± 0.00 c | 14.63 ± 3.67 a | 854.63 ± 15.79 ab | 5208.57 ± 3666.23 b | |
BL04 | 1.87 ± 0.51 ab | 0.96 ± 0.12 ab | 2.47 ± 0.15 b | 3.72 ± 0.61 a | 13.8 ± 1.48 a | 25.50 ± 1.84 ab | 13.80 ± 3.26 a | 890.78 ± 57.53 c | 3183.14 ± 1503.38 ab | |
BulkASC | 1.97 ± 0.47 ab | 0.95 ± 0.13 ab | 2.46 ± 0.04 b | 3.95 ± 0.85 a | 14.25 ± 2.22 a | 25.70 ± 1.27 ab | 12.62 ± 1.80 a | 879.90 ± 32.79 bc | 3035.02 ± 1364.56 ab | |
C4B | 1.71 ± 0.25 a | 0.76 ± 0.17 a | 2.52 ± 0.08 b | 3.42 ± 0.34 a | 12.40 ± 0.57 a | 21.10 ± 2.40 a | 11.98 ± 2.22 a | 957.95 ± 26.33 d | 2422.41 ± 738.69 a | |
CIM06 | 2.06 ± 0.46 b | 0.89 ± 0.18 ab | 2.59 ± 0.08 bc | 3.63 ± 0.78 a | 13.65 ± 1.68 a | 27.90 ± 2.69 bc | 15.41 ± 3.75 a | 846.53 ± 25.14 a | 4064.77 ± 2843.87 ab | |
BlancoM | OPV | 2.27 ± 0.59 ab | 1.17 ± 0.36 c | 2.43 ± 0.50 bc | 4.34 ± 0.52 b | 12.50 ± 0.53 a | 27.50 ± 7.34 b | 15.58 ± 3.49 a | 1268.73 ± 125.56 b | 3188.54 ± 2110.93 ab |
C6006 | 2.09 ± 0.49 ab | 0.99 ± 0.27 ab | 2.26 ± 0.49 abc | 4.01 ± 0.33 a | 12.85 ± 1.50 a | 25.40 ± 4.13 ab | 14.35 ± 2.08 a | 1111.28 ± 68.29 a | 3940.18 ± 2004.07 ab | |
C8008 | 2.25 ± 0.56 b | 1.13 ± 0.36 bc | 2.50 ± 0.48 c | 4.35 ± 0.50 b | 13.48 ± 1.51 a | 25.90 ± 8.07 ab | 15.08 ± 2.67 a | 1300.15 ± 104.91 b | 2624.75 ± 1736.43 a | |
C900 | 2.10 ± 0.44 ab | 1.01 ± 0.27 abc | 2.19 ± 0.48 ab | 3.98 ± 0.39 a | 12.83 ± 1.53 a | 25.95 ± 7.80 ab | 14.24 ± 2.88 a | 1111.50 ± 70.11 a | 3574.68 ± 1897.84 ab | |
C980 | 2.10 ± 0.41 ab | 0.96 ± 0.30 ab | 2.37 ± 0.47 abc | 4.11 ± 0.34 ab | 13.10 ± 0.95 a | 26.50 ± 2.83 ab | 15.10 ± 2.27 a | 1121.73 ± 77.85 a | 4451.85 ± 2168.74 b | |
C990 | 2.17 ± 0.44 ab | 1.03 ± 0.28 abc | 2.23 ± 0.39 abc | 4.05 ± 0.44 ab | 13.25 ± 0.92 a | 25.05 ± 8.08 ab | 14.19 ± 2.82 a | 1137.95 ± 70.54 a | 4469.00 ± 2014.61 b | |
CandelariaINTA | 2.13 ± 0.48 ab | 0.95 ± 0.31 a | 2.28 ± 0.45 abc | 4.19 ± 0.36 ab | 13.65 ± 1.09 a | 28.55 ± 11.85 ab | 14.89 ± 3.36 a | 1125.26 ± 62.03 a | 4244.14 ± 2731.87 ab | |
LealesINTA | 2.01 ± 0.37 a | 0.96 ± 0.26 ab | 2.08 ± 0.42 a | 4.25 ± 0.38 ab | 14.14 ± 1.02 a | 23.60 ± 6.48 a | 13.94 ± 2.81 a | 1131.66 ± 60.92 a | 3077.72 ± 1846.28 ab |
Genotype | Ger. | FI (%) | Hardness | W1000 (g) | TW (kg/HL) | Protein (%) | Lipids (%) | Ch (%) | Ash (%) |
---|---|---|---|---|---|---|---|---|---|
AX882 | H | 83 ± 14.89 a | Soft | 310.16 ± 48.86 b | 82.83 ± 4.81 a | 8.05 ± 1.3 a | 4.68 ± 0.42 a | 85.62 ± 1.43 a | 1.65 ± 0.09 a |
P1815 | 86.63 ± 11.53 a | Soft | 243.39 ± 60.23 a | 83.63 ± 7.68 a | 7.71 ± 0.57 a | 5.03 ± 1.72 a | 85.51 ± 1.7 a | 1.74 ± 0.11 b | |
P2089 | 90.38 ± 6.86 a | Very Soft | 289.66 ± 63.13 ab | 82.13 ± 6.54 a | 7.38 ± 0.84 a | 4.71 ± 0.24 a | 86.29 ± 0.98 a | 1.62 ± 0.05 a | |
Yield | n/s | −0.83 ** | n/s | n/s | n/s | n/s | −0.68 ** | ||
B4 | L | 62.13 ± 15.98 b | Soft | 325.09 ± 34.68 c | 86.13 ± 5.29 a | 9.42 ± 1.12 a | 3.92 ± 0.7 a | 84.98 ± 1.28 c | 1.68 ± 0.15 ab |
BCOT | 22.25 ± 9.54 a | Hard | 270.84 ± 51.4 b | 93.4 ± 0.28 a | 12.05 ± 1.59 b | 4.54 ± 2.94 a | 81.56 ± 1.41 a | 1.84 ± 0.09 b | |
BL04 | 64.5 ± 23.74 b | Soft | 271.44 ± 38.76 b | 87.8 ± 0.28 a | 9.66 ± 0.33 a | 3.28 ± 0.51 a | 85.55 ± 0.8 c | 1.51 ± 0.04 a | |
BulkASC | 25.75 ± 20.17 a | Hard | 262.73 ± 62.26 b | 85.25 ± 9.77 a | 12.19 ± 1.13 b | 3.42 ± 1.8 a | 82.63 ± 0.72 ab | 1.76 ± 0.05 ab | |
C4B | 21.88 ± 18.88 a | Hard | 189.59 ± 55.06 a | 95.5 ± 0.14 a | 12.53 ± 1.09 b | 3.31 ± 1.38 a | 82.50 ± 0.56 ab | 1.66 ± 0.27 ab | |
CIM06 | 19.75 ± 10.9 a | Hard | 262.44 ± 82.94 b | 85.45 ± 8.17 a | 11.15 ± 0.21 ab | 3.77 ± 0.09 a | 83.45 ± 0.12 b | 1.63 ± 0.01 ab | |
Yield | −0.39 * | −0.62 ** | 0.63 ** | n/s | 0.76 ** | −0.42 * | n/s | ||
BlancoM | OPV | 79.5 ± 16.78 c | Soft | 342.32 ± 48.42 c | 82.08 ± 6.92 ab | 9.18 ± 0.75 a | 4.27 ± 1.1 a | 84.80 ± 1.6 c | 1.76 ± 0.25 a |
C6006 | 30.63 ± 23.35 a | Hard | 279.03 ± 37.51 ab | 87.35 ± 4.67 c | 9.45 ± 1.21 ab | 4.44 ± 0.93 a | 84.42 ± 1.27 bc | 1.69 ± 0.09 a | |
C8008 | 60.13 ± 11.31 b | Intermediate | 303.41 ± 66.67 b | 80.84 ± 7.63 a | 9.78 ± 0.81 ab | 4.6 ± 1.1 ab | 83.94 ± 1.66 bc | 1.68 ± 0.09 a | |
C900 | 39.5 ± 16.86 a | Intermediate | 277.96 ± 46.79 ab | 86.8 ± 6.1 bc | 10.19 ± 0.88 ab | 5.01 ± 0.66 ab | 83.04 ± 1.24 ab | 1.75 ± 0.08 a | |
C980 | 38 ± 14.07 a | Intermediate | 254.88 ± 41.76 a | 87.35 ± 5.64 c | 9.77 ± 0.74 ab | 4.44 ± 0.89 a | 84.07 ± 0.73 bc | 1.71 ± 0.12 a | |
C990 | 45.63 ± 21.61 ab | Intermediate | 270.66 ± 43.05 ab | 86.65 ± 6.9 bc | 9.86 ± 0.64 ab | 5.11 ± 1.56 ab | 83.31 ± 1.88 abc | 1.72 ± 0.12 a | |
CandelariaINTA | 40.38 ± 16.05 a | Intermediate | 263.59 ± 34.05 a | 84.38 ± 5.31 abc | 9.05 ± 0.98 a | 4.52 ± 0.63 a | 84.79 ± 0.82 c | 1.64 ± 0.05 a | |
LealesINTA | 39.75 ± 24.71 a | Intermediate | 257.59 ± 39.43 a | 84.14 ± 5.7 abc | 10.67 ± 1.76 b | 5.74 ± 1.52 b | 81.80 ± 2.55 a | 1.79 ± 0.17 a | |
Yield | −0.28 * | −0.8 ** | n/s | 0.33 ** | n/s | −0.36 ** | n/s |
Genotype | VC (%) | FI (%) | W1000 (g) | TW (kg/HL) | Protein (%) | Lipids (%) | Ch (%) | Ash (%) |
---|---|---|---|---|---|---|---|---|
Hybrid | G | 0.94 | 4.19 | 0.00 | 5.42 | 0.00 | 0.00 | 29.95 |
E | 50.15 | 84.33 | 88.40 | 58.54 | 24.67 | 45.66 | 35.45 | |
GxE | 16.36 | 6.79 | 0.00 | 4.06 | 69.10 | 33.35 | 4.21 | |
Residual | 32.55 | 4.69 | 11.60 | 31.99 | 6.23 | 20.98 | 30.39 | |
Line | G | 45.51 | 3.09 | 0.00 | 45.90 | 0.00 | 61.89 | 26.77 |
E | 43.15 | 87.59 | 85.78 | 7.66 | 47.68 | 21.88 | 1.96 | |
GxE | 6.94 | 8.85 | 13.04 | 41.77 | 49.50 | 10.16 | 7.54 | |
Residual | 4.40 | 0.47 | 1.18 | 4.66 | 2.82 | 6.06 | 63.74 | |
OPV | G | 35.09 | 2.49 | 8.96 | 12.06 | 7.69 | 22.74 | 0.00 |
E | 42.35 | 92.80 | 68.83 | 34.17 | 47.57 | 37.45 | 0.00 | |
GxE | 18.13 | 3.57 | 10.91 | 20.07 | 23.17 | 13.67 | 22.64 | |
Residual | 4.44 | 1.15 | 11.30 | 33.70 | 21.57 | 26.13 | 77.36 |
Year | RCc (mm) | RCcp (mm) | T° Minimumcp | T° Meancp | T° Maximumcp |
---|---|---|---|---|---|
2018 | 392 | 64.25 ± 12.14 a | 15.36 ± 0.65 b | 22.5 ± 0.58 c | 30.26 ± 0.51 c |
2019 | 557 | 109.98 ± 14.33 b | 16.49 ± 0.24 d | 22.11 ± 0.53 b | 28.62 ± 0.71 b |
2020 | 462 | 71.36 ± 42.54 a | 16.07 ± 0.18 c | 22.84 ± 0.23 d | 30.29 ± 0.44 c |
2021 | 588 | 96.16 ± 25.08 b | 14.85 ± 1.03 a | 20.58 ± 1.1 a | 27.26 ± 1.23 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bongianino, N.F.; Steffolani, M.E.; Morales, C.D.; Biasutti, C.A.; León, A.E. Semi-Arid Environmental Conditions and Agronomic Traits Impact on the Grain Quality of Diverse Maize Genotypes. Plants 2024, 13, 2482. https://doi.org/10.3390/plants13172482
Bongianino NF, Steffolani ME, Morales CD, Biasutti CA, León AE. Semi-Arid Environmental Conditions and Agronomic Traits Impact on the Grain Quality of Diverse Maize Genotypes. Plants. 2024; 13(17):2482. https://doi.org/10.3390/plants13172482
Chicago/Turabian StyleBongianino, Nicolás Francisco, María Eugenia Steffolani, Claudio David Morales, Carlos Alberto Biasutti, and Alberto Edel León. 2024. "Semi-Arid Environmental Conditions and Agronomic Traits Impact on the Grain Quality of Diverse Maize Genotypes" Plants 13, no. 17: 2482. https://doi.org/10.3390/plants13172482
APA StyleBongianino, N. F., Steffolani, M. E., Morales, C. D., Biasutti, C. A., & León, A. E. (2024). Semi-Arid Environmental Conditions and Agronomic Traits Impact on the Grain Quality of Diverse Maize Genotypes. Plants, 13(17), 2482. https://doi.org/10.3390/plants13172482