Microbial Biocontrol Agents and Natural Products Act as Salt Stress Mitigators in Lactuca sativa L.
Abstract
:1. Introduction
2. Results
2.1. Mortality Analysis
2.2. Biometric Measures
2.3. Chlorophyll Content Analysis
2.4. Proline Assay
2.5. Confocal Microscope Observations
2.6. Root Analysis
2.7. Viable Microbial Count
2.8. Microbial Community Analysis
2.9. Environmental Impact, CO2-Equivalent Emissions, and Mitigation Actions
3. Discussion
3.1. Effects of Microbial Biocontrol Agents and Biostimulants on Reducing Mortality and Salinity Stress in Lettuce Leaves
3.2. Effects of Microbial Biocontrol Agents and Biostimulants on Lettuce Roots as Salt Stress Mitigators
3.3. Effects of Microbial Biocontrol Agents as Salt Stress Mitigators on Lettuce Soil Microbial Communities
4. Materials and Methods
4.1. Experimental Design
4.2. Preparation of Biostimulant Solutions and Biocontrol Products
4.2.1. Commercial Biostimulant Solutions
4.2.2. Molasses, Compost, Micro Compost, and Soil Extract Solution
4.2.3. Microbial Biocontrol Product Preparation
4.3. Monitoring Parameters
4.3.1. Mortality Analysis
4.3.2. Biometric Measures
4.3.3. Chlorophyll Content Measurement
4.3.4. Free Proline Assay
4.3.5. Morphological and Visual Evaluation of Leaves and Roots
4.3.6. Viable Microbial Count
4.3.7. Extraction of Genomic DNA from Soil Samples
4.3.8. 16S rRNA Gene and ITS2 Region Amplicon Library Preparation, Sequencing, and Bioinformatics Analysis
4.4. Environmental Impact
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rusu, T.; Moraru, P.I.; Mintas, O.S. Influence of environmental and nutritional factors on the development of lettuce (Lactuca sativa L.) microgreens grown in a hydroponic system: A review. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12427. [Google Scholar] [CrossRef]
- Jenni, S. Rib Discoloration: A Physiological Disorder Induced by Heat Stress in Crisphead Lettuce. HortScience 2005, 40, 2031–2035. [Google Scholar] [CrossRef]
- Wei, S.; Yang, X.; Huo, G.; Ge, G.; Liu, H.; Luo, L.; Hu, J.; Huang, D.; Long, P. Distinct Metabolome Changes during Seed Germination of Lettuce (Lactuca sativa L.) in Response to Thermal Stress as Revealed by Untargeted Metabolomics Analysis. Int. J. Mol. Sci. 2020, 21, 1481. [Google Scholar] [CrossRef]
- Shin, Y.K.; Bhandari, S.R.; Jo, J.S.; Song, J.W.; Cho, M.C.; Yang, E.Y.; Lee, J.G. Response to Salt Stress in Lettuce: Changes in Chlorophyll Fluorescence Parameters, Phytochemical Contents, and Antioxidant Activities. Agronomy 2020, 10, 1627. [Google Scholar] [CrossRef]
- Abdelkader, M.; Voronina, L.; Shelepova, O.; Puchkov, M.; Loktionova, E.; Zhanbyrshina, N.; Yelnazarkyzy, R.; Tleppayeva, A.; Ksenofontov, A. Monitoring Role of Exogenous Amino Acids on the Proteinogenic and Ionic Responses of Lettuce Plants under Salinity Stress Conditions. Horticulturae 2023, 9, 626. [Google Scholar] [CrossRef]
- Baslam, M.; Pascual, I.; Sánchez-Díaz, M.; Erro, J.; García-Mina, J.M.; Goicoechea, N. Improvement of Nutritional Quality of Greenhouse-Grown Lettuce by Arbuscular Mycorrhizal Fungi Is Conditioned by the Source of Phosphorus Nutrition. J. Agric. Food Chem. 2011, 59, 11129–11140. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Gu, J.; Wu, H.; Rauf, A.; Bin Emran, T.; Khan, Z.; Mitra, S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; et al. Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce—A Comprehensive Review. Antioxidants 2022, 11, 1158. [Google Scholar] [CrossRef]
- Ünlükara, A.; Cemek, B.; Karaman, S.; Erşahin, S. Response of lettuce (Lactuca sativa var. crispa) to salinity of irrigation water. N. Z. J. Crop Hortic. Sci. 2008, 36, 265–273. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Sun, X.; Wang, K.; Kang, S.; Guo, J.; Zhang, G.; Huang, J.; Cong, Z.; Sun, S.; Zhang, Q. The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau. Environ. Pollut. 2017, 220, 936–945. [Google Scholar] [CrossRef]
- Leng, P.; Zhang, Q.; Li, F.; Kulmatov, R.; Wang, G.; Qiao, Y.; Wang, J.; Peng, Y.; Tian, C.; Zhu, N.; et al. Agricultural impacts drive longitudinal variations of riverine water quality of the Aral Sea basin (Amu Darya and Syr Darya Rivers), Central Asia. Environ. Pollut. 2021, 284, 117405. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.H.M.; Raafat, A.; El-Yazied, A.A.; Selim, S.; Azab, E.; Khojah, E.; El Nahhas, N.; Ibrahim, M.F.M. Exogenous Application of Alpha-Lipoic Acid Mitigates Salt-Induced Oxidative Damage in Sorghum Plants through Regulation Growth, Leaf Pigments, Ionic Homeostasis, Antioxidant Enzymes, and Expression of Salt Stress Responsive Genes. Plants 2021, 10, 2519. [Google Scholar] [CrossRef]
- Payen, S.; Basset-Mens, C.; Núñez, M.; Follain, S.; Grünberger, O.; Marlet, S.; Perret, S.; Roux, P. Salinisation impacts in life cycle assessment: A review of challenges and options towards their consistent integration. Int. J. Life Cycle Assess. 2016, 21, 577–594. [Google Scholar] [CrossRef]
- Hossain, M.S.; Dietz, K.-J. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Front. Plant Sci. 2016, 7, 548. [Google Scholar] [CrossRef] [PubMed]
- Freitas, D.; Campos, D.; Gomes, J.; Pinto, F.; Macedo, J.A.; Matos, R.; Mereiter, S.; Pinto, M.T.; Polónia, A.; Gartner, F.; et al. O-glycans truncation modulates gastric cancer cell signaling and transcription leading to a more aggressive phenotype. eBioMedicine 2019, 40, 349–362. [Google Scholar] [CrossRef]
- Alsamadany, H.; Mansour, H.; Elkelish, A.; Ibrahim, M.F.M. Folic Acid Confers Tolerance against Salt Stress-Induced Oxidative Damages in Snap Beans through Regulation Growth, Metabolites, Antioxidant Machinery and Gene Expression. Plants 2022, 11, 1459. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Anjum, M.A. Physiological and molecular basis of salinity tolerance in fruit crops. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 445–464. [Google Scholar]
- Khamidov, M.; Ishchanov, J.; Hamidov, A.; Donmez, C.; Djumaboev, K. Assessment of Soil Salinity Changes under the Climate Change in the Khorezm Region, Uzbekistan. Int. J. Environ. Res. Public Health 2022, 19, 8794. [Google Scholar] [CrossRef]
- Triantafyllou, A.; Kamou, N.; Papadopoulou, A.; Leontidou, K.; Mellidou, I.; Karamanoli, K. Evaluation of the biocontrol potential of PGPB strains isolated from drought-tolerant tomatoes against fungal pathogens. J. Plant Pathol. 2023, 105, 1013–1029. [Google Scholar] [CrossRef]
- Gebashe, F.; Gupta, S.; Van Staden, J. Disease management using biostimulants. In Biostimulants for Crops from Seed Germination to Plant Development; Elsevier: Amsterdam, The Netherlands, 2021; pp. 411–425. [Google Scholar]
- Borhannuddin Bhuyan, M.H.M.; Mohsin, S.M.; Mahmud, J.A.; Hasanuzzaman, M. Use of Biostimulants for Improving Abiotic Stress Tolerance in Brassicaceae Plants. In The Plant Family Brassicaceae; Springer: Singapore, 2020; pp. 497–531. [Google Scholar]
- Witkowicz, R.; Skrzypek, E.; Gleń-Karolczyk, K.; Krupa, M.; Biel, W.; Chłopicka, J.; Galanty, A. Effects of application of plant growth promoters, biological control agents and microbial soil additives on photosynthetic efficiency, canopy vegetation indices and yield of common buckwheat (Fagopyrum esculentum Moench). Biol. Agric. Hortic. 2021, 37, 234–251. [Google Scholar] [CrossRef]
- Qiao, R.; Xu, M.; Jiang, J.; Song, Z.; Wang, M.; Yang, L.; Guo, H.; Mao, Z. Plant growth promotion and biocontrol properties of a synthetic community in the control of apple disease. BMC Plant Biol. 2024, 24, 546. [Google Scholar] [CrossRef]
- Palmieri, D.; Ianiri, G.; Del Grosso, C.; Barone, G.; De Curtis, F.; Castoria, R.; Lima, G. Advances and Perspectives in the Use of Biocontrol Agents against Fungal Plant Diseases. Horticulturae 2022, 8, 577. [Google Scholar] [CrossRef]
- Romano, A.; Vitullo, D.; Di Pietro, A.; Lima, G.; Lanzotti, V. Antifungal Lipopeptides from Bacillus amyloliquefaciens Strain BO7. J. Nat. Prod. 2011, 74, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Castoria, R.; Miccoli, C.; Barone, G.; Palmieri, D.; De Curtis, F.; Lima, G.; Heitman, J.; Ianiri, G. Molecular Tools for the Yeast Papiliotrema terrestris LS28 and Identification of Yap1 as a Transcription Factor Involved in Biocontrol Activity. Appl. Environ. Microbiol. 2021, 87, e02910-20. [Google Scholar] [CrossRef]
- Palmieri, D.; Vitale, S.; Lima, G.; Di Pietro, A.; Turrà, D. A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization. Nat. Commun. 2020, 11, 5264. [Google Scholar] [CrossRef]
- Palmieri, M.; Lasserre, B.; Marino, D.; Quaranta, L.; Raffi, M.; Ranalli, G. The Environmental Footprint of Scientific Research: Proposals and Actions to Increase Sustainability and Traceability. Sustainability 2023, 15, 5616. [Google Scholar] [CrossRef]
- Caprari, C.; Bucci, A.; Divino, F.; Giovacchini, S.; Mirone, E.; Monaco, P.; Perrella, G.; Quaranta, L.; Scalabrino, S.; Ranalli, G. Collection methods of wild barn owl pellets at low environmental contamination and proposals of microbiological and ecological investigations. Ann. Microbiol. 2024, 74, 14. [Google Scholar] [CrossRef]
- El-Tokhy, F.; Tantawy, A.; El-Shinawy, M.; Abou-Hadid, A. Effect of Sugar Beet Molasses and Fe-Edhha on Tomato Plants Grown under Saline Water Irrigation Condition. Arab Univ. J. Agric. Sci. 2019, 26, 2297–2310. [Google Scholar] [CrossRef]
- Tallarita, A.V.; Vecchietti, L.; Golubkina, N.A.; Sekara, A.; Cozzolino, E.; Mirabella, M.; Cuciniello, A.; Maiello, R.; Cenvinzo, V.; Lombardi, P.; et al. Effects of Plant Biostimulation Time Span and Soil Electrical Conductivity on Greenhouse Tomato ‘Miniplum’ Yield and Quality in Diverse Crop Seasons. Plants 2023, 12, 1423. [Google Scholar] [CrossRef]
- Azman, A.T.; Mohd Isa, N.S.; Mohd Zin, Z.; Abdullah, M.A.A.; Aidat, O.; Zainol, M.K. Protein Hydrolysate from Underutilized Legumes: Unleashing the Potential for Future Functional Foods. Prev. Nutr. Food Sci. 2023, 28, 209–223. [Google Scholar] [CrossRef]
- Wise, K.; Williams, L.B.; Selby-Pham, S.; Wright, P.F.A.; Simovich, T.; Gill, H.; Gupta, A.; Puri, M.; Selby-Pham, J. Supplementation of fertiliser with the biostimulant molasses enhances hemp (Cannabis sativa) seed functional food antioxidant capacity by induction of stress responses. Sci. Hortic. 2024, 334, 113299. [Google Scholar] [CrossRef]
- Zuzunaga-Rosas, J.; Calone, R.; Mircea, D.M.; Shakya, R.; Ibáñez-Asensio, S.; Boscaiu, M.; Fita, A.; Moreno-Ramón, H.; Vicente, O. Mitigation of salt stress in lettuce by a biostimulant that protects the root absorption zone and improves biochemical responses. Front. Plant Sci. 2024, 15, 1341714. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 426696. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, L.; Consentino, B.B.; Rouphael, Y.; De Pasquale, C.; Iapichino, G.; D’Anna, F.; La Bella, S. Protein Hydrolysates and Mo-Biofortification Interactively Modulate Plant Performance and Quality of ‘Canasta’ Lettuce Grown in a Protected Environment. Agronomy 2021, 11, 1023. [Google Scholar] [CrossRef]
- Chandramohanan, K.T. A Study on the Effect of Salinity Stress on the Chlorophyll Content of Certain Rice Cultivars of Kerala State of India. Agric. For. Fish. 2014, 3, 67. [Google Scholar] [CrossRef]
- Taïbi, K.; Taïbi, F.; Ait Abderrahim, L.; Ennajah, A.; Belkhodja, M.; Mulet, J.M. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S. Afr. J. Bot. 2016, 105, 306–312. [Google Scholar] [CrossRef]
- Bacha, H.; Tekaya, M.; Drine, S.; Guasmi, F.; Touil, L.; Enneb, H.; Triki, T.; Cheour, F.; Ferchichi, A. Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. S. Afr. J. Bot. 2017, 108, 364–369. [Google Scholar] [CrossRef]
- Yasar, F.; Ellialtioglu, S.; Yildiz, K. Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ. J. Plant Physiol. 2008, 55, 782–786. [Google Scholar] [CrossRef]
- Sevengor, S.; Yasar, F.; Kusvuran, S.; Ellialtioglu, S. The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. Afr. J. Agric. Res. 2011, 6, 4920–4924. [Google Scholar] [CrossRef]
- Cristofano, F.; El-Nakhel, C.; Rouphael, Y. Biostimulant Substances for Sustainable Agriculture: Origin, Operating Mechanisms and Effects on Cucurbits, Leafy Greens, and Nightshade Vegetables Species. Biomolecules 2021, 11, 1103. [Google Scholar] [CrossRef]
- Dong, C.; Wang, G.; Du, M.; Niu, C.; Zhang, P.; Zhang, X.; Ma, D.; Ma, F.; Bao, Z. Biostimulants promote plant vigor of tomato and strawberry after transplanting. Sci. Hortic. 2020, 267, 109355. [Google Scholar] [CrossRef]
- Krinis, D.I.; Kasampalis, D.S.; Siomos, A.S. Biostimulants as a Means to Alleviate the Transplanting Shock in Lettuce. Horticulturae 2023, 9, 968. [Google Scholar] [CrossRef]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Biostimulant Application, under Reduced Nutrient Supply, Enhances Quality and Sustainability of Ornamental Containerized Transplants. Agronomy 2023, 13, 765. [Google Scholar] [CrossRef]
- Ma, Y. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants. Agronomy 2023, 13, 1844. [Google Scholar] [CrossRef]
- Mickelbart, M.V.; Hasegawa, P.M.; Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 2015, 16, 237–251. [Google Scholar] [CrossRef]
- Chaves, M.M.; Costa, J.M.; Zarrouk, O.; Pinheiro, C.; Lopes, C.M.; Pereira, J.S. Controlling stomatal aperture in semi-arid regions—The dilemma of saving water or being cool? Plant Sci. 2016, 251, 54–64. [Google Scholar] [CrossRef]
- Hedrich, R.; Shabala, S. Stomata in a saline world. Curr. Opin. Plant Biol. 2018, 46, 87–95. [Google Scholar] [CrossRef]
- Nadeeka, P.; Seran, T. The effects of goat manure and sugarcane molasses on the growth and yield of beetroot (Beta vulgaris L.). J. Agric. Sci. Belgrade 2020, 65, 321–335. [Google Scholar] [CrossRef]
- Zhang, X.; He, P.; Guo, R.; Huang, K.; Huang, X. Effects of salt stress on root morphology, carbon and nitrogen metabolism, and yield of Tartary buckwheat. Sci. Rep. 2023, 13, 12483. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Motos, J.; Ortuño, M.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.; Hernandez, J. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhang, R.; Song, Y.; Li, G.; Song, Y.; Ma, G.; Guo, H. Adaptability of root morphology and growth of two forage grass species in response to salt stress. Front. Environ. Sci. 2024, 12, 1406778. [Google Scholar] [CrossRef]
- Tian, Z.; Pu, H.; Cai, D.; Luo, G.; Zhao, L.; Li, K.; Zou, J.; Zhao, X.; Yu, M.; Wu, Y.; et al. Characterization of the bacterial microbiota in different gut and oral compartments of splendid japalure (Japalura sensu lato). BMC Vet. Res. 2022, 18, 205. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Gao, K.; Yang, L.; Lu, Y. Successional action of Bacteroidota and Firmicutes in decomposing straw polymers in a paddy soil. Environ. Microbiome 2023, 18, 76. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, C.; Li, X.; Liu, K.; Liu, Z.; Ni, W.; Zhou, P.; Wang, L.; Hu, S. Isolation and functional analysis of acid-producing bacteria from bovine rumen. PeerJ 2023, 11, e16294. [Google Scholar] [CrossRef] [PubMed]
- Zamanzadeh-Nasrabadi, S.M.; Mohammadiapanah, F.; Hosseini-Mazinani, M.; Sarikhan, S. Salinity stress endurance of the plants with the aid of bacterial genes. Front. Genet. 2023, 14, 1049608. [Google Scholar] [CrossRef]
- Kazerooni, E.A.; Maharachchikumbura, S.S.N.; Adhikari, A.; Al-Sadi, A.M.; Kang, S.-M.; Kim, L.-R.; Lee, I.-J. Rhizospheric Bacillus amyloliquefaciens Protects Capsicum annuum cv. Geumsugangsan from Multiple Abiotic Stresses via Multifarious Plant Growth-Promoting Attributes. Front. Plant Sci. 2021, 12, 669693. [Google Scholar] [CrossRef]
- Kolton, M.; Erlacher, A.; Berg, G.; Cytryn, E. The Flavobacterium Genus in the Plant Holobiont: Ecological, Physiological, and Applicative Insights. In Microbial Models: From Environmental to Industrial Sustainability; Springer: Singapore, 2016; pp. 189–207. [Google Scholar]
- Staley, J.T.; Vasilyeva, L.; Yee, B. Bauldia. In Bergey’s Manual of Systematics of Archaea and Bacteria; Wiley: Hoboken, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Talwar, C.; Nagar, S.; Kumar, R.; Scaria, J.; Lal, R.; Negi, R.K. Defining the Environmental Adaptations of Genus Devosia: Insights into its Expansive Short Peptide Transport System and Positively Selected Genes. Sci. Rep. 2020, 10, 1151. [Google Scholar] [CrossRef]
- Kim, J.; Woo, O.-G.; Bae, Y.; Keum, H.L.; Chung, S.; Sul, W.J.; Lee, J.-H. Enhanced Drought and Salt Stress Tolerance in Arabidopsis by Flavobacterium crocinum HYN0056T. J. Plant Biol. 2020, 63, 63–71. [Google Scholar] [CrossRef]
- Kim, H.; Woo, O.-G.; Bin Kim, J.; Yoon, S.-Y.; Kim, J.-S.; Sul, W.J.; Hwang, J.-Y.; Lee, J.-H. Flavobacterium sp. strain GJW24 ameliorates drought resistance in Arabidopsis and Brassica. Front. Plant Sci. 2023, 14, 1257137. [Google Scholar] [CrossRef]
- Seo, H.; Kim, J.H.; Lee, S.-M.; Lee, S.-W. The Plant-Associated Flavobacterium: A Hidden Helper for Improving Plant Health. Plant Pathol. J. 2024, 40, 251–260. [Google Scholar] [CrossRef]
- Shah, A.; Subramanian, S.; Smith, D.L. Flavonoids and Devosia sp SL43 cell-free supernatant increase early plant growth under salt stress and optimal growth conditions. Front. Plant Sci. 2022, 13, 1030985. [Google Scholar] [CrossRef]
- Monjezi, N.; Yaghoubian, I.; Smith, D.L. Cell-free supernatant of Devosia sp. (strain SL43) mitigates the adverse effects of salt stress on soybean (Glycine max L.) seed vigor index. Front. Plant Sci. 2023, 14, 1071346. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wegner, C.-E.; Liesack, W. Short-Term Exposure of Paddy Soil Microbial Communities to Salt Stress Triggers Different Transcriptional Responses of Key Taxonomic Groups. Front. Microbiol. 2017, 8, 400. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, M.D.; Beynon, R.J.; Gethings, L.A.; Claydon, A.J.; Langridge, J.I.; Vissers, J.P.C.; Brown, A.J.P.; Hammond, D.E. Specificity of the osmotic stress response in Candida albicans highlighted by quantitative proteomics. Sci. Rep. 2018, 8, 14492. [Google Scholar] [CrossRef] [PubMed]
- García, M.J.; Ríos, G.; Ali, R.; Bellés, J.M.; Serrano, R. Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae. Microbiology 1997, 143, 1125–1131. [Google Scholar] [CrossRef]
- Ali, R.; Gul, H.; Rauf, M.; Arif, M.; Hamayun, M.; Husna; Khilji, S.A.; Ud-Din, A.; Sajid, Z.A.; Lee, I.-J. Growth-Promoting Endophytic Fungus (Stemphylium lycopersici) Ameliorates Salt Stress Tolerance in Maize by Balancing Ionic and Metabolic Status. Front. Plant Sci. 2022, 13, 890565. [Google Scholar] [CrossRef]
- Ben Ali, W.; Navarro, D.; Kumar, A.; Drula, E.; Turbé-Doan, A.; Correia, L.O.; Baumberger, S.; Bertrand, E.; Faulds, C.B.; Henrissat, B.; et al. Characterization of the CAZy Repertoire from the Marine-Derived Fungus Stemphylium lucomagnoense in Relation to Saline Conditions. Mar. Drugs 2020, 18, 461. [Google Scholar] [CrossRef]
- Manzotti, A.; Bergna, A.; Burow, M.; Jørgensen, H.J.L.; Cernava, T.; Berg, G.; Collinge, D.B.; Jensen, B. Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. FEMS Microbiol. Ecol. 2020, 96, fiaa052. [Google Scholar] [CrossRef]
- Vitullo, D.; Di Pietro, A.; Romano, A.; Lanzotti, V.; Lima, G. Role of new bacterial surfactins in the antifungal interaction between Bacillus amyloliquefaciens and Fusarium oxysporum. Plant Pathol. 2012, 61, 689–699. [Google Scholar] [CrossRef]
- Woodward, M. Epidemiology, 3rd ed.; Chapman and Hall: London, UK; CRC: New York, NY, USA, 2013; ISBN 9780429196263. [Google Scholar]
- Triola, M.; Triola, M.; Roy, J. Biostatistics for the Biological and Health Sciences, 2nd ed.; Pearson: London, UK, 2017; ISBN 9780134039015. [Google Scholar]
- Zhu, J.; Tremblay, N.; Liang, Y. Comparing SPAD and atLEAF values for chlorophyll assessment in crop species. Can. J. Soil Sci. 2012, 92, 645–648. [Google Scholar] [CrossRef]
- Novichonok, E.V.; Novichonok, A.O.; Kurbatova, J.A.; Markovskaya, E.F. Use of the atLEAF+ chlorophyll meter for a nondestructive estimate of chlorophyll content. Photosynthetica 2016, 54, 130–137. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Kalhor, M.S.; Aliniaeifard, S.; Seif, M.; Asayesh, E.J.; Bernard, F.; Hassani, B.; Li, T. Title: Enhanced salt tolerance and photosynthetic performance: Implication of ɤ-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants. Plant Physiol. Biochem. 2018, 130, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Aquilano, C.; Baccari, L.; Caprari, C.; Divino, F.; Fantasma, F.; Saviano, G.; Ranalli, G. Effects of EOs vs. Antibiotics on E. coli Strains Isolated from Drinking Waters of Grazing Animals in the Upper Molise Region, Italy. Molecules 2022, 27, 8177. [Google Scholar] [CrossRef] [PubMed]
- Iacus, S.M.; Masarotto, G. Laboratorio di Statistica con R; Workbooks; McGraw-Hill: New York, NY, USA, 2003; ISBN 8838660840. [Google Scholar]
Test | 0 | M | S | SM | C | CM | MiC | MiCM | B07 | B07M | Ra36 | Ra36M | Y | A | B15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O | 31.0 | 21.4 | 16.7 | 14.3 | 24.5 | 30.6 | 34.7 | 64.3 | 42.9 | 16.7 | 2.4 | 9.5 | 19.0 | 14.3 | 4.8 |
NaCl 100 mM | 87.8 | 59.5 | 90.5 | 100.0 | 91.8 | 36.7 | 49.0 | 67.3 | 38.8 | 53.1 | 52.4 | 31.0 | 16.7 | 8.2 | 62.9 |
Codes | Biometric Data of Lettuce | |||
---|---|---|---|---|
Height (cm), Mean (±SD) | Width (cm), Mean (±SD) | |||
Tap Water | NaCl 100 mM | Tap Water | NaCl 100 mM | |
0 | 8.0 (1.1) a | 6.7 (0.9) b | 3.1 (0.8) a | 2.4 (0.4) b |
M | 8.8 (1.2) a | 7.5 (1.0) b | 3.6 (1.0) a | 3.2 (0.9) a |
B07 | 7.0 (0.8) a | 7.1 (0.6) a | 2.9 (0.4) a | 3.0 (0.4) a |
B07M | 10.7 (1.4) a | 6.9 (0.8) b | 3.7 (1.0) a | 3.8 (1.1) a |
Ra36 | 12.7 (1.9) a | 8.0 (1.1) b | 4.3 (1.2) a | 3.8 (1.0) a |
Ra36M | 12.1 (1.7) a | 9.0 (1.3) b | 3.9 (1.0) a | 3.2 (0.7) b |
Y | 10.0 (1.1) a | 11.2 (1.7) b | 3.7 (0.6) a | 3.7 (0.8) a |
A | 9.3 (1.2) a | 11.7 (1.8) b | 3.1 (0.5) a | 4.1 (0.4) b |
Treatments | Microbial Groups | Tap Water Log CFU g−1 (±SD) | NaCl 100 mM Log CFU g−1 (±SD) | p |
---|---|---|---|---|
0 | TVBC | 5.9 (0.35) | 5.0 (0.30) | 0.03309 |
F and Y | 3.4 (0.21) | 3.6 (0.26) | 0.26481 | |
SFB | 5.2 (0.25) | 4.3 (0.30) | 0.01960 | |
M | TVBC | 5.0 (0.40) | 6.4 (0.25) | 0.05988 |
F and Y | 4.7 (0.28) | 5.4 (0.40) | 0.05635 | |
SFB | 3.6 (0.35) | 3.9 (0.36) | 0.29379 | |
B07 | TVBC | 6.7 (0.38) | 6.0 (0.46) | 0.50818 |
F and Y | 4.5 (0.43) | 4.7 (0.64) | 0.60456 | |
SFB | 6.2 (0.47) | 5.3 (0.38) | 0.07152 | |
B07M | TVBC | 6.5 (0.32) | 5.6 (0.65) | 0.11194 |
F and Y | 4.4 (0.25) | 4.1 (0.24) | 0.27961 | |
SFB | 6.0 (0.66) | 5.0 (0.40) | 0.09997 | |
Ra36 | TVBC | 7.0 (0.65) | 6.7 (0.55) | 0.63783 |
F and Y | 5.5 (0.20) | 5.7 (0.30) | 0.29601 | |
SFB | 5.2 (0.35) | 6.0 (0.40) | 0.50334 | |
Ra36M | TVBC | 7.2 (0.55) | 6.8 (0.40) | 0.42308 |
F and Y | 5.4 (0.22) | 5.8 (0.35) | 0.13245 | |
SFB | 4.8 (0.21) | 6.2 (0.20) | 0.00097 | |
Y | TVBC | 6.7 (0.65) | 6.7 (0.22) | 0.90566 |
F and Y | 6.0 (0.49) | 6.9 (0.26) | 0.03573 | |
SFB | 6.6 (0.95) | 4.5 (0.30) | 0.02349 | |
A | TVBC | 5.1 (0.35) | 6.8 (0.40) | 0.00467 |
F and Y | 4.7 (0.28) | 5.4 (0.40) | 0.05635 | |
SFB | 3.6 (0.35) | 4.9 (0.36) | 0.09610 |
Codes | Treatments | Details |
---|---|---|
0 | Control | No treatments; only tap water or 0.1M salt |
M | Molasses | Sugar industry by-product (Beta vulgaris) |
S | Soil mix | Soil sample extract |
SM | Soil mix + M | Soil sample extract + M |
C | Compost mix | Commercial compost extract |
CM | Compost mix + M | Commercial compost extract + M |
MiC | Micro compost mix | Bacterial mixture from compost (C) |
MiCM | Micro compost mix + M | Bacterial mixture from compost (C) + M |
B07 | B07 bacterial strain | Pure culture Dpt. AAA, Unimol, Italy, [73] B. amyloliquefaciens |
B07M | B07 bacterial strain +M | Pure culture + M |
Ra36 | Ra36 bacterial strain | Pure culture Dpt. AAA, Unimol, Italy, [27] R. aquatilis strain 36 |
Ra36M | Ra36 bact. strain + M | Pure culture + M |
Y | Yeast strain | Pure culture Dpt. AAA, Unimol, Italy, [26] P. terrestris PT22AV. |
A | Activeg® | Commercial biostimulant through enzymatic hydrolysis from Fabaceae |
B15 | Bioalga 15® | Commercial biostimulant through extraction from Ascophillum nodosus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caprari, C.; Bucci, A.; Ciotola, A.C.; Del Grosso, C.; Dell’Edera, I.; Di Bartolomeo, S.; Di Pilla, D.; Divino, F.; Fortini, P.; Monaco, P.; et al. Microbial Biocontrol Agents and Natural Products Act as Salt Stress Mitigators in Lactuca sativa L. Plants 2024, 13, 2505. https://doi.org/10.3390/plants13172505
Caprari C, Bucci A, Ciotola AC, Del Grosso C, Dell’Edera I, Di Bartolomeo S, Di Pilla D, Divino F, Fortini P, Monaco P, et al. Microbial Biocontrol Agents and Natural Products Act as Salt Stress Mitigators in Lactuca sativa L. Plants. 2024; 13(17):2505. https://doi.org/10.3390/plants13172505
Chicago/Turabian StyleCaprari, Claudio, Antonio Bucci, Anastasia C. Ciotola, Carmine Del Grosso, Ida Dell’Edera, Sabrina Di Bartolomeo, Danilo Di Pilla, Fabio Divino, Paola Fortini, Pamela Monaco, and et al. 2024. "Microbial Biocontrol Agents and Natural Products Act as Salt Stress Mitigators in Lactuca sativa L." Plants 13, no. 17: 2505. https://doi.org/10.3390/plants13172505
APA StyleCaprari, C., Bucci, A., Ciotola, A. C., Del Grosso, C., Dell’Edera, I., Di Bartolomeo, S., Di Pilla, D., Divino, F., Fortini, P., Monaco, P., Palmieri, D., Petraroia, M., Quaranta, L., Lima, G., & Ranalli, G. (2024). Microbial Biocontrol Agents and Natural Products Act as Salt Stress Mitigators in Lactuca sativa L. Plants, 13(17), 2505. https://doi.org/10.3390/plants13172505