Effects of Rotary and Deep Tillage on Soil Environment and Melon Root Development
Abstract
:1. Introduction
2. Results
2.1. Impact of Tillage Practices on Soil Chemical Properties
2.2. Impact of Tillage Practices on Soil Enzyme Activity
2.3. Soil Microbial Diversity under Different Tillage Practices
2.4. Redundancy Analysis of Soil Microbial Communities and Soil Environmental Factors
2.5. Effect of Different Tillage Practices on Melon Root Development
2.6. Effect of Different Tillage Practices on Melon Yield
3. Discussion
4. Materials and Methods
4.1. Experimental Fields and Plants
4.2. Determination of Soil-Related Parameters
4.3. Root Morphology and Yield Determination
4.4. Data Analysis and Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.L. Melon and Fruit Plant Resources in Xinjiang. Jiangxi For. Sci. Technol. 1996, 1, 45. [Google Scholar] [CrossRef]
- Department of Science and Technology Education; Ministry of Agriculture and Rural Development. Frontiers of World Agricultural Science and Technology; China Agricultural Press: Beijing, China, 2019. [Google Scholar]
- Kong, L.A. Maize residues, soil quality, and wheat growth in China: A review. Agron. Sustain. Dev. 2014, 34, 405–416. [Google Scholar] [CrossRef]
- Xomphoutheb, T.; Jiao, S.; Guo, X.; Mabagala, F.S.; Sui, B.; Wang, H.; Zhao, L.; Zhao, X. The effect of tillage systems on phosphorus distribution and forms in rhizosphere and non-rhizosphere soil under maize (Zea mays L.) in Northeast China. Sci. Rep. 2020, 10, 6574. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Lian, H.; Wang, Z.; Jiang, Y.; Li, C.; Sui, P.; Qi, H. Effects of Deep and Shallow Tillage with Straw Incorporation on Soil Organic Carbon, Total Nitrogen and Enzyme Activities in Northeast China. Sustainability 2020, 12, 8679. [Google Scholar] [CrossRef]
- Shen, F.; Zhu, C.; Jiang, G.; Yang, J.; Zhu, X.; Wang, S.; Wang, R.; Liu, F.; Jie, X.; Liu, S. Differentiation in Nitrogen Transformations and Crop Yield as Affected by Tillage Modes in a Fluvo-Aquic Soil. Plants 2023, 12, 783. [Google Scholar] [CrossRef]
- Dearing, J.A.; Zhang, K.; Cao, W.; Dawson, T.P.; McKay, D.A.; Sillitoe, P.; Treves, R.; Yang, X. Who determines the trade-offs between agricultural production and environmental quality? An evolutionary perspective from rural eastern China. Int. J. Agric. Sustain. 2019, 17, 347–366. [Google Scholar] [CrossRef]
- Lu, X.L.; Lu, X.N. Tillage and crop residue effects on the energy consumption, input-output costs and greenhouse gas emissions of maize crops. Nutr. Cycl. Agroecosys. 2017, 108, 323–337. [Google Scholar] [CrossRef]
- Zhang, H.L.; Lal, R.; Zhao, X.; Xue, J.F.; Chen, F. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China. Adv. Agron. 2014, 124, 1–36. [Google Scholar] [CrossRef]
- Rodrigues, M.; Pavinato, P.S.; Withers, P.J.; Teles, A.P.; Herrera, W.F. Legacy phosphorus and no tillage agriculture in 9.oxisols of the Brazilian savanna. Sci. Total Environ. 2016, 542 Pt B, 1050–1061. [Google Scholar] [CrossRef]
- Hernanz, J.L.; VSánchez-Girón Navarrete, L.; Sánchez, M.J. Long-term (1983–2012) assessment of three tillage systems on the energy use efficiency, crop production and seeding emergence in a rain fed cereal monoculture in semiarid conditions in central Spain. Field Crops Res. 2014, 166, 26–37. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, S.; Zhao, J.; Zhang, K.; Jiang, J.; Guan, Z.; Chen, S.; Chen, F.; Fang, W. Deep tillage combined with biofertilizer following soil fumigation improved chrysanthemum growth by regulating the soil microbiome. Microbiologyopen 2020, 9, e1045. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wu, Y.; Li, Z.; Sha, X. Potential impact of active substances in non-thermal discharge plasma process on microbial community structures and enzymatic activities in uncontaminated soil. J. Hazard. Mater. 2020, 393, 122489. [Google Scholar] [CrossRef] [PubMed]
- Santini, G.; Memoli, V.; Vitale, E.; Di Natale, G.; Trifuoggi, M.; Maisto, G.; Santorufo, L. Metal Release from Microplastics to Soil: Effects on Soil Enzymatic Activities and Spinach Production. Int. J. Environ. Res. Public Health 2023, 20, 3106. [Google Scholar] [CrossRef] [PubMed]
- Fonturbel, M.T.; Barreiro, A.; Vega, J.A.; Martin, A.; Jimenez, E.; Carballas, T.; Fernandez, C.; Diaz-Ravina, M. Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities. Geoderma 2012, 191, 51–60. [Google Scholar] [CrossRef]
- Navarro-Noya, Y.E.; Gómez-Acata, S.; Montoya-Ciriaco, N.; Rojas-Valdez, A.; Dendooven, L. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem. 2013, 65, 86–95. [Google Scholar] [CrossRef]
- Essel, E.; Xie, J.; Deng, C.; Zheng, K.W.; Jin, B.S.; Ji, C.X.; Jian, H.C.; Jeffrey, A.; Li, L.L. Bacterial and fungal diversity in rhizosphere and bulk soil under different long-term tillage and cereal/legume rotation. Soil Tillage Res. 2019, 194, 104302. [Google Scholar] [CrossRef]
- Jat, H.S.; Choudhary, M.; Datta, A.; Yadav, A.K.; Meena, M.D.; Devi, R.; Gathala, M.K.; Jat, M.L.; McDonald, A.; Sharma, P.C. Temporal changes in soil microbial properties and nutrient dynamics under climate smart agriculture practices. Soil Tillage Res. 2020, 199, 104595. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Li, T.; Zhao, D.; Liao, Y. Tillage practices with different soil disturbance shape the rhizosphere bacterial community throughout crop growth. Soil Tillage Res. 2019, 197, 104501. [Google Scholar] [CrossRef]
- Sengupta, A.; Dick, W.A. Bacterial Community Diversity in Soil Under two Tillage Practices as Determined by Pyrosequencing. Microb. Ecol. 2015, 70, 853–859. [Google Scholar] [CrossRef]
- Kolb, E.; Legué, V.; Bogeat-Triboulot, M.B. Physical root-soil interactions. Phys. Biol. 2017, 14, 065004. [Google Scholar] [CrossRef]
- Ötvös, K.; Benková, E. Spatiotemporal mechanisms of root branching. Curr. Opin. Genet. Dev. 2017, 45, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 2004, 162, 9–24. [Google Scholar] [CrossRef]
- Zheng, C.; Bochmann, H.; Liu, Z.; Kant, J.; Schrey, S.D.; Wojciechowski, T.; Postma, J.A. Plant root plasticity during drought and recovery: What do we know and where to go? Front. Plant Sci. 2023, 14, 1084355. [Google Scholar] [CrossRef]
- Kramer-Walter, K.R.; Bellingham, P.J.; Millar, T.R.; Smissen, R.D.; Richardson, S.J.; Laughlin, D.C. Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 2016, 104, 1299–1310. [Google Scholar] [CrossRef]
- Piccoli, I.; Lazzaro, B.; Furlan, L.; Berti, A.; Morari, F. Examining crop root apparatus traits in a maize-soybean-winter wheat rotation under conservation agriculture management. Eur. J. Agron. 2021, 122, 126171. [Google Scholar] [CrossRef]
- Li, H.; Mollier, A.; Ziadi, N.; Shi, Y.; Parent, L.-É.; Morel, C. Soybean root traits after 24 years of different soil tillage and mineral phosphorus fertilization management. Soil Tillage Res. 2017, 165, 258–267. [Google Scholar] [CrossRef]
- Yin, L.; Lv, Q.; Wang, P.; Xie, H. Changes in the degree of lateral root trait plasticity and trade-offs of maize under long-term no tillage. Front. Plant Sci. 2024, 15, 1345189. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Rangappa, K.; Basavaraj, S.; Dey, U.; Haloi, M.; Layek, J.; Idapuganti, R.G.; Lal, R.; Deshmukh, N.A.; Yadav, G.S.; et al. Conservation tillage and nutrient management practices in summer rice (Oryza sativa L.) favoured root growth and phenotypic plasticity of succeeding winter pea (Pisum sativum L.) under eastern Himalayas, India. Heliyon 2021, 7, e07078. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wang, H.; Wen, P.F.; Wang, S.L.; Li, J.; Wang, R.; Wang, X.L. A suitable rotational conservation tillage system ameliorates soil physical properties and wheat yield: An 11-year in-situ study in a semi-arid agroecosystem. Soil Tillage Res. 2020, 199, 104600. [Google Scholar] [CrossRef]
- Wang, X.; Shen, J.; Hedden, P.; Phillips, A.L.; Thomas, S.G.; Ge, Y.; Ashton, R.W.; Whalley, W.R. Wheat growth responses to soil mechanical impedance are dependent on phosphorus supply. Soil Tillage Res. 2021, 205, 104754. [Google Scholar] [CrossRef]
- Balkcom, K.S.; Reeves, D.W.; Kemble, J.M.; Dawkins, R.A.; Raper, R.L. Tillage Requirements of Sweet Corn, Field Pea, and Watermelon Following Stocker Cattle Grazing. J. Sustain. Agr. 2010, 34, 169–182. [Google Scholar] [CrossRef]
- Leskovar, D.; Othman, Y.; Dong, X. Strip tillage improves soil biological activity, fruit yield and sugar content of triploid watermelon. Soil Tillage Res. 2016, 163, 266–273. [Google Scholar] [CrossRef]
- Wang, Y.K.; Zhang, Z.B.; Jiang, F.H.; Guo, Z.C.; Peng, X.H. Evaluating soil physical quality indicators of a Vertisol as affected by different tillage practices under wheat-maize system in the North China Plain. Soil Tillage Res. 2021, 209, 104970. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, M.; De Smet, I.; Ding, Z. Designer crops: Optimal root system architecture for nutrient acquisition. Trends Biotechnol. 2014, 32, 597–598. [Google Scholar] [CrossRef]
- de la Fuente Cantó, C.; Simonin, M.; King, E.; Moulin, L.; Bennett, M.J.; Castrillo, G.; Laplaze, L. An extended root phenotype: The rhizosphere, its formation and impacts on plant fitness. Plant J. 2020, 103, 951–964. [Google Scholar] [CrossRef]
- Ward, J.T.; Lahner, B.; Yakubova, E.; Salt, D.E.; Raghothama, K.G. The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiol. 2008, 147, 1181–1191. [Google Scholar] [CrossRef]
- Lin, D.L.; Yao, H.Y.; Jia, L.H.; Tan, J.F.; Xu, Z.H.; Zheng, W.M.; Xue, H.W. Phospholipase D-derived phosphatidic acid promotes root hair development under phosphorus deficiency by suppressing vacuolar degradation of PIN-FORMED2. New Phytol. 2020, 226, 142–155. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Schjønning, P.; Rasmussen, K.J. Non-inversion tillage effects on soil mechanical properties of a humid sandy loam. Soil Tillage Res. 2001, 62, 1–14. [Google Scholar] [CrossRef]
- Birkás, M.; Jolánkai, M.; Gyuricza, C.; Percze, A. Tillage effects on compaction, earthworms and other soil quality indicators in Hungary. Soil Tillage Res. 2004, 78, 185–196. [Google Scholar] [CrossRef]
- Roldán, A.; Salinas-García, J.R.; Alguacil, M.M.; Caravaca, F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl. Soil Ecol. 2005, 30, 11–20. [Google Scholar] [CrossRef]
- He, J.; Yu, Z.; Shi, Y. Effects of strip rotary tillage with subsoiling on soil enzyme activity, soil fertility, and wheat yield. Plant Soil Environ. 2019, 65, 449–455. [Google Scholar] [CrossRef]
- Cookson, W.R.; Murphy, D.V.; Roper, M.M. Characterizing the relationships between soil organic matter components and microbial function and composition along a tillage disturbance gradient. Soil Biol. Biochem. 2008, 40, 763–777. [Google Scholar] [CrossRef]
- Luo, X.; Fu, X.; Yang, Y.; Cai, P.; Peng, S.; Chen, W.; Huang, Q. Microbial communities play important roles in modulating paddy soil fertility. Sci. Rep. 2016, 6, 20326. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.; Semenov, A.M. In search of biological indicators for soil health and disease suppression. Appl. Soil Ecol. 2000, 15, 13–24. [Google Scholar] [CrossRef]
- Chen, J.; Nan, J.; Xu, D.; Mo, L.; Bao, Y. Response differences between soil fungal and bacterial communities under opencast coal mining disturbance conditions. Catena 2020, 194, 104779. [Google Scholar] [CrossRef]
- Wang, L.; Shiwen, W.; Chen, W.; Li, H.; Deng, X.-P. Physiological mechanisms contributing to increased water-use efficiency in winter wheat under organic fertilization. PLoS ONE 2017, 12, e0180205. [Google Scholar] [CrossRef]
- Hu, X.J.; Liu, J.J.; Wei, D.; Zhu, P.; Cui, X.A.; Zhou, B.K.; Chen, X.L.; Jin, J.; Liu, X.B.; Wang, G.H. Soil bacterial communities under different long-term fertilization regimes in three locations across the black soil region of northeast China. Pedosphere 2018, 28, 751–763. [Google Scholar] [CrossRef]
- Luo, J.; Tillman, R.W.; White, R.E.; Ball, P.R. Variation in denitrification activity with soil depth under pasture. Soil Biol. Biochem. 1998, 30, 897–903. [Google Scholar] [CrossRef]
- Zhu, S.; Lei, Y.; Wang, C.; Wei, Y.; Wang, C.; Sun, Y. Patterns of yeast diversity distribution and its drivers in rhizosphere soil of Hami melon orchards in different regions of Xinjiang. BMC Microbiol. 2021, 21, 170. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; Chinese Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Ding, H.; Ali, A.; Cheng, Z. Dynamics of a Soil Fungal Community in a Three-Year Green Garlic/Cucumber Crop Rotation System in Northwest China. Sustainability 2018, 10, 1391. [Google Scholar] [CrossRef]
- Akhtar, K.; Weiyu, W.; Guangxin, R.; Ahmad, K.; Yongzhong, F.; Gaih, Y. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Tillage Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, X.; Deng, S.; Dong, X.; Song, A.; Yao, J.; Fang, W.; Chen, F. The effects of fungicide, soil fumigant, bio-organic fertilizer and their combined application on chrysanthemum Fusarium wilt controlling, soil enzyme activities and microbial properties. Molecules 2016, 21, 526. [Google Scholar] [CrossRef]
- Xue, D.; Wang, Y.; Sun, H.; Fu, L.; Zhu, L.; Liu, J.; Zhi, Z.; He, J.; Wang, W.; Wu, C. Effects of Soil Conditioner (Volcanic Ash) on Yield Quality and Rhizosphere Soil Characteristics of Melon. Plants 2024, 13, 1787. [Google Scholar] [CrossRef]
Soil Layer (cm) | Tillage Modes | pH | TP (g/kg) | TK (g/kg) | TN (g/kg) | AP (mg/kg) | AK (mg/kg) |
---|---|---|---|---|---|---|---|
0–10 | RT | 7.54 ± 0.18 a | 0.53 ± 0.02 b | 11.86 ± 0.82 b | 0.79 ± 0.06 b | 39.17 ± 1.31 b | 317.86 ± 1.21 b |
DT | 6.49 ± 0.12 b | 0.97 ± 0.04 a | 14.27 ± 0.60 a | 0.92 ± 0.03 a | 50.01 ± 1.14 a | 388.07 ± 2.74 a | |
10–20 | RT | 6.46 ± 0.17 b | 0.47 ± 0.04 b | 13.07 ± 0.44 a | 0.77 ± 0.04 a | 30.35 ± 1.42 b | 334.61 ± 0.66 a |
DT | 6.87 ± 0.16 a | 1.18 ± 0.10 a | 12.84 ± 0.93 a | 0.80 ± 0.02 a | 86.90 ± 2.60 a | 335.54 ± 4.05 a |
Tillage Modes | Fungi | Bacteria | ||||
---|---|---|---|---|---|---|
ACE Index | Chao1 Index | Shannon Index | ACE Index | Chao1 Index | Shannon Index | |
RT | 330.41 ± 12.45 b | 329.76 ± 12.55 b | 4.66 ± 0.12 a | 2250.37 ± 5.59 a | 2241.84 ± 51.06 a | 9.71 ± 0.21 a |
DT | 516.67 ± 22.13 a | 515.87 ± 23.61 a | 5.39 ± 0.41 a | 2237.59 ± 15.08 a | 2330.11 ± 155.52 a | 9.88 ± 0.24 a |
Tillage Modes | Length (cm) | Surface Area (cm2) | Volume (cm3) | Mean Diameter (mm) | Root Tip Number | Fractal Dimension |
---|---|---|---|---|---|---|
RT | 348.50 ± 1.57 b | 173.40 ± 1.37 b | 15.18 ± 1.98 b | 1.10 ± 0.02 b | 353.75 ± 1.22 b | 1.59 ± 0.02 b |
DT | 513.77 ± 2.20 a | 271.71 ± 1.42 a | 24.11 ± 1.57 a | 1.40 ± 0.02 a | 438.25 ± 2.12 a | 1.62 ± 0.01 a |
Tillage Modes | Weight per Fruit (kg) | Vertical Diameter (cm) | Transverse Diameter (cm) | Fruit Shape Index | Yield (t/hm2) |
---|---|---|---|---|---|
RT | 0.99 ± 0.20 b | 14.89 ± 0.60 a | 10.70 ± 0.32 b | 1.39 ± 0.06 a | 15.37 ± 1.25 b |
DT | 1.53 ± 0.09 a | 17.50 ± 0.97 a | 13.40 ± 0.15 a | 1.30 ± 0.07 a | 27.59 ± 1.69 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, M.; Xiong, T.; Yang, J.; Wu, T.; Mao, J.; Tang, X.; Hu, G. Effects of Rotary and Deep Tillage on Soil Environment and Melon Root Development. Plants 2024, 13, 2611. https://doi.org/10.3390/plants13182611
Yan M, Xiong T, Yang J, Wu T, Mao J, Tang X, Hu G. Effects of Rotary and Deep Tillage on Soil Environment and Melon Root Development. Plants. 2024; 13(18):2611. https://doi.org/10.3390/plants13182611
Chicago/Turabian StyleYan, Miao, Tao Xiong, Juntao Yang, Ting Wu, Jiancai Mao, Xiaotian Tang, and Guozhi Hu. 2024. "Effects of Rotary and Deep Tillage on Soil Environment and Melon Root Development" Plants 13, no. 18: 2611. https://doi.org/10.3390/plants13182611
APA StyleYan, M., Xiong, T., Yang, J., Wu, T., Mao, J., Tang, X., & Hu, G. (2024). Effects of Rotary and Deep Tillage on Soil Environment and Melon Root Development. Plants, 13(18), 2611. https://doi.org/10.3390/plants13182611