Effects of Micronutrients on the Growth and Phytochemical Composition of Basil (Ocimum basilicum L.) in the Field and Greenhouse (Hydroponics and Soil Culture)
Abstract
:1. Introduction
2. Results
2.1. Yield and Biomass
2.2. Macronutrients
2.3. Micronutrients
2.4. Phytochemistry
2.4.1. Anthocyanins
2.4.2. Total Phenolic and Flavonoid Content
2.4.3. Antioxidant Activity
2.4.4. Essential Oil Content and Yield
2.4.5. Essential Oil Compounds
3. Discussion
4. Materials and Methods
4.1. Planting Plants, Growing Conditions, and Applying Treatments
4.2. Reagents, Nutrients and Standards
4.3. Measurement of Plant Biomass
4.4. Measurement of Leaf Mineral Elements
4.5. Essential Oil Isolation
4.6. GC/FID and GC/MS Analysis
4.7. Anthocyanins
4.8. Preparation of Methanol Extract and Measurement of Total Phenolics and Flavonoids
4.9. Evaluation of Antioxidant Properties
4.9.1. Free Radical Inhibition (DPPH)
4.9.2. Ferric Reducing Antioxidant Potential (FRAP)
4.10. Statistical Calculations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhama, K.; Sharun, K.; Gugjoo, M.B.; Tiwari, R.; Alagawany, M.; Iqbal Yatoo, M.; Thakur, P.; Iqbal, H.M.N.; Chaicumpa, W.; Michalak, I. A comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum. Food Rev. Int. 2023, 39, 119–147. [Google Scholar] [CrossRef]
- Gürgan, M.; Adiloğlu, S. Increasing concentrations of iron fertilizer affect antibacterial activity of basil (Ocimum basilicum L.). Ind. Crops Prod. 2021, 170, 113–768. [Google Scholar] [CrossRef]
- Boudet, A.M. Evolution and current status of research in phenolic compounds. Phytochemistry 2007, 68, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Iijima, Y.; Rikanati, R.D.; Fridman, E.; Gang, D.R.; Bar, E.; Lewinsohn, E.; Pichersky, E. The biochemical and molecular basis for the divergent in the biosynthesis of terpenes and phenylpropenes in the peltate gland of three cultivars of basil. Plant Physiol. 2004, 136, 3724–3736. [Google Scholar] [CrossRef] [PubMed]
- Mumivand, H.; Ebrahimi, A.; Morshedloo, M.R.; Shayganfar, A. Water deficit stress changes in drug yield, antioxidant enzymes activity and essential oil quality and quantity of Tarragon (Artemisia dracunculus L.). Ind. Crops Prod. 2021, 164, 113381. [Google Scholar] [CrossRef]
- Mumivand, H.; Khanizadeh, P.; Morshedloo, M.R.; Sierka, E.; Zuk-Gołaszewska, K.; Horaczek, T.; Kalaji, H.M. Improvement of growth, yield, seed production and phytochemical properties of Satureja khuzistanica Jamzad by foliar application of boron and zinc. Plants 2021, 10, 2469. [Google Scholar] [CrossRef] [PubMed]
- Nooshkam, A.; Mumivand, H.; Hadian, J.; Alemardan, A.; Morshedloo, M.R. Drug yield and essential oil and carvacrol contents of two species of Satureja (S. khuzistanica Jamzad and S. rechingeri Jamzad) cultivated in two different locations. J. Appl. Res. Med. Aromat. Plants 2017, 6, 126–130. [Google Scholar] [CrossRef]
- Farran, I.; Mingo-Castel, A.M. Potato minituber production using aeroponics: Effect of plant density and harvesting intervals. Am. J. Potato Res. 2006, 83, 47–53. [Google Scholar] [CrossRef]
- Valance, J.; Deniel, F.; Le Floch, G.; Guerin-dubrana, L.; Blancard, D.; Rey, P. Pathogenic and beneficial microorganism in soilless cultures. Agron. Sustain. Dev. 2011, 31, 191–203. [Google Scholar] [CrossRef]
- Verdoliva, S.G.; Gwyn-Jones, D.; Detheridge, A.; Robson, P. Controlled comparisons between soil and hydroponic systems reveal increased water use efficiency and higher lycopene and β-carotene contents in hydroponically grown tomatoes. Sci. Hortic. 2021, 279, 109896. [Google Scholar] [CrossRef]
- Burrage, S.W. Soilless Culture and Water Use Efficiency for Greenhouses in Arid, Hot Climates; ICARDA: Beirut, Lebanon, 2014; Volume 145. [Google Scholar] [CrossRef]
- Maliqa, M.; Junaid, N.K.; Muneeb, A.S.Q.; Khalid, Z.M.; Baseerat, A.; Saqib, P. Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) and comparison with protected soil-based cultivation. Agric. Water Manag. 2020, 10, 6572. [Google Scholar] [CrossRef]
- Savvas, D.; Lenz, F. Effects of NaCl or nutrient induced salinity on growth, yield and composition of eggplants grown in rockwool. Sci. Hortic. 2013, 84, 37–47. [Google Scholar] [CrossRef]
- Abeysinghe, D.C.; Wijerathne, S.M.N.K.; Dharmadasa, R.M. Secondary metabolites contents and antioxidant capacities of Acmella oleraceae grown under different growing systems. World J. Agric. Res. 2014, 2, 163–167. [Google Scholar] [CrossRef]
- Strzemski, M.; Dresler, S.; Sowa, I.; Czubacka, A.; Agacka-Mołdoch, M.J.; Płachno, B.; Granica, M.F.; Wójciak-Kosior, M. The impact of different cultivation systems on the content of selected secondary metabolites and antioxidant activity of Carlina acaulis plant material. Molecules 2020, 25, 146. [Google Scholar] [CrossRef] [PubMed]
- Mumivand, H.; Babalar, M.; Hadian, J.; Tabatabaei, S.M.F. Influence of nitrogen and calcium carbonate application rates on the minerals content of summer savory (Satureja hortensis L.) leaves. Hortic. Environ. Biotechnol. 2010, 51, 173–177. [Google Scholar]
- Weckx, J.E.J.; Clijsters, H.M.M. Zn phytotoxicity induces oxidative stress in primary leaves of phaseolus vulgaris. J. Plant Physiol. 2016, 35, 405–410. [Google Scholar]
- Kamble, B.M.; Kadam, J.H.; Kathmale, D.K. Effect of iron application on yield of turmeric (Curcuma longa L.) in Maharashtra. India Int. J. Bio-Resour. Stress. Manag. 2014, 5, 502–506. [Google Scholar]
- Hnamte, V.; Chatterjee, R.; Lungmuana, S.; Patra, P.K. Influence of boron and zinc nutrition on growth, yield and quality of turmeric (Curcuma longa L) in Gangetic alluvial soil of West Bengal. J. Crop Weed. 2018, 14, 72–77. [Google Scholar]
- Achakzai, A.K.K.; Kayani, S.A.; Hanif, A. Effect of salinity on uptake of micronutrients in sunflower at early vegetative stage. Pak. J. Bot. 2010, 42, 129–139. [Google Scholar]
- Nasiri, Y.; Zehtab-Salmasi, S.; Nasrullahzadeh, S.; Najafi, S.; Ghassemi-Golezani, K. Effects of foliar application of micronutrients (Fe and Zn) on flower yield and essential oil of Chamomile (Matricaria chamomilla L.). J. Med. Plants Res. 2010, 4, 1733–1737. [Google Scholar]
- Pandav, A.K.; Nalla, K.; Aslam, T.; Rana, M.K.; Bommesh, J.C. Effect of foliar application of micronutrients on growth and yield parameters in Eggplant cv HLB 12. Environ. Ecol. 2016, 35, 1745–1748. [Google Scholar]
- Said-Al Ahl, H.A.H.; Mahmoud, A.A. Effect of zinc and/or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Ozean. J. Appl. Sci. 2010, 3, 97–111. [Google Scholar]
- Ciriello, M.; Formisano, L.; Kyriacou, M.; Soteriou, G.A.; Graziani, G.; De Pascale, S.; Rouphael, Y. Zinc biofortification of hydroponically grown basil: Stress physiological responses and impact on antioxidant secondary metabolites of genotypic variants. Front. Plant Sci. 2022, 13, 1049004. [Google Scholar] [CrossRef] [PubMed]
- Roosta, H.R.; Afsharipoor, S. Effects of different cultivation media on vegetative growth, ecophysiological traits and nutrients concentration in strawberry under hydroponic and aquaponic cultivation systems. Adv. Environ. Biol. 2012, 6, 543–555. [Google Scholar]
- Jones, B.J.R. Hydroponics: A Practical Guide for the Soilless Grower, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 423–438. [Google Scholar]
- Resh, H.M. Hydroponics, 7th ed.; Taylor & Francis Group: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2013; 511p. [Google Scholar]
- Aliniaeifard, S.; Rezaei-Nejad, A.H.; Seifi-Kalhor, M.; Shahlaei, A.; Aliniaeifard, A. Comparison of Soil and Perlite (with Nutrient Solution Supply) Growing Media for Cultivation of Lemon Verbena (Lippia citriodora var. ‘Verbena’). Med. Aromat. Plant Sci. Biotechnol. 2010, 5, 30–33. [Google Scholar]
- Giurgiu, R.M.; Morar, G.A.; Dumitras, A.; Boanca, P.; Duda, B.M.; Moldovan, C. Study regarding the suitability of cultivating medicinal plants in hydroponic systems in controlled environment. Sci. Hortic. 2014, 46, 84–93. [Google Scholar]
- Proz, M.; Silva, M.; Bender, E.; Rios, A. Effects of indoor, greenhouse, and field cultivation on bioactive compounds from Parsley and Basil. J. Sci. Food Agric. 2021, 101, 6320–6330. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative esters and antioxidant andanti-inflammatory effects. Curr. Opin. Food Sci. 2016, 52, 4026–4037. [Google Scholar] [CrossRef]
- Ghahremani-majd, H.; Dashti, F.; Dastan, D.; Mumivand, H.; Hadian, J.; Esna-Ashari, M. Antioxidant and antimicrobial activities of Iranian mooseer (Allium hirtifolium Boiss) populations. Hortic. Environ. Biotechnol. 2012, 53, 116–122. [Google Scholar] [CrossRef]
- Kleinwächter, M.; Selmar, D. New insights explain that drought stress enhances the quality of spice and medicinal plants: Potential applications. Agron. Sustain. Dev. 2015, 35, 121–131. [Google Scholar] [CrossRef]
- Selmar, D.; Kleinwächter, M. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind. Crop Prod. 2013, 42, 558–566. [Google Scholar] [CrossRef]
- Jalili, F. The effect of N, P and micronutrients on yield and essential oil of Satureja hortensis L. Adv. Environ. Biol. 2015, 9, 860–865. [Google Scholar]
- Jaafar, H.Z.; Ibrahim, M.H.; Fakri, N.F.M. Impact of soil field water capacity on secondary metabolites, phenylalanine ammonialyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian kacip fatimah (Labisia pumila Benth.). Molecules 2012, 17, 7305–7322. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.M.; Lee, H.Y.; Cho, D.Y.; Jung, J.G.; Kim, M.J.; Jeong, J.B.; Jang, S.N.; Lee, G.O.; Sim, H.S.; Kang, M.J. Comprehensive comparison of chemical composition and antioxidant activity of panax ginseng sprouts by different cultivation systems in a plant factory. Plants 2022, 11, 1818. [Google Scholar] [CrossRef]
- Braglia, R.; Costa, P.; Di Marco, G.; DAgostino, A.; Redi, E.L.; Scuderi, F.; Gismondi, A.; Canini, A. Phytochemicals and quality level of food plants grown in an aquaponics system. J. Sci. Food Agric. 2022, 102, 844–850. [Google Scholar] [CrossRef]
- Evans, W.C. Pharmacognosy, 14th ed.; Chapter 21: Volatile Oils and Resins; John Wiley: New York, NY, USA, 1996; 450p. [Google Scholar]
- Alvarenga, I.C.A.; Boldrin, P.F.; Pacheco, F.V.; Silva, S.T.; Bertolucci, S.K.V.; Pinto, J.E.B.P. Effects on growth, essential oil content and composition of the volatile fraction of Achillea millefolium L. cultivated in hydroponic systems deficient in macro- and microelements. Sci. Hortic. 2015, 197, 329–338. [Google Scholar] [CrossRef]
- Jafari, S.; Mousavi-Fard, S.; Rezaei Nejad, A.; Mumivand, H.; Sorkheh, K.; Nikoloudakis, N.; Fanourakis, D. Chitosan and titanium dioxide are more effective in improving seed yield and quality in nanoparticle compared to non-structured form: A case study in five milk thistle ecotypes (Silybum marianum (L.) Gaertn.). Agronomy 2022, 12, 1827. [Google Scholar] [CrossRef]
- Ghasemi-Fasaei, R.; Ronaghi, A.; Maftoun, M.; Karimian, N.; Soltanpour, P.N. Iron manganese interaction in chickpea as affected by foliar and soil application of iron in calcareous soil. Commun. Soil. Sci. Plant Anal. 2018, 36, 1717–1725. [Google Scholar] [CrossRef]
- Yadegari, M. Effect of Foliar Application of Fe, Zn, Cu and Mn on yield and essential oils of Borago officinalis. J. Appl. Sci. Agric. 2013, 8, 568–575. [Google Scholar] [CrossRef]
- Vinod, K.; Awasthi, G.; Chauchan, P.K. Cu and Zn tolerance and responses of the Biochemical and Physiochemical system of wheat. J. Stress. Physiol. Biochem. 2012, 8, 3. [Google Scholar]
- Nurzyĕska-Wierdak, R. Does mineral fertilization modify essential oil content and chemical composition in medicinal plants? Acta Sci. Pol. Hortorum Cultus 2013, 12, 3–16. [Google Scholar]
- Kumara, D.; Punethaa, A.; Suryavanshib, P.; Chandra Padaliaa, R.K.T.A.V.; Upadhyay, R.K. Changes in flower yield, essential oil yield and oil composition after soil and foliage zinc and iron fertilization in German chamomile. J. Plant Nutr. 2022, 46, 1172–1185. [Google Scholar] [CrossRef]
- Mumivand, H.; Shayganfar, A.; Hasanvand, F.; Maggi, F.; Alizadeh, A.; Darvishnia, M. Antimicrobial activity and chemical composition of essential oil from Thymus daenensis and Thymus fedtschenkoi during phenological stages. J. Essent. Oil Bear. Plants 2021, 24, 469–479. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, H.; Wang, Y.; Gao, Y.; Zhang, L. The response of ginseng grown on farmland to foliar-applied iron, zinc, manganese and copper. Ind. Crops Prod. 2013, 45, 388–394. [Google Scholar] [CrossRef]
- Yassen, A.; Abou El-Nour, E.A.A.; Shedeed, S. Response of wheat to foliar spray with urea and micronutrients. J. Am. Sci. 2010, 6, 14–22. [Google Scholar]
- Ajay, K.; Patro, H.K. Effect of zinc and sulphur on herb, oil yield and quality of menthol mint (Mentha arvensis L.) var Kosi. J. Chem. Pharm. Res. 2010, 2, 642–648. [Google Scholar]
- El-Sawi, S.A.; Mohamed, M.A. Cumin herb as a new source of essential oils and its response to foliar spray with some micro-elements. Food Chem. 2002, 77, 75–80. [Google Scholar] [CrossRef]
- Nasrin, H.; Zakir, H.; Nipa, N.A.; Paul, N.R.; Quadir, Q.F. Effect of foliar application of chitosan on growth, yield and nutritional qualities of red Amaranth (Amaranthus gangeticus L.). J. Exp. Agric. Int. 2022, 44, 105–116. [Google Scholar] [CrossRef]
- Hasani, M.; Zamani, M.; Savaghebi, Z.; Fatahi, G.R. Effects of zinc and manganese as foliar spray on pomegranate yield, fruit quality and leaf minerals. J. Soil Sci. Plant Nutr. 2012, 12, 471–480. [Google Scholar] [CrossRef]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa Region, 3rd ed.; International Center for Agriculture Research in the Dry Area (ICARDA): Beirut, Lebanon, 2013; p. 244. [Google Scholar]
- AOAC. Metals in plants. In Official Methods of Analysis; Helrich, K., Ed.; AOAC Inc.: Arlington, VA, USA, 1990; p. 42. [Google Scholar]
- AOAC. Nitrogen (crude proteins) in plants. In Official Methods of Analysis; Helrich, K., Ed.; AOAC Inc.: Arlington, VA, USA, 1990; p. 59. [Google Scholar]
- Mumivand, H.; Izadi, Z.; Amirizadeh, F.; Maggi, F.; Morshedloo, M.R. Biochar amendment improves growth and the essential oil quality and quantity of peppermint (Mentha × piperita L.) grown under waste water and reduces environmental contamination from waste water disposal. J. Hazard. Mater. 2023, 446, 130674. [Google Scholar] [CrossRef]
- Jadidi, M.; Mumivand, H.; Nia, A.E.; Shayganfar, A.; Maggi, F. UV-A and UV-B combined with photosynthetically active radiation change plant growth, antioxidant capacity and essential oil composition of Pelargonium graveolens. BMC Plant Biol. 2023, 23, 555. [Google Scholar] [CrossRef] [PubMed]
- Mumivand, H.; Shayganfar, A.; Tsaniklidis, G.; Emami Bistgani, Z.; Fanourakis, D.; Nicola, S. Pheno-morphological and essential oil composition responses to UVA radiation and protectants: A case study in three Thymus species. Horticulturae 2022, 8, 31. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Mumivand, H.; Fatahi, S.; Nasiri, A.; Omid, M. Modeling the kinetics of essential oil content and main constituents of mint (Mentha aquatica L.) leaves during thin-layer drying process using response surface methodology. J. Food Process Preserv. 2012, 45, e15515. [Google Scholar] [CrossRef]
- Wagner, G.J. Content and vacuol/extra vacuole distribution of neutral sugar, free amino acid and anthocyanins in protoplast. Plant Physiol. 1979, 64, 88–93. [Google Scholar] [CrossRef]
- Kiumarzi, F.; Morshedloo, M.R.; Zahedi, S.M.; Mumivand, H.; Behtash, F.; Hano, C.; Lorenzo, J.M. Selenium nanoparticles (Se-NPs) alleviates salinity damages and improves phytochemical characteristics of pineapple mint (Mentha suaveolens Ehrh.). Plants 2022, 11, 1384. [Google Scholar] [CrossRef]
- Hayouni, E.A.; Abedrabba, M.; Bouix, M.; Hamdi, M. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem. 2007, 105, 1126–1134. [Google Scholar] [CrossRef]
- Chang, C.; Yang, M.; Wen, H.; Chern, J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
Cultivation System | Foliar Spray | Plant Height (cm) | Leaf Area (cm2) | Stem Dry Weight (g) | Essential Oil Yield (g/plant) | Total Phenol (mg GAE/g DW) | Total Flavonoids (mg Q/g DW) | DPPH (IC50 mg/mL) | FRAP (mmol Fe/g DW) |
---|---|---|---|---|---|---|---|---|---|
Field | Control | 31.07 ± 1.40 j | 5.87 ± 0.62 h | 8.86 ± 0.72 cd | 0.03 ± 0.002 ij | 6.42 ± 1.02 de | 3.61 ± 1.02 efg | 7.57 ± 1.03 c | 3.49 ± 0.42 ef |
Cu | 37.84 ± 1.20 i | 9.34 ± 0.43 g | 14.54 ± 1.46 a | 0.06 ± 0.003 g–j | 8.31 ± 1.33 cd | 4.79 ± 1.21 de | 6.46 ± 1.12 efd | 5.60 ± 0.67 b | |
Zn | 37.44 ± 2.60 i | 9.39 ± 0.72 g | 13.62 ± 1.83 a | 0.30 ± 0.05 a | 16.54 ± 2.42 a | 9.56 ± 2.01 a | 5.41 ± 1.1 g | 7.26 ± 1.02 a | |
Mn | 40.08 ± 3.46 hi | 8.93 ± 1.33 g | 13.86 ± 2.13 a | 0.16 ± 0.04 cde | 12.06 ± 1.91 b | 7.17 ± 1.44 b | 5.84 ± 0.87 fg | 7.15 ± 1.14 a | |
Fe | 41.87 ± 2.91 gh | 9.56 ± 1.33 g | 14.56 ± 2.22 a | 0.14 ± 0.04 d–g | 12.11 ± 2.03 b | 6.58 ± 1.84 bc | 6.63 ± 1.23 efd | 5.41 ± 1.1 b | |
B | 39.50 ± 4.32 hi | 8.90 ± 0.82 g | 14.37 ± 2.33 a | 0.18 ± 0.02 cd | 7.58 ± 1.12 cde | 4.01 ± 1.15 d–g | 5.99 ± 1.42 efg | 7.08 ± 1.13 a | |
Greenhouse soil culture | Control | 45 ± 4.24 fg | 11.31 ± 1.43 f | 4.25 ± 0.54 e | 0.02 ± 0.004 j | 5.99 ± 1.01 e | 2.45 ± 0.72 fgh | 8.56 ± 1.68 b | 3.94 ± 0.54 de |
Cu | 44.46 ± 3.33 fg | 12.08 ± 12 def | 12.1 ± 0.95 ab | 0.03 ± 0.006 ji | 8.34 ± 1.35 cd | 5.46 ± 1.44 cd | 6.42 ± 1.51 def | 2.96 ± 0.84 fg | |
Zn | 44.5 ± 3.65 fg | 13.31 ± 1.31 c | 14.06 ± 1.54 a | 0.13 ± 0.03 d–g | 5.62 ± 0.82 e | 3.80 ± 0.73 e–h | 6.87 ± 1.43 cde | 2.95 ± 0.63 fg | |
Mn | 47 ± 3.54 ef | 13.84 ± 1.41 bc | 7.87 ± 0.74 cd | 0.10 ± 0.02 e–j | 7.15 ± 1.55 cde | 4.02 ± 1 e–h | 6.76 ± 063 cde | 5.36 ± 0.86 b | |
Fe | 50.33 ± 4.71 d | 12.85 ± 1 cde | 12.05 ± 1.54 ab | 0.06 ± 0.008 hi | 8.98 ± 1.43 c | 4.45 ± 1.32 de | 6.99 ± 1.02 cd | 3.50 ± 0.62 ef | |
B | 54.66 ± 4.36 c | 11.89 ± 1.31 ef | 9.78 ± 0.91 cd | 0.1 ± 0.04 e–i | 7.02 ± 0.91 cde | 2.32 ± 0.67 ghi | 6.86 ± 1.1 cde | 4.97 ± 0.89 bc | |
Hydroponic culture | Control | 49.38 ± 4.22 cd | 13.1 ± 1.61 cd | 6.48 ± 0.72 de | 0.03 ± 0.01 hij | 1.57 ± 0.42 f | 0.64 ± 0.12 i | 10.48 ± 2.01 a | 2.17 ± 0.07 g |
Cu | 60.45 ± 5.32 ab | 14.53 ± 2.31 ab | 8.76 ± 0.82 cd | 0.07 ± 0.02 f–j | 2.40 ± 0.62 f | 0.87 ± 0.05 hi | 10.25 ± 1.7 a | 3.02 ± 0.64 fg | |
Zn | 58.05 ± 5.33 ab | 14.72 ± 2.32 ab | 9.81 ± 1.46 bc | 0.22 ± 0.03 cb | 6.78 ± 1.47 cde | 4.19 ± 1.01 def | 6.95 ± 1.2 cd | 4.36 ± 0.9 cde | |
Mn | 58.81 ± 3.24 ab | 15.33 ± 2.42 a | 8.53 ± 1.16 cd | 0.27 ± 0.05 ab | 2.64 ± 0.18 f | 1.26 ± 0.22 hi | 6.63 ± 1.02 def | 2.95 ± 0.8 fg | |
Fe | 57.63 ± 3.91 b | 14.51 ± 1.53 ab | 9.37 ± 1.41 bcd | 0.11 ± 0.02 e–h | 5.63 ± 1.02 e | 4.13 ± 0.55 def | 6.55 ± 0.78 def | 2.87 ± 0.64 fg | |
B | 60.93 ± 3.56 a | 15.13 ± 2.4 2a | 8.47 ± 0.82 cd | 0.15 ± 0.03 e–d | 7.60 ± 1.66 cde | 4.17 ± 1.01 def | 8.52 ± 1.32 b | 4.41 ± 0.88 cd |
Cultivation System | N (%) | K (%) | P (%) | Mg (%) | Ca (%) | Cu (µg/g) | Zn (µg/g) | Fe (µg/g) | Mn (µg/g) | B (µg/g) |
---|---|---|---|---|---|---|---|---|---|---|
Field | 3.36 ± 0.44 b | 0.60 ± 0.15 c | 0.36 ± 0.03 b | 0.22 ± 0.04 b | 0.35 ± 0.05 b | 6.50 ± 0.82 b | 27.26 ± 1.76 c | 58.16 ± 4.47 c | 29.74 ± 3.88 c | 4.36 ± 1.12 b |
Greenhouse soil culture | 3.41 ± 0.38 b | 0.62 ± 0.14 b | 0.52 ± 0.05 b | 0.23 ± 0.05 b | 0.37 ± 0.06 b | 7.94 ± 1.48 a | 41.95 ± 2.45 b | 64.76 ± 6.95 b | 44.18 ± 6.14 b | 4.53 ± 0.88 b |
Hydroponic culture | 4.06 ± 0.67 a | 1.25 ± 0.28 a | 0.60 ± 0.17 a | 0.29 ± 0.03 a | 0.58 ± 0.06 a | 6.50 ± 1.32 b | 53.36 ± 3.94 a | 74.08 ± 8.75 a | 94.3 ± 8.63 a | 5.66 ± 1.44 a |
Foliar Spray | Cu | Zn | Fe | Mn | B |
---|---|---|---|---|---|
(µg/g) | |||||
Control | 7.03 ± 2.11 b | 38.12 ± 3.55 bc | 61.43 ± 6.44 b | 51.64 ± 3.74 b | 4.88 ± 1.38 b |
Cu | 12.91 ± 2.38 a | 33.38 ± 4.21 c | 59.56 ± 6.65 b | 49.05 ± 6.43 b | 4.28 ± 1.22 b |
Zn | 7.23 ± 1.34 b | 54.02 ± 4.75 a | 60.34 ± 7.74 b | 48.83 ± 4.65 b | 4.30 ± 1.11 b |
Mn | 6.59 ± 1.14 b | 42.18 ± 5.78 b | 58.42 ± 4.73 b | 90.30 ± 8.62 a | 4.29 ± 0.84 b |
Fe | 6.35 ± 1.46 b | 36.52 ± 4.66 bc | 94.95 ± 8.37 a | 46.98 ± 7.55 b | 4.30 ± 0.78 b |
B | 7.30 ± 1.55 b | 40.89 ± 4.26 bc | 59.33 ± 6.36 b | 50.67 ± 7.71 b | 7.05 ± 2.08 a |
No | Oil Constituents | RI a | LIT RI b | ID c | No | Oil Constituents | RI | KI | ID c |
---|---|---|---|---|---|---|---|---|---|
1 | β-Myrcene | 988 | 987.03 | RI, MS | 16 | γ-Muurolene | 1449 | 1454.83 | RI, MS |
2 | 1,8-Cineole | 1031 | 1030.11 | Std | 17 | Z-β-Farnesene | 1460 | 1458.14 | RI, MS |
3 | (E)-β-Ocimene | 1040 | 1041.43 | RI, MS | 18 | Germacrene D | 1474 | 1473.74 | Std |
4 | Fenchone | 1088 | 1094.28 | RI, MS | 19 | α-Selinene | 1498 | 1500 | RI, MS |
5 | Linalool | 1101 | 1102.99 | Std | 20 | α-Bulnesene | 1509 | 1495.36 | RI, MS |
6 | Camphor | 1146 | 1150.07 | RI, MS | 21 | γ-Cadinene | 1514 | 1506.84 | RI, MS |
7 | Borneol | 1164 | 1166.13 | RI, MS | 22 | δ-Cadinene | 1525 | 1512.63 | RI, MS |
8 | Terpinen-4-ol | 1177 | 1184.16 | RI, MS | 23 | (E)-Nerolidol | 1554 | 1557.69 | RI, MS |
9 | Methyl chavicol | 1200 | 1207.62 | Std | 24 | Spathulenol | 1572 | 1568.52 | RI, MS |
10 | β-Copaene | 1378 | 1370.31 | RI, MS | 25 | Caryophyllene oxide | 1573 | 1571.84 | Std |
11 | Bornyl acetate | 1283 | 1283.18 | RI, MS | 26 | Isoaromadendrene epoxide | 1579 | 1574.05 | RI, MS |
12 | Methyl eugenol | 1400 | 1402.32 | Std | 27 | 1,10-di-epi-Cubenol | 1601 | 1606.67 | RI, MS |
13 | (E)-Caryophyllene | 1415 | 1413.84 | RI, MS | 28 | epi-α-Cadinol | 1644 | 1635.45 | RI, MS |
14 | α-Bergamotene | 1430 | 1427.91 | RI, MS | 29 | β-Eudesmol | 1649 | 1644.82 | RI, MS |
15 | β-Gurjunene | 1449 | 1443.71 | RI, MS | 30 | α-Bisabolol | 1691 | 1681.46 | RI, MS |
Cultivation System | Foliar Spray | 1,8-Cineole | Methyl Chavicol | α-Bergamotene | γ-Cadinene | Caryophyllene Oxide | 1,10-di-epi-Cubenol | epi-α-Cadinol |
---|---|---|---|---|---|---|---|---|
Field | Control | 1.41 ± 0.38 de | 43.08 ± 2.72 bcd | 2.62 ± 0.58 a–d | 0.95 ± 0.08 b | 1.34 ± 0.03 b | 1.14 ± 0.06 bc | 8.89 ± 1.03 def |
Cu | 6.29 ± 1.08 a | 40.09 ± 4.62 cde | 2.61 ± 0.67 a–d | 0.8 ± 0.06 b | 0.69 ± 0.02 bc | 0.96 ± 0.04 bc | 6.57 ± 1.02 fgh | |
Zn | 6.80 ± 1.11 a | 41.49 ± 3.77 b–e | 2.69 ± 0.85 a–d | 0.93 ± 0.05 b | 1.16 ± 0.28 bc | 1.27 ± 0.13 bc | 7.86 ± 1.11 efg | |
Mn | 4.50 ± 0.58 b | 51.62 ± 5.62 abc | 2.63 ± 0.93 a–d | 0.52 ± 0.03 b | 0.77 ± 0.13 bc | 0.72 ± 0.15 c | 5.03 ± 0.58 hi | |
Fe | 2.79 ± 0.28 cd | 24.21 ± 3.55 f | 3.04 ± 1.01 ab | 2.03 ± 0.28 a | 2.26 ± 0.14 a | 5.10 ± 1.01 a | 10.37 ± 1.44 cde | |
B | 3.66 ± 0.73 bc | 46.32 ± 5.72 abc | 1.62 ± 0.28 c–f | 0.69 ± 0.04 b | 1.06 ± 0.08 bc | 1.11 ± 0.04 bc | 5.89 ± 1.02 ghi | |
Greenhouse soil culture | Control | 0.87 ± 0.08 e | 30.21 ± 4.11 ef | 1.92 ± 0.25 b–f | 2.65 ± 0.38 a | 1.31 ± 0.09 b | 2.57 ± 0.12 b | 9.42 ± 1.04 de |
Cu | 0.66 ± 0.12 e | 31.09 ± 4.45 def | 2.67 ± 0.28 a–d | 0.41 ± 0.08 b | 1.12 ± 0.05 bc | 1.32 ± 0.04 bc | 18.88 ± 2.52 b | |
Zn | 0.60 ± 0.18 e | 27.15 ± 3.32 f | 1.36 ± 0.22 ef | 0.34 ± 0.03 b | 0.55 ± 0.03 c | 1.73 ± 0.16 bc | 24.01 ± 3.78 a | |
Mn | 0.81 ± 0.09 e | 32.34 ± 3.31 def | 1.59 ± 0.29 def | 0.78 ± 0.09 b | 1.32 ± 0.18 b | 1.74 ± 0.48 bc | 12.17 ± 1.88 c | |
Fe | 0.61 ± 0.05 e | 31.83 ± 2.61 def | 1.29 ± 0.34 ef | 0.67 ± 0.12 b | 1.06 ± 0.11 bc | 1.8 ± 0.23 bc | 11.15 ± 1.95 cd | |
B | 0.61 ± 0.11 e | 33.2 ± 4.63 def | 1.40 ± 0.38 ef | 2.2 ± 0.23 a | 0.69 ± 0.05 bc | 1.13 ± 0.14 bc | 17.08 ± 2.58 b | |
Hydroponic culture | Control | 0.62 ± 0.06 e | 51.06 ± 5.64 abc | 3.76 ± 1.01 a | 0.86 ± 0.05 b | 1.05 ± 0.07 bc | 0.93 ± 0.11 bc | 5.58 ± 0.56 ghi |
Cu | 0.6 ± 0.12 e | 55.86 ± 5.75 ab | 2.45 ± 0.08 b–e | 1.03 ± 0.08 b | 0.84 ± 0.03 bc | 0.58 ± 0.08 c | 3.44 ± 0.78 i | |
Zn | 0.66 ± 0.07 e | 57.36 ± 5.96 a | 2.82 ± 0.09 abc | 0.6 ± 0.04 b | 0.98 ± 0.08 bc | 0.72 ± 0.09 c | 4.75 ± 1.04 hi | |
Mn | 0.6 ± 0.11 e | 52.14 ± 6.75 abc | 2 ± 0.25 b–f | 0.87 ± 0.06 b | 0.96 ± 0.06 bc | 0.77 ± 0.12 bc | 5.51 ± 0.48 ghi | |
Fe | 0.67 ± 0.13 e | 58.54 ± 6.84 a | 1.9 ± 0.18 b–f | 0.4 ± 0.02 b | 1.08 ± 0.13 bc | 0.43 ± 0.04 c | 3.78 ± 0.45 i | |
B | 0.67 ± 0.10 e | 53.64 ± 4.81 ab | 2.34 ± 0.32 b–e | 0.77 ± 0.18 b | 0.69 ± 0.04 bc | 0.88 ± 0.09 bc | 3.67 ± 0.66 ghi |
Parameters (Units) | Field Soil | Pot Substrate |
---|---|---|
pH | 7.13 | 6.9 |
EC (dS m−1) | 2.51 | 2.02 |
Organic matter content (%) | 1.74 | 2.8 |
Organic carbon content (%) | 1.04 | 1.4 |
Total nitrogen (%) | 0.15 | 0.24 |
Potassium (mg kg−1) | 331 | 362 |
Phosphorus (mg kg−1) | 12.4 | 14.76 |
Sodium (mg kg−1) | 78.2 | 66.8 |
Magnesium (mg kg−1) | 538.8 | 603.6 |
Ferrite (mg kg−1) | 5.18 | 4.44 |
Textural class | Sandy clay loam | Sandy clay loam |
Compounds | MgSO4·7H2O | Ca(NO3)2·4H2O | KH2PO4 | KNO3 | H3BO3 | MnCl2·4H2O | ZnSO4·7H2O | CuSO4·5H2O | NaMoO3 | Fe-DTPA |
---|---|---|---|---|---|---|---|---|---|---|
Unit | mmol L−1 | mg L−1 | ||||||||
Concentration | 2 | 5 | 1 | 5 | 1 | 1 | 1 | 1 | 1 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghamirzaei, H.; Mumivand, H.; Nia, A.E.; Raji, M.R.; Maroyi, A.; Maggi, F. Effects of Micronutrients on the Growth and Phytochemical Composition of Basil (Ocimum basilicum L.) in the Field and Greenhouse (Hydroponics and Soil Culture). Plants 2024, 13, 2498. https://doi.org/10.3390/plants13172498
Aghamirzaei H, Mumivand H, Nia AE, Raji MR, Maroyi A, Maggi F. Effects of Micronutrients on the Growth and Phytochemical Composition of Basil (Ocimum basilicum L.) in the Field and Greenhouse (Hydroponics and Soil Culture). Plants. 2024; 13(17):2498. https://doi.org/10.3390/plants13172498
Chicago/Turabian StyleAghamirzaei, Hamid, Hasan Mumivand, Abdollah Ehtesham Nia, Mohamad Reza Raji, Alfred Maroyi, and Filippo Maggi. 2024. "Effects of Micronutrients on the Growth and Phytochemical Composition of Basil (Ocimum basilicum L.) in the Field and Greenhouse (Hydroponics and Soil Culture)" Plants 13, no. 17: 2498. https://doi.org/10.3390/plants13172498
APA StyleAghamirzaei, H., Mumivand, H., Nia, A. E., Raji, M. R., Maroyi, A., & Maggi, F. (2024). Effects of Micronutrients on the Growth and Phytochemical Composition of Basil (Ocimum basilicum L.) in the Field and Greenhouse (Hydroponics and Soil Culture). Plants, 13(17), 2498. https://doi.org/10.3390/plants13172498