Impact of Simultaneous Nutrient Priming and Biopriming on Soybean Seed Quality and Health
Abstract
:1. Introduction
2. Results
2.1. The Germination Test
2.2. Accelerated Aging Test
2.3. Seed Health
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Priming Treatments and Seed Priming
4.3. Laboratory Assays
4.3.1. Seed Quality Assessment
4.3.2. Seed Vigor Assessment
4.3.3. Assessment of Germination-Related and Growth-Related Parameters of Soybean Seeds
4.3.4. Seed Health Assessment
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lewandowska, S.; Łoziński, M.; Marczewski, K.; Kozak, M.; Schmidtke, K. Influence of Priming on Germination, Development, and Yield of Soybean Varieties. Open Agric. 2020, 5, 930–935. [Google Scholar] [CrossRef]
- Sharma, S.; Kaur, M.; Goyal, R.; Gill, B.S. Physical Characteristics and Nutritional Composition of some New Soybean (Glycine max (L.) Merrill) Genotypes. J. Food Sci. Technol. 2014, 51, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Wang, T.; Luo, Y. A Review on Plant-Based Proteins from Soybean: Health Benefits and Soy Product Development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Monte Singer, W.; Zhang, B.; Rouf Mian, M.A.; Huang, H. Soybean Amino Acids in Health, Genetics, and Evaluation. In Soybean for Human Consumption and Animal Feed; Sudarić, A., Ed.; IntechOpen: London, UK, 2020; p. 160. [Google Scholar] [CrossRef]
- Belobrajdic, D.P.; James-Martin, G.; Jones, D.; Tran, C.D. Soy and Gastrointestinal Health: A Review. Nutrients 2023, 15, 1959. [Google Scholar] [CrossRef]
- Patil, G.; Mian, R.; Vuong, T.; Pantalone, V.; Song, Q.; Chen, P.; Shannon, G.J.; Carter, T.C.; Nguyen, H.T. Molecular Mapping and Genomics of Soybean Seed Protein: A Review and Perspective for the Future. Theor. Appl. Genet. 2017, 130, 1975–1991. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT Database. Food and Agriculture Organization Statistics. Available online: https://www.fao.org/faostat/en/ (accessed on 11 July 2024).
- Dueñas, C., Jr.; Pagano, A.; Calvio, C.; Srikanthan, D.S.; Slamet-Loedin, I.; Balestrazzi, A.; Macovei, A. Genotype-Specific Germination Behavior induced by Sustainable Priming Techniques in response to Water Deprivation Stress in Rice. Front. Plant Sci. 2024, 15, 1344383. [Google Scholar] [CrossRef]
- Awan, S.A.; Khan, I.; Wang, Q.; Gao, J.; Tan, X.; Yang, F. Pre-Treatment of Melatonin enhances the Seed Germination Responses and Physiological Mechanisms of Soybean (Glycine max L.) under Abiotic Stresses. Front. Plant Sci. 2023, 14, 1149873. [Google Scholar] [CrossRef]
- Vancostenoble, B.; Blanchet, N.; Langlade, N.B.; Bailly, C. Maternal Drought Stress Induces Abiotic Stress Tolerance to the Progeny at the Germination Stage in Sunflower. Environ. Exp. Bot. 2022, 201, 104939. [Google Scholar] [CrossRef]
- Shu, K.; Zhou, W.; Chen, F.; Luo, X.; Yang, W. Abscisic Acid and Gibberellins antagonistically Mediate Plant Development and Abiotic Stress Responses. Front. Plant Sci. 2018, 9, 416. [Google Scholar] [CrossRef]
- El Moukhtari, A.; Ksiaa, M.; Zorrig, W.; Cabassa, C.; Abdelly, C.; Farissi, M.; Savoure, A. How Silicon Alleviates the Effect of Abiotic Stresses During Seed Germination: A Review. J. Plant Growth Regul. 2023, 42, 3323–3341. [Google Scholar] [CrossRef]
- Cafaro, V.; Alexopoulou, E.; Cosentino, S.L.; Patanè, C. Assessment of Germination Response to Salinity Stress in Castor through the Hydrotime Model. Agronomy 2023, 13, 2783. [Google Scholar] [CrossRef]
- Tarchoun, N.; Saadaoui, W.; Mezghani, N.; Pavli, O.I.; Falleh, H.; Petropoulos, S.A. The Effects of Salt Stress on Germination, Seedling Growth and Biochemical Responses of Tunisian Squash (Cucurbita maxima Duchesne) Germplasm. Plants 2022, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- Shu, K.; Qi, Y.; Chen, F.; Meng, Y.; Luo, X.; Shuai, H.; Zhou, W.; Ding, J.; Du, J.; Liu, J.; et al. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis. Front. Plant Sci. 2017, 8, 1372. [Google Scholar] [CrossRef] [PubMed]
- Tarnawa, Á.; Kende, Z.; Sghaier, A.H.; Kovács, G.P.; Gyuricza, C.; Khaeim, H. Effect of Abiotic Stresses from Drought, Temperature, and Density on Germination and Seedling Growth of Barley (Hordeum vulgare L.). Plants 2023, 12, 1792. [Google Scholar] [CrossRef] [PubMed]
- Haj Sghaier, A.; Tarnawa, Á.; Khaeim, H.; Kovács, G.P.; Gyuricza, C.; Kende, Z. The Effects of Temperature and Water on the Seed Germination and Seedling Development of Rapeseed (Brassica napus L.). Plants 2022, 11, 2819. [Google Scholar] [CrossRef]
- Szczerba, A.; Płażek, A.; Pastuszak, J.; Kopeć, P.; Hornyák, M.; Dubert, F. Effect of Low Temperature on Germination, Growth, and Seed Yield of Four Soybean (Glycine max L.) Cultivars. Agronomy 2021, 11, 800. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, Z.; Chen, G.; Cao, A.; Wang, Q.; Yan, D.; Fang, W.; Li, Y. Detection and Identification Methods and Control Techniques for Crop Seed Diseases. Agriculture 2023, 13, 1786. [Google Scholar] [CrossRef]
- Erasto, R.; Kilasi, N.; Madege, R.R. Prevalence and Management of Phytopathogenic Seed-Borne Fungi of Maize. Seeds 2023, 2, 30–42. [Google Scholar] [CrossRef]
- Amza, J. Seed Borne Fungi; Food Spoilage, Negative Impact and Their Management: A Review. Food Sci. Qual. Manag. 2018, 28, 70–79. [Google Scholar]
- Houmani, H.; Ben Slimene Debez, I.; Turkan, I.; Mahmoudi, H.; Abdelly, C.; Koyro, H.-W.; Debez, A. Revisiting the Potential of Seed Nutri-Priming to Improve Stress Resilience and Nutritive Value of Cereals in the Context of Current Global Challenges. Agronomy 2024, 14, 1415. [Google Scholar] [CrossRef]
- Imran, M.; Mahmood, A.; Römheld, V.; Neumann, G. Nutrient Seed Priming Improves Seedling Development of Maize Exposed to Low Root Zone Temperatures during Early Growth. Eur. J. Agron. 2013, 49, 141–148. [Google Scholar] [CrossRef]
- Sharifi, R.; Mohammadi, K.; Rokhzadi, A. Effect of Seed Priming and Foliar Application with Micronutrients on Quality of Forage Corn (Zea mays). Environ. Exp. Biol. 2016, 14, 151–156. [Google Scholar] [CrossRef]
- Tamindžić, G.; Ignjatov, M.; Milošević, D.; Nikolić, Z.; Kravljanac, L.K.; Jovičić, D.; Dolijanović, Ž.; Savić, J. Seed Priming with Zinc Improves Field Performance of Maize Hybrids Grown on Calcareous Chernozem. Ital. J. Agron. 2021, 16, 1795. [Google Scholar] [CrossRef]
- Kharb, V.; Sharma, V.; Dhaliwal, S.S.; Kalia, A. Influence of Iron Seed Priming on Seed Germination, Growth and Iron Content in Rice Seedlings. J. Plant Nutr. 2023, 46, 4054–4062. [Google Scholar] [CrossRef]
- Hamzah Saleem, M.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and Strategies for Enhancing Zinc Availability in Plants for Sustainable Agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, B.; Khanif, Y.; Saleem, M. Role of Zinc in Plant Nutrition: A Review. Am. J. Exp. Agric. 2013, 3, 374–391. [Google Scholar] [CrossRef]
- Zaheer, I.E.; Ali, S.; Saleem, M.H.; Ali, M.; Riaz, M.; Javed, S.; Sehar, A.; Abbas, Z.; Rizwan, M.; El-Sheikh, M.; et al. Interactive Role of Zinc and Iron Lysine on Spinacia oleracea L. Growth, Photosynthesis and Antioxidant Capacity Irrigated with Tannery Wastewater. Physiol. Mol. Biol. Plants 2020, 26, 2435–2452. [Google Scholar] [CrossRef]
- Candan, N.; Cakmak, I.; Ozturk, L. Zinc-Biofortified Seeds Improved Seedling Growth under Zinc Deficiency and Drought Stress in Durum Wheat. J. Plant Nutr. Soil Sci. 2018, 181, 388–395. [Google Scholar] [CrossRef]
- Umair Hassan, M.; Aamer, M.; Umer Chattha, M.; Haiying, T.; Shahzad, B.; Barbanti, L.; Nawaz, M.; Rasheed, A.; Afzal, A.; Liu, Y.; et al. The Critical Role of Zinc in Plants Facing the Drought Stress. Agriculture 2020, 10, 396. [Google Scholar] [CrossRef]
- Sadeghzadeh, B. A Review of Zinc Nutrition and Plant Breeding. J. Soil Sci. Plant Nutr. 2013, 13, 905–927. [Google Scholar] [CrossRef]
- Salami, A.U.; Kenefick, D.G. Stimulation of Growth in Zinc-Deficient Corn Seedlings by the Addition of Tryptophan 1. Crop Sci. 1970, 10, 291–294. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 30, 1–17. [Google Scholar] [CrossRef]
- Cakmak, I. Tansley review no. 111: Possible Roles of Zinc in Protecting Plant Cells from Damage by Reactive Oxygen Species. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Mahmood, A.; Neumann, G.; Boelt, B. Zinc Seed Priming Improves Spinach Germination at Low Temperature. Agriculture 2021, 11, 271. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Siddique, K.H. Micronutrient Application through Seed Treatments—A Review. J. Soil Sci. Plant Nutr. 2012, 12, 125–142. [Google Scholar] [CrossRef]
- Mahmood, A.; Turgay, O.C.; Farooq, M.; Hayat, R. Seed Bio-priming with Plant Growth Promoting Rhizobacteria: A Review. FEMS Microbiol. Ecol. 2016, 92, fiw112. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Tamindžić, G.; Đorđević, V.; Tintor, B.; Milošević, D.; Ignjatov, M.; Nikolić, Z. Bio-Priming of Soybean with Bradyrhizobium japonicum and Bacillus megaterium: Strategy to Improve Seed Germination and the Initial Seedling Growth. Plants 2022, 11, 1927. [Google Scholar] [CrossRef]
- Fiodor, A.; Ajijah, N.; Dziewit, L.; Pranaw, K. Bio-priming of Seed with Plant Growth-Promoting Bacteria for Improved Germination and Seedling Growth. Front. Microbiol. 2023, 14, 1142966. [Google Scholar] [CrossRef]
- Chakraborti, S.; Bera, K.; Sadhukhan, S.; Dutta, P. Bio-Priming of Seeds: Plant Stress Management and its Underlying Cellular, Biochemical and Molecular Mechanisms. Plant Stress 2022, 3, 100052. [Google Scholar] [CrossRef]
- Singh, P.; Vaishnav, A.; Liu, H.; Xiong, C.; Singh, H.B.; Singh, B.K. Seed Bio-priming for Sustainable Agriculture and Ecosystem Restoration. Microb. Biotechnol. 2023, 16, 2212–2222. [Google Scholar] [CrossRef]
- Tamindžić, G.; Ignjatov, M.; Milošević, D.; Nikolić, Z.; Nastasić, A.; Jovičić, D.; Savić, J. Assessment of Quality and Viability of Primed Maize Seed. Ratar. Povrt. 2020, 57, 87–92. [Google Scholar] [CrossRef]
- Muhammad, I.; Kolla, M.; Volker, R.; Günter, N. Impact of Nutrient Seed Priming on Germination, Seedling Development, Nutritional Status and Grain Yield of Maize. J. Plant Nutr. 2015, 38, 1803–1821. [Google Scholar] [CrossRef]
- Choukri, M.; Abouabdillah, A.; Bouabid, R.; Abd-Elkader, O.H.; Pacioglu, O.; Boufahja, F.; Bourioug, M. Zn Application through Seed Priming Improves Productivity and Grain Nutritional Quality of Silage Corn. Saudi J. Biol. Sci. 2022, 29, 103456. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M.; Ahmad, R.; Basra, S.M.A. Seed Priming with Zinc Improves the Germination and Early Seedling Growth of Wheat. Seed Sci. Technol. 2015, 43, 262–268. [Google Scholar] [CrossRef]
- Harris, D.; Rashid, A.; Miraj, G.; Arif, M.; Yunas, M. ‘On-farm’ seed priming with zinc in chickpea and wheat in Pakistan. Plant Soil 2008, 306, 3–10. [Google Scholar] [CrossRef]
- Nowroz, F.; Alam, M.M.; Raihan, M.R.H. Zinc Priming Triggers Osmoregulation to Enhancing Growth of Soybean (Glycine max L.) under salinity. Bangladesh Agron. J. 2022, 25, 47–56. [Google Scholar] [CrossRef]
- Prom-u-thai, C.; Rerkasem, B.; Yazici, A.; Cakmak, I. Zinc Priming Promotes Seed Germination and Seedling Vigor of Rice. Z. Pflanzenernähr. Bodenk. 2012, 175, 482–488. [Google Scholar] [CrossRef]
- Veena, M.; Puthur, J.T. Seed Nutripriming with Zinc is an Apt Tool to Alleviate Malnutrition. Environ. Geochem. Health 2022, 44, 2355–2373. [Google Scholar] [CrossRef] [PubMed]
- Varier, A.; Vari, A.K.; Dadlani, M. The Subcellular Basis of Seed Priming. Current Sci. 2010, 99, 450–456. [Google Scholar]
- Pandita, V.K.; Nagarajan, S. Osmopriming of Fresh Seed and its Effect on Accelerated Ageing in Indian Tomato (Lycopersicon esculentum) Varieties. Ind. J. Agric. Sci. 2000, 70, 479–480. [Google Scholar]
- Di Girolamo, G.; Barbanti, L. Treatment Conditions and Biochemical Processes Influencing Seed Priming Effectiveness. Ital. J. Agron. 2012, 7, e25. [Google Scholar] [CrossRef]
- Gurusinghe, S.; Bradford, K.J. Galactosyl-Sucrose Oligosaccharides and Potential Longevity of Primed Seeds. Seed Sci. Res. 2001, 11, 121–133. [Google Scholar] [CrossRef]
- Cabra Cendales, T.; Rodríguez González, C.A.; Villota Cuásquer, C.P.; Tapasco Alzate, O.A.; Hernández Rodríguez, A. Bacillus effect on the germination and growth of tomato seedlings (Solanum lycopersicum L). Acta Biol. Colomb. 2017, 22, 37–44. [Google Scholar] [CrossRef]
- Yadav, R.C.; Sharma, S.K.; Varma, A.; Rajawat, M.V.S.; Khan, M.S.; Sharma, P.K.; Malviya, D.; Singh, U.B.; Rai, J.P.; Saxena, A.K. Modulation in Biofertilization and Biofortification of Wheat Crop by Inoculation of Zinc-Solubilizing Rhizobacteria. Front. Plant Sci. 2022, 13, 777771. [Google Scholar] [CrossRef]
- Yadav, R.C.; Sharma, S.K.; Varma, A.; Singh, U.B.; Kumar, A.; Bhupenchandra, I.; Rai, J.P.; Sharma, P.K.; Singh, H.V. Zinc-Solubilizing Bacillus spp. in Conjunction with Chemical Fertilizers Enhance Growth, Yield, Nutrient Content, and Zinc Biofortification in Wheat Crop. Front. Microbiol. 2023, 14, 1210938. [Google Scholar] [CrossRef]
- Vosoughian, N.; Asadbeygi, M.; Mohammadi, A.; Soudi, M.R. Green Synthesis of Zinc Oxide Nanoparticles using Novel Bacterium Strain (Bacillus subtilis NH1–8) and Their In Vitro Antibacterial and Antibiofilm Activities against Salmonella typhimurium. Microb. Pathog. 2023, 185, 106457. [Google Scholar] [CrossRef]
- Sarkhosh, S.; Kahrizi, D.; Darvishi, E.; Tourang, M.; Haghighi-Mood, S.; Vahedi, P.; Ercisli, S. Effect of Zinc Oxide Nanoparticles (ZnO-NPs) on Seed Germination Characteristics in Two Brassicaceae Family Species: Camelina sativa and Brassica napus L. J. Nanomater. 2022, 2022, 1892759. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Tamindžić, G.; Milošević, D.; Ignjatov, M.; Karačić, V.; Jakšić, S. Bio-Priming with Bacillus Isolates Suppresses Seed Infection and Improves the Germination of Garden Peas in the Presence of Fusarium Strains. J. Fungi 2024, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.; Ambrosini, A.; Passaglia, L.M.P. Plant Growth-Promoting Bacteria as Inoculants in Agricultural Soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef]
- Ocwa, A.; Ssemugenze, B.; Harsányi, E. Seed Treatment with Bacillus Bacteria Improves Maize Production: A Narrative Review. Acta Agrar. Debreceniensis 2024, 1, 105–111. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, H.; Yan, F.; Yi, K.; Zhu, Y. Molecular Regulation of Zinc Deficiency Responses in Plants. J. Plant Physiol. 2021, 261, 153419. [Google Scholar] [CrossRef] [PubMed]
- Jaques, L.B.A.; Coradi, P.C.; Rodrigues, H.E.; Dubal, I.T.P.; Padia, C.L.; Lima, R.E.; Souza, G.A.C. Post-Harvesting of Soybean Seeds: Engineering, Processes Technologies, and Seed Quality: A Review. Int. Agrophys. 2022, 36, 59–81. [Google Scholar] [CrossRef]
- Maciel, G.; Wagner, J.R.; Bartosik, R.E. Drying of Soybean Seeds and Effect on Protein Quality and Oil Extraction Efficiency by Extruding-Expelling Process. Sci. Agric. 2023, 80, e20220176. [Google Scholar] [CrossRef]
- Zahir, M.; Fogliano, V.; Capuano, E. Soybean Germination Limits the Role of Cell Wall Integrity in Controlling Protein Physicochemical Changes during Cooking and Improves Protein Digestibility. Food Res. Int. 2021, 143, 110254. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Li, M.; Guo, S.; Lv, Y. Effects of Heat Treatment on Protein Molecular Structure and In Vitro Digestion in whole Soybeans with Different Moisture Content. Food Res. Int. 2022, 155, 111115. [Google Scholar] [CrossRef]
- Dahmani, M.A.; Desrut, A.; Moumen, B.; Verdon, J.; Mermouri, L.; Kacem, M.; Coutos-Thévenot, P.; Kaid-Harche, M.; Bergès, T.; Vriet, C. Unearthing the Plant Growth-Promoting Traits of Bacillus megaterium RmBm31, an Endophytic Bacterium Isolated from Root Nodules of Retama monosperma. Front. Plant Sci. 2020, 11, 124. [Google Scholar] [CrossRef]
- Ortíz-Castro, R.; Valencia-Cantero, E.; López-Bucio, J. Plant Growth Promotion by Bacillus megaterium Involves Cytokinin Signaling. Plant Signal. Behav. 2008, 3, 263–265. [Google Scholar] [CrossRef]
- Bhatt, K.; Maheshwari, D.K. Bacillus megaterium Strain CDK25, a Novel Plant Growth Promoting Bacterium Enhances Proximate Chemical and Nutritional Composition of Capsicum annuum L. Front. Plant Sci. 2020, 11, 1147. [Google Scholar] [CrossRef]
- López-Bucio, J.; Campos-Cuevas, J.C.; Hernández-Calderón, E.; Velásquez-Becerra, C.; Farías-Rodríguez, R.; Macías-Rodríguez, L.I.; Valencia-Cantero, E. Bacillus megaterium Rhizobacteria Promote Growth and Alter Root-System Architecture through an Auxin- and Ethylene-Independent Signaling Mechanism in Arabidopsis thaliana. Mol. Plant Microbe Interact. 2007, 20, 207–217. [Google Scholar] [CrossRef]
- Bhatt, K.; Maheshwari, D.K. Zinc Solubilizing Bacteria (Bacillus megaterium) with Multifarious Plant Growth Promoting Activities Alleviates Growth in Capsicum annuum L. 3 Biotech 2020, 10, 36. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Kabiri, S.; Shariatmadari, H.; Sharifnabi, B.; Schulin, R. Zinc Nutrition Effect on the Tolerance of Wheat Genotypes to Fusarium Root-rot Disease in a Solution Culture Experiment. Soil Sci. Plant Nutr. 2010, 56, 234–243. [Google Scholar] [CrossRef]
- Awan, Z.A.; Shoaib, A.; Khan, K.A. Crosstalk of Zn in Combination with other Fertilizers Underpins Interactive Effects and Induces Resistance in Tomato Plant against Early Blight Disease. Plant Pathol. J. 2019, 35, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Savi, G.D.; Bortoluzzi, A.J.; Scussel, V.M. Antifungal Properties of Zinc-compounds against Toxigenic Fungi and Mycotoxin. Int. J. Food Sci. Technol. 2013, 48, 1834–1840. [Google Scholar] [CrossRef]
- Bastakoti, S. Role of Zinc in Management of Plant Diseases: A Review. Cogent Food Agric. 2023, 9, 2194483. [Google Scholar] [CrossRef]
- Machado, P.P.; Steiner, F.; Zuffo, A.M.; Machado, R.A. Could the Supply of Boron and Zinc Improve Resistance of Potato to Early Blight? Potato Res. 2018, 61, 169–182. [Google Scholar] [CrossRef]
- Martos, S.; Gallego, B.; Cabot, C.; Llugany, M.; Barceló, J.; Poschenrieder, C. Zinc Triggers Signalling Mechanisms and Defence Responses Promoting Resistance to Alternaria brassicicola in Arabidopsis thaliana. Plant Sci. 2016, 249, 13–24. [Google Scholar] [CrossRef]
- Zalila-Kolsi, I.; Mahmoud, A.B.; Ali, H.; Sellami, S.; Nasfi, Z.; Tounsi, S.; Jamoussi, K. Antagonist Effects of Bacillus spp. Strains Against Fusarium graminearum for Protection of Durum Wheat (Triticum turgidum L. subsp. durum). Microbiol. Res. 2016, 192, 148–158. [Google Scholar] [CrossRef]
- Karačić, V.; Miljaković, D.; Marinković, J.; Ignjatov, M.; Milošević, D.; Tamindžić, G.; Ivanović, M. Bacillus Species: Excellent Biocontrol Agents against Tomato Diseases. Microorganisms 2024, 12, 457. [Google Scholar] [CrossRef]
- Win, T.T.; Bo, B.; Malec, P.; Fu, P. The Effect of a Consortium of Penicillium sp. and Bacillus spp. in Suppressing Banana Fungal Diseases Caused by Fusarium sp. and Alternaria sp. J. Appl. Microbiol. 2021, 131, 1890–1908. [Google Scholar] [CrossRef]
- Ramírez-Pool, J.A.; Calderón-Pérez, B.; Ruiz-Medrano, R.; Ortiz-Castro, R.; Xoconostle-Cazares, B. Bacillus Strains as Effective Biocontrol Agents Against Phytopathogenic Bacteria and Promoters of Plant Growth. Microb. Ecol. 2024, 87, 76. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Biocontrol of Plant Diseases by Bacillus spp. Physiol. Mol. Plant Pathol. 2023, 126, 102048. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Iturralde, E.T.; Stocco, M.C.; Faura, A.; Mónaco, C.I.; Cordo, C.; Pérez-Giménez, J.; Lodeiro, A.R. Coinoculation of Soybean Plants with Bradyrhizobium japonicum and Trichoderma harzianum: Coexistence of both Microbes and Relief of Nitrate Inhibition of Nodulation. Biotechnol. Rep. 2020, 26, e00461. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Jabborova, D.; Wirth, S.J.; Alam, P.; Alyemeni, M.N.; Ahmad, P. Interactive Effects of Nutrients and Bradyrhizobium japonicum on the Growth and Root Architecture of Soybean (Glycine max L.). Front. Microbiol. 2018, 9, 1000. [Google Scholar] [CrossRef] [PubMed]
- Aboutalebian, M.; Rah Chamandi, H.; Ahmadvand, G.; Jahedi, A. Effects of On-Farm Seed Priming and Sowing Date on Germination Properties and Some Physiological Growth Indices of three Soybean Cultivars (Glycine max L.) in Hamedan. Iran. J. Field Crop Sci. 2013, 43, 715–728. [Google Scholar] [CrossRef]
- ISTA. International Rules for Seed Testing 2022; International Seed Testing Association: Wallisellen, Switzerland, 2022. [Google Scholar]
- Hampton, J.G.; TeKrony, D.M. (Eds.) Handbook of Vigour Test Methods; International Seed Testing Association: Zurich, Switzerland, 1995. [Google Scholar]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Tamindžić, G.; Ignjatov, M.; Miljaković, D.; Červenski, J.; Milošević, D.; Nikolić, Z.; Vasiljević, S. Seed Priming Treatments to Improve Heat Stress Tolerance of Garden Pea (Pisum sativum L.). Agriculture 2023, 13, 439. [Google Scholar] [CrossRef]
- Tamindžić, G.; Azizbekian, S.; Miljaković, D.; Turan, J.; Nikolić, Z.; Ignjatov, M.; Milošević, D.; Vasiljević, S. Comprehensive Metal-Based Nanopriming for Improving Seed Germination and Initial Growth of Field Pea (Pisum sativum L.). Agronomy 2023, 13, 2932. [Google Scholar] [CrossRef]
- Mathur, S.B.; Kongsdal, O. Common Laboratory Seed Health Testing Methods for Detecting Fungi; Kandrups Bogtrkkeri Publication: Copenhagen, Denmark, 2003. [Google Scholar]
- Burgess, L.W.; Summerell, B.A.; Bullock, S.; Gott, K.P.; Backhouse, D. Laboratory Manual for Fusarium Research; University of Sydney and Royal Botanic Gardens: Sydney, Australia, 1994. [Google Scholar]
(a) Germination Test | |||
Parameters | Nutrient Priming (NP) | Biopriming (BP) | NP × BP |
Seed Germination | 0.0002 *** | 0.0000 *** | 0.1223 * |
Abnormal Seedlings | 0.1480 * | 0.0000 *** | 0.0004 *** |
Shoot Length | 0.0000 *** | 0.0000 *** | 0.0001 *** |
Root Length | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Fresh Shoot Weight | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Fresh Root Weight | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Dry Shoot Weight | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Dry Root Weight | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Seedling Vigor Index | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Alternaria spp. | 0.0000 *** | 0.0000 *** | 0.0009 *** |
Fusarium spp. | 0.0000 *** | 0.0000 *** | 0.0891 ns |
(b) Accelerated Aging Test | |||
Parameters | Nutrient Priming (NP) | Biopriming (BP) | NP × BP |
Seed Germination | 0.0003 *** | 0.0000 *** | 0.0332 * |
Abnormal Seedlings | 0.0175 * | 0.3267 * | 0.0016 ** |
Shoot Length | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Root Length | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Fresh Shoot Weight | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Fresh Root Weight | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Dry Shoot Weight | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Dry Root Weight | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Seedling Vigor Index | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Alternaria spp. | 0.0005 *** | 0.0000 *** | 0.7627 ns |
Fusarium spp. | 0.0000 *** | 0.0000 *** | 0.8978 ns |
Nutrient Priming | Biopriming | Seed Germination (%) | Abnormal Seedlings (%) | Shoot Length (mm) | Root Length (mm) |
---|---|---|---|---|---|
Control | Control | 84.75 ± 1.1 b | 9.50 ± 0.29 a | 116.5 ± 0.46 c | 131.1 ± 0.72 c |
Bac | 91.00 ± 0.65 a | 6.25 ± 0.65 bc | 137.4 ± 0.38 ab | 135.5 ± 0.54 b | |
Bj | 86.50 ± 0.91 b | 7.50 ± 0.25 b | 138.4 ± 1.00 a | 133.0 ± 1.13 c | |
Bac + Bj | 90.75 ± 1.03 a | 5.00 ± 0.58 c | 136.0 ± 0.61 b | 151.0 ± 1.02 a | |
Hydropriming | Control | 86.25 ± 0.48 c | 6.75 ± 0.48 a | 123.0 ± 1.08 c | 132.0 ± 0.35 c |
Bac | 92.00 ± 0.75 a | 6.75 ± 0.48 a | 141.3 ± 0.20 b | 157.0 ± 0.66 a | |
Bj | 87.75 ± 0.71 bc | 7.25 ± 0.48 a | 145.0 ± 1.69 a | 155.1 ± 0.94 b | |
Bac + Bj | 90.00 ± 1.29 ab | 7.00 ± 0.41 a | 147.8 ± 0.59 a | 149.1 ± 0.52 b | |
Zn priming | Control | 87.50 ± 0.96 c | 7.00 ± 0.41 a | 126.1 ± 1.04 b | 135.4 ± 1.25 c |
Bac | 94.25 ± 0.41 a | 6.25 ± 0.25 bc | 152.9 ± 0.64 a | 163.5 ± 0.72 a | |
Bj | 92.00 ± 1.03 ab | 7.75 ± 0.63 ab | 149.7 ± 0.55 a | 152.9 ± 0.61 b | |
Bac + Bj | 90.74 ± 0.85 b | 4.75 ± 0.48 c | 151.8 ± 1.51 a | 151.6 ± 0.52 b |
Nutrient Priming | Biopriming | Fresh Shoot Weight (g) | Fresh Root Weight (g) | Dry Shoot Weight (g) | Dry Root Weight (g) | Seedling Vigor Index |
---|---|---|---|---|---|---|
Control | Control | 8.24 ± 0.055 d | 1.30 ± 0.006 d | 0.736 ± 0.004 c | 0.125 ± 0.001 d | 2098.8 ± 31.6 d |
Bac | 9.72 ± 0.019 c | 1.57 ± 0.013 c | 0.965 ± 0.004 a | 0.151 ± 0.001 c | 2481.1 ± 18.8 b | |
Bj | 10.15 ± 0.018 a | 1.77 ± 0.014 a | 0.969 ± 0.003 a | 0.178 ± 0.000 a | 2347.4 ± 36.3 c | |
Bac + Bj | 9.99 ± 0.039 b | 1.62 ± 0.013 b | 0.937 ± 0.001 b | 0.154 ± 0.000 b | 2604.9 ± 42.3 a | |
Hydropriming | Control | 9.79 ± 0.065 b | 1.89 ± 0.022 c | 0.981 ± 0.010 a | 0.163 ± 0.001 d | 2199.5 ± 21.2 c |
Bac | 9.88 ± 0.024 b | 1.83 ± 0.030 c | 0.981 ± 0.011 a | 0.173 ± 0.001 c | 2743.9 ± 22.3 a | |
Bj | 10.32 ± 0.028 a | 2.30 ± 0.016 a | 1.004 ± 0.003 a | 0.182 ± 0.002 a | 2633.6 ± 33.5 b | |
Bac + Bj | 10.21 ± 0.121 a | 1.98 ± 0.023 b | 1.007 ± 0.010 a | 0.177 ± 0.001 b | 2671.9 ± 38.1 b | |
Zn priming | Control | 10.13 ± 0.180 b | 2.06 ± 0.028 c | 1.015 ± 0.017 c | 0.197 ± 0.002 d | 2287.2 ± 12.0 c |
Bac | 10.33 ± 0.092 b | 2.16 ± 0.019 c | 1.082 ± 0.017 b | 0.206 ± 0.002 c | 2982.2 ± 19.1 a | |
Bj | 11.05 ± 0.049 a | 2.50 ± 0.044 a | 1.157 ± 0.003 a | 0.241 ± 0.002 a | 2783.8 ± 31.3 b | |
Bac + Bj | 11.07 ± 0.064 a | 2.36 ± 0.045 b | 1.169 ± 0.008 a | 0.230 ± 0.002 b | 2753.5 ± 34.2 b |
Nutrient Priming | Biopriming | Seed Germination (%) | Abnormal Seedlings (%) | Shoot Length (mm) | Root Length (mm) |
---|---|---|---|---|---|
Control | Control | 79.00 ± 0.41 b | 12.25 ± 0.48 b | 110.9 ± 0.31 d | 74.5 ± 1.24 d |
Bac | 83.50 ± 0.48 a | 10.00 ± 0.48 c | 148.6 ± 0.24 b | 175.5 ± 0.24 a | |
Bj | 78.75 ± 0.29 b | 16.25 ± 0.41 a | 137.1 ± 0.73 c | 142.1 ± 0.65 b | |
Bac + Bj | 84.75 ± 0.48 a | 12.50 ± 0.50 b | 150.5 ± 0.20 a | 133.6 ± 0.24 c | |
Hydropriming | Control | 79.50 ± 0.65 a | 12.25 ± 1.03 a | 93.25 ± 0.43 c | 80.0 ± 0.20 d |
Bac | 81.00 ± 0.29 a | 12.25 ± 0.41 a | 130.63 ± 0.41 a | 132.4 ± 0.38 a | |
Bj | 76.50 ± 0.71 b | 11.00 ± 0.63 a | 119.0 ± 0.24 b | 102.6 ± 0.43 c | |
Bac + Bj | 81.00 ± 0.71 a | 10.25 ± 048 a | 119.6 ± 0.83 b | 104.5 ± 0.74 b | |
Zn priming | Control | 80.25 ± 0.85 b | 13.25 ± 1.80 a | 107.6 ± 0.24 c | 91.8 ± 0.32 b |
Bac | 81.50 ± 0.65 ab | 14.50 ± 1.44 a | 140.8 ± 0.32 b | 134.4 ± 0.78 a | |
Bj | 77.50 ± 0.65 c | 12.50 ± 1.26 a | 103.8 ± 0.32 d | 73.8 ± 0.24 c | |
Bac + Bj | 84.00 ± 1.08 a | 13.25 ± 0.41 a | 148.3 ± 0.48 a | 133.3 ± 1.16 a |
Nutrient Priming | Biopriming | Fresh Shoot Weight (g) | Fresh Root Weight (g) | Dry Shoot Weight (g) | Dry Root Weight (g) | Seedling Vigor Index |
---|---|---|---|---|---|---|
Control | Control | 9.05 ± 0.201 b | 1.13 ± 0.051 d | 0.926 ± 0.028 a | 0.125 ± 0.003 d | 1464.5 ± 15.6 d |
Bac | 8.99 ± 0.047 b | 2.33 ± 0.009 a | 0.847 ± 0.005 b | 0.224 ± 0.001 a | 2709.2 ± 15.4 a | |
Bj | 8.94 ± 0.027 b | 1.88 ± 0.009 b | 0.853 ± 0.002 b | 0.188 ± 0.001 b | 2199.1 ± 14.4 c | |
Bac + Bj | 9.80 ± 0.010 a | 1.72 ± 0.010 c | 0.944 ± 0.002 a | 0.168 ± 0.001 c | 2405.8 ± 13.5 b | |
Hydropriming | Control | 9.84 ± 0.013 b | 1.27 ± 0.009 c | 1.018 ± 0.014 a | 1.130 ± 0.001 d | 1377.4 ± 12.8 d |
Bac | 9.78 ± 0.013 b | 1.70 ± 0.009 a | 0.976 ± 0.006 b | 0.166 ± 0.001 b | 2130.4 ± 6.2 a | |
Bj | 9.98 ± 0.013 a | 1.41 ± 0.017 b | 1.019 ± 0.003 a | 0.145 ± 0.001 c | 1695.4 ± 21.4 c | |
Bac + Bj | 10.08 ± 0.033 a | 1.69 ± 0.058 b | 1.035 ± 0.018 a | 0.177 ± 0.001 a | 1813.4 ± 14.5 b | |
Zn priming | Control | 9.38 ± 0.093 b | 0.983 ± 0–005 c | 0.912 ± 0.004 c | 0.151 ± 0.002 b | 1600.0 ± 18.6 c |
Bac | 9.58 ± 0.033 b | 1.763 ± 0.006 b | 0.952 ± 0.004 b | 0.175 ± 0.001 a | 2242.2 ± 13.6 b | |
Bj | 10.58 ± 0.145 a | 1.788 ± 0.014 ab | 1.096 ± 0.011 a | 0.171 ± 0.001 a | 1375.7 ± 16.5 d | |
Bac + Bj | 9.01 ± 0.011 c | 1.813 ± 0.011 a | 0.880 ± 0.001 d | 0.175 ± 0.000 a | 2364.7 ± 33.4 a |
(a) Germination Test | |||||||||
SG | AS | SL | RL | FSW | FRW | DSW | DRW | SVI | |
SG | 1.00 | −0.39 ** | 0.69 *** | 0.69 *** | 0.49 *** | 0.37 ** | 0.54 *** | 0.44 ** | 0.87 *** |
AS | 1.00 | −0.40 ** | −0.36 * | −0.46 *** | −0.24 ns | −0.47 *** | −0.26 ns | −0.42 ** | |
SL | 1.00 | 0.80 *** | 0.76 *** | 0.69 *** | 0.77 *** | 0.70 *** | 0.92 *** | ||
RL | 1.00 | 0.51 *** | 0.57 *** | 0.55 *** | 0.52 *** | 0.92 *** | |||
FSW | 1.00 | 0.87 *** | 0.93 *** | 0.88 *** | 0.64 *** | ||||
FRW | 1.000 | 0.88 *** | 0.92 *** | 0.61 *** | |||||
DSW | 1.00 | 0.93 *** | 0.69 *** | ||||||
DRW | 1.00 | 0.62 *** | |||||||
SVI | 1.00 | ||||||||
(b) Accelerated Aging Test | |||||||||
SG | AS | SL | RL | FSW | FRW | DSW | DRW | SVI | |
SG | 1.00 | −0.08 ns | 0.66 *** | 0.59 *** | −0.32 * | 0.40 ** | −0.45 *** | 0.42 ** | 0.72 *** |
AS | 1.00 | 0.09 ns | 0.05 ns | −0.25 ns | −0.05 ns | −0.21 ns | −0.02 ns | 0.04 ns | |
SL | 1.00 | 0.90 *** | −0.45 *** | 0.70 *** | −0.61 *** | 0.69 *** | 0.96 *** | ||
RL | 1.00 | −0.48 *** | 0.78 *** | −0.65 *** | 0.82 *** | 0.97 *** | |||
FSW | 1.00 | −0.10 ns | 0.92 *** | −0.23 *** | −0.48 *** | ||||
FRW | 1.00 | −0.25 ns | 0.90 *** | 0.76 *** | |||||
DSW | 1.00 | −0.40 ** | −0.65 *** | ||||||
DRW | 1.00 | 0.77 *** | |||||||
SVI | 1.00 |
Nutrient Priming | Biopriming | Alternaria spp. (%) | Fusarium spp. (%) |
---|---|---|---|
Control | Control | 12.5 ± 0.3 a | 8.5 ± 0.3 a |
Bac | 3.5 ± 0.3 c | 2.5 ± 0.3 b | |
Bj | 11.0 ± 0.4 b | 9.0 ± 0.4 a | |
Bac + Bj | 5.0 ± 0.4 c | 2.5 ± 0.3 b | |
Hydropriming | Control | 12.0 ± 0.6 a | 9.0 ± 0.4 a |
Bac | 3.0 ± 0.4 c | 2.0 ± 0.4 b | |
Bj | 10.0 ± 0.4 b | 8.0 ± 0.6 a | |
Bac + Bj | 4.0 ± 0.4 c | 2.0 ± 0.6 b | |
Zn priming | Control | 7.0 ± 0.4 a | 5.0 ± 0.0 a |
Bac | 2.0 ± 0.4 b | 1.0 ± 0.4 b | |
Bj | 6.0 ± 0.4 a | 4.0 ± 0.4 a | |
Bac + Bj | 2.0 ± 0.0 b | 0.75 ± 0.5 b |
Nutrient Priming | Biopriming | Alternaria spp. (%) | Fusarium spp. (%) |
---|---|---|---|
Control | Control | 4.0 ± 0.4 a | 4.0 ± 0.4 a |
Bac | 3.0 ± 0.4 ab | 2.5 ± 0.7 b | |
Bj | 3.75 ± 0.5 ab | 1.5 ± 0.3 b | |
Bac + Bj | 2.0 ± 0.4 b | 2.0 ± 0.4 b | |
Hydropriming | Control | 4.0 ± 0.4 a | 3.0 ± 0.4 a |
Bac | 2.0 ± 0.4 b | 1.0 ± 0.4 b | |
Bj | 4.0 ± 0.4 a | 1.75 ± 0.3 ab | |
Bac + Bj | 2.0 ± 0.4 b | 1.25 ± 0.3 b | |
Zn priming | Control | 3.0 ± 0.4 a | 2.0 ± 0.4 a |
Bac | 1.5 ± 0.3 ab | 0.75 ± 0.3 ab | |
Bj | 2.0 ± 0.4 ab | 1.0 ± 0.4 ab | |
Bac + Bj | 1.0 ± 0.4 b | 0.5 ± 0.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamindžić, G.; Miljaković, D.; Ignjatov, M.; Miladinović, J.; Đorđević, V.; Milošević, D.; Jovičić, D.; Vlajić, S.; Budakov, D.; Grahovac, M. Impact of Simultaneous Nutrient Priming and Biopriming on Soybean Seed Quality and Health. Plants 2024, 13, 2557. https://doi.org/10.3390/plants13182557
Tamindžić G, Miljaković D, Ignjatov M, Miladinović J, Đorđević V, Milošević D, Jovičić D, Vlajić S, Budakov D, Grahovac M. Impact of Simultaneous Nutrient Priming and Biopriming on Soybean Seed Quality and Health. Plants. 2024; 13(18):2557. https://doi.org/10.3390/plants13182557
Chicago/Turabian StyleTamindžić, Gordana, Dragana Miljaković, Maja Ignjatov, Jegor Miladinović, Vuk Đorđević, Dragana Milošević, Dušica Jovičić, Slobodan Vlajić, Dragana Budakov, and Mila Grahovac. 2024. "Impact of Simultaneous Nutrient Priming and Biopriming on Soybean Seed Quality and Health" Plants 13, no. 18: 2557. https://doi.org/10.3390/plants13182557
APA StyleTamindžić, G., Miljaković, D., Ignjatov, M., Miladinović, J., Đorđević, V., Milošević, D., Jovičić, D., Vlajić, S., Budakov, D., & Grahovac, M. (2024). Impact of Simultaneous Nutrient Priming and Biopriming on Soybean Seed Quality and Health. Plants, 13(18), 2557. https://doi.org/10.3390/plants13182557