Ethylene, a Signaling Compound Involved in Seed Germination and Dormancy
Abstract
:1. Introduction
2. Effects of Exogenous Ethylene on Seed Germination
3. Ethylene Biosynthesis and Seed Germination
3.1. Ethylene Biosynthesis Pathway
3.2. Ethylene Production during Germination
4. Ethylene Signaling Pathways
4.1. Canonical Ethylene Signaling Pathway
4.2. Non Canonical Ethylene Signaling Pathways
4.3. ERFs
5. Crosstalk between Ethylene, Plant Hormones, and ROS
5.1. Interrelation between Ethylene, ABA, and GA
5.2. Interrelation between Ethylene, ABA and GA Signaling Pathways
5.3. Interrelation between Ethylene and ROS
6. Conclusions and Future Research Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lelièvre, J.M.; Latché, A.; Jones, B.; Bouzayen, M.; Pech, J.C. Ethylene and fruit ripening. Physiol. Plant. 1997, 101, 727–739. [Google Scholar] [CrossRef]
- Pech, J.C.; Bouzayen, M.; Latché, A. Maturation des fruits. In Technologies de Transformation des Fruits; Albagnac, G., Varoquaux, P., Montigaud, J.-C., Eds.; Editions TEC & DOC, Lavoisier: Paris, France; London, UK; New York, NY, USA, 2002; pp. 79–102. [Google Scholar]
- Watkins, C.B. Ethylene synthesis, mode of action, consequences and control. In Fruit Quality and Its Biological Basis; Knee, M., Ed.; Sheffield Academic Press Ltd.: Sheffield, UK, 2002; pp. 180–224. [Google Scholar]
- Abeles, F.B.; Morgan, P.W.; Saltveit, M.E., Jr. Ethylene in Plant Biology; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Khan, M.I.R.; Ferrante, A.; Poor, P. Editorial: Ethylene: A key regulatory molecule in plants. Front. Plant Sci. 2017, 8, 1782. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Van den Broeck, L.; Inzé, D. The pivotal role of ethylene in plant growth. Trends Plant Sci. 2018, 23, 311–323. [Google Scholar] [CrossRef]
- Bewley, J.D.; Black, M. Seeds: Physiology of Development and Germination; Plenum Press: New York, NY, USA, 1994. [Google Scholar]
- Bewley, J.D. Seed germination and dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef]
- Hilhorst, H.W.M. Definitions and hypotheses of seed dormancy. In Annual Plant Reviews, Seed Development, Dormancy and Germination; Bradford, K., Nonogaki, H., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007; Volume 27, pp. 50–71. [Google Scholar]
- Baskin, J.M.; Baskin, C.C. A classification system of seed dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef]
- Hadas, A. Seedbed preparation—The soil physical environment of germinating seeds. In Handbook of Seed Physiology. Applications to Agriculture; Benech-Arnold, R.L., Sanchez, R.A., Eds.; Food Products Press: New York, NY, USA; The Haworth Reference Press: London, UK; The Haworth Press, Inc.: Oxford, UK, 2004; pp. 3–49. [Google Scholar]
- Corbineau, F.; Côme, D. Control of seed germination and dormancy by gaseous environment. In Seed Development and Germination; Kigel, J., Galili, G., Eds.; Marcel Dekker: New York, NY, USA, 1995; pp. 397–424. [Google Scholar]
- Corbineau, F. Oxygen, a key signalling factor in the control of seed germination and dormancy. Seed Sci. Res. 2022, 32, 126–136. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Probert, R.J. The role of temperature in the regulation of seed dormancy and germination. In Seeds: The Ecology of Regeneration in Plant Communities; Fenner, M., Ed.; CAB International: Oxon, UK, 2000; pp. 261–292. [Google Scholar]
- Feurtado, J.A.; Kermode, A.R. A merging of paths: Abscisic acid and hormonal cross-talk in the control of seed dormancy maintenance and alleviation. In Annual Plant Reviews, Seed Development, Dormancy and Germination; Bradford, K., Nonogaki, H., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007; Volume 27, pp. 176–223. [Google Scholar]
- Finkelstein, R.R.; Reeves, W.; Ariizumi, T.; Steber, C. Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 2008, 59, 387–415. [Google Scholar] [CrossRef]
- Nambara, E.; Okamoto, M.; Tatematsu, K.; Yano, R.; Seo, M.; Kamiya, Y. Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res. 2010, 20, 55–67. [Google Scholar] [CrossRef]
- Nonogaki, H.; Bassel, G.W.; Bewley, J.D. Germination—Still a mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Weitbrecht, K.; Müller, K.; Leubner-Metzger, G. First of the mark: Early seed germination. J. Exp. Bot. 2011, 62, 3289–3309. [Google Scholar] [CrossRef] [PubMed]
- Graeber, K.; Nakabayashi, K.; Miatton, E.; Leubner-Metzger, G.; Soppe, W.J. Molecular mechanisms of seed dormancy. Plant Cell Environ. 2012, 35, 1769–1786. [Google Scholar] [CrossRef] [PubMed]
- Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed germination and vigor. Annu. Rev. Plant Biol. 2012, 63, 507–533. [Google Scholar] [CrossRef] [PubMed]
- Sajeev, N.; Koornneef, M.; Bentsink, L. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination. Plant Cell 2024, 36, 1358–1376. [Google Scholar] [CrossRef]
- Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 2010, 61, 651–679. [Google Scholar] [CrossRef]
- Miransari, M.; Smith, D.L. Plant hormones and seed germination. Environ. Exp. Bot. 2014, 99, 110–121. [Google Scholar] [CrossRef]
- Matilla, A.J.; Matilla-Vazquez, M.A. Involvement of ethylene in seed physiology. Plant Sci. 2008, 175, 87–97. [Google Scholar] [CrossRef]
- Linkies, A.; Leubner-Metzger, G. Beyond gibberellins and abscisic acid: How ethylene and jasmonates control seed germination. Plant Cell Rep. 2012, 31, 253–270. [Google Scholar] [CrossRef]
- Arc, E.; Sechet, J.; Corbineau, F.; Rajjou, L.; Marion-Poll, A. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 2013, 4, 63. [Google Scholar] [CrossRef]
- Corbineau, F.; Xia, Q.; Bailly, C.; El-Maarouf-Bouteau, H. Ethylene, a key factor in the regulation of seed dormancy. Front. Plant Sci. 2014, 5, 539. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C.; Jurdak, R.; Corbineau, F. Ethylene in the regulation of seed dormancy and germination: Molecular mechanisms. In The Plant Hormone Ethylene, Stress Acclimation and Agricultural Applications; Khan, N., Ferrante, A., Munné-Bosch, S., Eds.; Elsevier, Academic Press: London, UK, 2023; pp. 41–60. [Google Scholar]
- Bailly, C. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 2004, 14, 93–107. [Google Scholar] [CrossRef]
- Bailly, C.; El-Maarouf-Bouteau, H.; Corbineau, F. From intracellular signaling networks to cell death: The dual role of reactive oxygen species in seed physiology. C. R. Biol. 2008, 331, 806–814. [Google Scholar] [CrossRef]
- Bailly, C. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem. J. 2019, 476, 3019–3032. [Google Scholar] [CrossRef]
- Bailly, C.; Merendino, L. Oxidative signalling in seed germination and early seedling growth: An emerging role for trafficking and inter-organelle communication. Biochem. J. 2021, 478, 1977–1984. [Google Scholar] [CrossRef]
- Oracz, K.; El-Maarouf-Bouteau, H.; Farrant, J.M.; Cooper, K.; Belghazi, M.; Job, C.; Job, D.; Corbineau, F.; Bailly, C. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 2007, 50, 452–465. [Google Scholar] [CrossRef] [PubMed]
- El-Maarouf-Bouteau, H.; Bailly, C. Oxidative signaling in seed germination and dormancy. Plant Signal. Behav. 2008, 3, 175–182. [Google Scholar] [CrossRef]
- Bazin, J.; Langlade, N.; Vincourt, P.; Arribat, S.; Balzergue, S.; El-Maarouf-Bouteau, H.; Bailly, C. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 2011, 23, 2196–2208. [Google Scholar] [CrossRef]
- El-Maarouf-Bouteau, H.; Sajjad, Y.; Bazin, J.; Langlade, N.; Cristescu, S.M.; Balzergue, S.; Baudouin, E.; Bailly, C. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ. 2015, 38, 364–374. [Google Scholar] [CrossRef]
- Bahin, E.; Bailly, C.; Sotta, B.; Kranner, I.; Corbineau, F.; Leymarie, J. Crosstalk between reactive oxygen species and hormonal signaling pathways regulates grain dormancy in barley. Plant Cell Environ. 2011, 34, 980–993. [Google Scholar] [CrossRef]
- Leymarie, J.; Vitkauskaite, G.; Hoang, H.H.; Gendreau, E.; Chazoule, V.; Meimoun, P.; Corbineau, F.; El-Maarouf-Bouteau, H.; Bailly, C. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol. 2012, 53, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Jurdak, R.; Launay-Avon, A.; Paysant-le Roux, C.; Bailly, C. Retrograde signaling from the mitochondria to the nucleus translates the positive effect of ethylene on dormancy breaking of Arabidopsis thaliana seeds. New Phytol. 2021, 229, 2192–2205. [Google Scholar] [CrossRef]
- Kępczyński, J.; Kępczyńska, E. Ethylene in seed dormancy and germination. Physiol. Plant. 1997, 101, 720–726. [Google Scholar] [CrossRef]
- Santos, J.A.S.; Garcia, Q.S. Ethylene in the regulation of seed dormancy and germination: Biodiversity matters. In The Plant Hormone Ethylene, Stress Acclimation and Agricultural Applications; Khan, N., Ferrante, A., Munné-Bosch, S., Eds.; Elsevier, Academic Press: London, UK, 2023; pp. 61–71. [Google Scholar]
- Chun, D.; Wilhelm, S.; Sagen, J.E. Components of record germination in vitro of branched broomrape, Orobanche ramosa L. In Supplement to the Proceedings of the Second International Symposium on Parasitic Weeds; Musselman, L.J., Worsham, A.D., Eplee, R.E., Eds.; North Carolina State University: Raleigh, NC, USA, 1979; pp. 18–22. [Google Scholar]
- Egley, G.H.; Dale, J.E. Ethylene, 2-chloroethylphosphonic acid and witchweed germination. Weed Sci. 1970, 18, 586–589. [Google Scholar] [CrossRef]
- Bebawi, F.F.; Eplee, R.E. Efficacy of ethylene as a germination stimulant of Striga hermonthica. Weed Sci. 1986, 34, 694–698. [Google Scholar] [CrossRef]
- Kępczyński, J.; Rudnicki, R.M. Effect of exogenous ethylene on the after-ripening and germination of apple seeds. Fruit Sci. Rep. 1975, 2, 25–41. [Google Scholar]
- Kępczyński, J.; Rudnicki, R.M.; Khan, A.A. Ethylene requirement for germination of partly after-ripened apple embryo. Physiol. Plant. 1977, 40, 292–295. [Google Scholar] [CrossRef]
- Sinska, I.; Gladon, R. Ethylene and the removal of embryonal apple seed dormancy. HortScience 1984, 19, 73–75. [Google Scholar] [CrossRef]
- Sinska, I. Interaction of ethephon with cytokinin and gibberellin during the removal of apple seed dormancy and germination of embryos. Plant Sci. 1989, 64, 39–44. [Google Scholar] [CrossRef]
- Sinska, I.; Lewandowska, U. Polyamines and ethylene in the removal of embryonal dormancy in apple seeds. Physiol. Plant. 1991, 81, 59–64. [Google Scholar] [CrossRef]
- Frenkel, C.; Belding, R.D.; William-Lokaj, G.R.; Reighard, G.L. Oxygen- and ethylene-induced germination in dormant peach seeds. Eur. J. Hortic. Sci. 2020, 85, 176–181. [Google Scholar] [CrossRef]
- Stein, M.; Serban, C.; McCord, P. Exogenous ethylene precursors and hydrogen peroxide aid in early seed dormancy release in sweet cherry. J. Am. Soc. Hortic. Sci. 2021, 146, 50–55. [Google Scholar] [CrossRef]
- Calvo, A.P.; Nicolas, C.; Lorenzo, O.; Nicolas, G.; Rodriguez, D. Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. J. Plant Growth Reg. 2004, 23, 44–53. [Google Scholar] [CrossRef]
- Corbineau, F.; Bagniol, S.; Côme, D. Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Israel J. Bot. 1990, 39, 313–325. [Google Scholar]
- Corbineau, F.; Côme, D. Germination of sunflower seeds and its regulation by ethylene. In Advances in the Science and Technology of Seeds; Jiarui, F., Khan, A.A., Eds.; Science Press: Beijing, China; New York, NY, USA, 1992; pp. 277–287. [Google Scholar]
- Bleecker, A.B.; Estelle, M.A.; Somerville, C.; Kende, H. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 1988, 241, 1086–1089. [Google Scholar] [CrossRef]
- Siriwitayawan, G.; Geneve, R.L.; Downie, A.B. Seed germination of ethylene perception mutants of tomato and Arabidopsis. Seed Sci. Res. 2003, 13, 303–314. [Google Scholar] [CrossRef]
- Wilson, R.L.; Kim, H.; Bakshi, A.; Binder, B.M. The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress. Plant Physiol. 2014, 165, 1353–1366. [Google Scholar] [CrossRef]
- Wang, X.; Yesbergenova-Cuny, Z.; Biniek, C.; Bailly, C.; El-Maarouf-Bouteau, H.; Corbineau, F. Revisiting the role of ethylene and N-end rule pathway on chilling-induced dormancy release in Arabidopsis seeds. Int. J. Molec. Sci. 2018, 19, 3577. [Google Scholar] [CrossRef]
- Taylorson, R.B. Response of weed seeds to ethylene and related hydrocarbons. Weed Sci. 1979, 27, 7–10. [Google Scholar] [CrossRef]
- Samimy, C.; Khan, A.A. Secondary dormancy, growth-regulator effects, and embryo growth potential in curly dock (Rumex crispus) seeds. Weed Sci. 1983, 31, 153–158. [Google Scholar] [CrossRef]
- Esashi, Y.; Leopold, A.C. Dormancy regulation in subterranean clover seeds by ethylene. Plant Physiol. 1969, 44, 1470–1472. [Google Scholar] [CrossRef] [PubMed]
- Katoh, H.; Esashi, Y. Dormancy and impotency of cocklebur seeds. I. CO2, C2H4, O2 and high temperature. Plant Cell Physiol. 1975, 16, 687–696. [Google Scholar]
- Egley, G.H. Stimulation of common cocklebur (Xanthium pennsylvanicum) and redroot pigweed (Amaranthus retroflexus) seed germination by injections of ethylene into soil. Weed Sci. 1980, 28, 510–514. [Google Scholar] [CrossRef]
- Esashi, Y.; Hata, Y.; Katoh, H. Germination of cocklebur seeds: Interactions between gibberellic acid, benzyladenine, thiourea, KNO3 and gaseous factors. Aust. J. Plant Physiol. 1975, 2, 569–579. [Google Scholar] [CrossRef]
- Esashi, Y.; Okazaki, M.; Yanai, N.; Hishinuma, K. Control of the germination of secondary dormant cocklebur seeds by various germination stimulants. Plant Cell Physiol. 1978, 19, 1497–1506. [Google Scholar]
- Kępczyński, J.; Karssen, C.M. Requirement for the action of endogenous ethylene during germination of non-dormant seeds of Amaranthus caudatus. Physiol. Plant. 1985, 63, 49–52. [Google Scholar] [CrossRef]
- Kępczyński, J.; Bihun, M.; Kępczyńska, E. Induction and release of secondary dormancy in Amaranthus caudatus L. seeds. Plant Physiol. Biochem. 1996, S03-50, 42. [Google Scholar]
- Kępczyński, J.; Kępczyńska, E. The effect of putrescine, ethephon and ACC on germination of thermodormant Amaranthus paniculatus L. seed. In Basic and Applied Aspects of Seed Biology, Fourth International Workshop on Seeds; Côme, D., Corbineau, F., Eds.; ASFIS: Paris, France, 1993; pp. 537–554. [Google Scholar]
- Kępczyński, J.; Corbineau, F.; Côme, D. Responsiveness of Amaranthus retroflexus seeds to ethephon, 1-aminocyclopropane-1-carboxylic acid and gibberellic acid in relation to temperature and dormancy. Plant Growth Reg. 1996, 20, 259–265. [Google Scholar] [CrossRef]
- Schönbeck, M.W.; Egley, G.H. Phase-sequence of redroot pigweed seed germination responses to ethylene and other stimuli. Plant Physiol. 1981, 68, 175–179. [Google Scholar] [CrossRef]
- Ketring, D.L.; Morgan, P.W. Ethylene as a component of the emanations from germinating peanut seeds and its effect on dormant Virginia-type seeds. Plant Physiol. 1969, 44, 326–330. [Google Scholar] [CrossRef]
- Sami, A.; Riaz, M.W.; Zhou, X.; Zhu, Z.; Zhou, K. Alleviating dormancy in Brassica oleracea seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications. BMC Plant Biol. 2019, 19, 577. [Google Scholar] [CrossRef] [PubMed]
- Saini, H.S.; Bassi, P.K.; Spencer, M.S. Use of ethylene and nitrate to break seed dormancy of common lambs’-quarters (Chenopodium album). Weed Sci. 1986, 34, 502–506. [Google Scholar] [CrossRef]
- Machabée, S.; Saini, H.S. Differences in the requirement for endogenous ethylene during germination of dormant and non-dormant seeds of Chenopodium album L. J. Plant Physiol. 1991, 138, 97–101. [Google Scholar] [CrossRef]
- Gallardo, M.; Del Mar Delgado, M.; Sanchez-Calle, I.M.; Matilla, A.J. Ethylene production and 1-aminocyclopropane-1-carboxylic acid conjugation in thermoinhibited Cicer arietinum L. seeds. Plant Physiol. 1991, 97, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Corbineau, F.; Rudnicki, R.M.; Côme, D. Induction of secondary dormancy in sunflower seeds by high temperature. Possible involvement of ethylene biosynthesis. Physiol. Plant. 1988, 73, 368–373. [Google Scholar] [CrossRef]
- Speer, H.L.; Hsiao, A.I.; Vidaver, W. Effects of germination promoting substances given in conjunction with red light on the phytochrome-mediated germination of dormant lettuce seeds (Lactuca sativa L.). Plant Physiol. 1974, 54, 852–854. [Google Scholar] [CrossRef]
- Abeles, F.B. Role of ethylene in Lactuca sativa cv Grand Rapids seed germination. Plant Physiol. 1986, 81, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Burdett, A.N.; Vidaver, W. Synergistic action of ethylene with gibberellin or red light in germinating lettuce seeds. Plant Physiol. 1971, 48, 656–657. [Google Scholar] [CrossRef]
- Saini, H.S.; Consolacion, E.D.; Bassi, P.K.; Spencer, M.S. Requirement for ethylene synthesis and action during relief of thermoinhibition of lettuce seed germination by combinations of gibberellic acid, kinetin, and carbon dioxide. Plant Physiol. 1986, 81, 950–953. [Google Scholar] [CrossRef]
- Ne’eman, G.; Henig-Sever, N.; Eshel, A. Regulation of the germination of Rhus coriaria, a post-fire pioneer, by heat, ash, pH, waterpotential and ethylene. Physiol. Plant. 1999, 106, 47–52. [Google Scholar] [CrossRef]
- Iglesias-Fernandez, R.; Matilla, A. Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of Sisymbrium officinale L. seeds. Planta 2010, 231, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Olatoye, S.T.; Hall, M.A. Interaction of ethylene and light on dormant weed seeds. In Seed Ecology; Heydecker, W., Ed.; Butterworths: London, UK, 1973; pp. 233–240. [Google Scholar]
- Ribeiro, D.M.; Barros, R.S. Sensitivity to ethylene as a major component in the germination of seeds of Stylosanthes humilis. Seed Sci. Res. 2006, 16, 37–45. [Google Scholar] [CrossRef]
- Corbineau, F.; Côme, D. Germination of sunflower seeds as related to ethylene synthesis and sensitivity—An overview. In Biology and Biotechnology of the Plant Hormone Ethylene III; Vendrell, M., Klee, H., Pech, J.C., Romojaro, F., Eds.; IOS Press: Amsterdam, The Netherlands, 2003; pp. 216–221. [Google Scholar]
- Jones, J.F.; Hall, M.A. Studies on the requirement for carbon dioxide and ethtylene for germination of Spergula arvensis L. seeds. Plant Sci. Lett. 1984, 16, 87–93. [Google Scholar] [CrossRef]
- Wang, X. The Role of Ethylene and the N-End Rule Pathway in the Regulation of Arabidopsis Seed Dormancy. Ph.D. Thesis, Sorbonne-Université, Paris, France, 2019. [Google Scholar]
- Yang, S.F.; Hoffman, N.E. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Kende, H. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 283–307. [Google Scholar] [CrossRef]
- Bleecker, A.B.; Kende, H. Ethylene: A gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 2000, 16, 1–18. [Google Scholar] [CrossRef]
- Wang, K.L.C.; Li, H.; Ecker, J.R. Ethylene biosynthesis and signaling networks. Plant Cell 2002, 14, S131–S151. [Google Scholar] [CrossRef]
- Salveit, M.E.; Dilley, D.R. Rapidly induced wound ethylene from excised segments of etiolated Pisum sativum L. cv Alaska. II Oxygen and temperature dependency. Plant Physiol. 1978, 61, 675–679. [Google Scholar] [CrossRef]
- Yip, W.K.; Jiao, X.Z.; Yang, S.F. Dependence of in vivo ethylene production rate on 1-aminocyclopropane-1-carboxylic acid content and oxygen concentration. Plant Physiol. 1988, 88, 553–558. [Google Scholar] [CrossRef]
- Bailly, C.; Bogateck, R.; Dumet, D.; Corbineau, F.; Côme, D. Effects of 1-aminocyclopropane-1-carboxylic acid and oxygen concentrations on in vivo and in vitro activity of ACC oxidase of sunflower hypocotyl segments. Plant Growth Reg. 1995, 17, 133–139. [Google Scholar] [CrossRef]
- Smith, J.J.; John, P. Activation of 1-aminocyclopropane-1-carboxylate oxidase by bicarbonate/carbon dioxide. Phytochemistry 1993, 32, 1381–1386. [Google Scholar] [CrossRef]
- McGarvey, D.J.; Christoffersen, R.E. Characterization and kinetic parameters of ethylene-forming enzyme from avocado fruit. J. Biol. Chem. 1992, 267, 5964–5967. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, N.E.; Yang, S.F.; McKeon, T. Identification of 1-(malonylamino)cyclopropane-1-carboxylic acid as a major conjugate of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor in higher plants. Biochem. Biophys. Res. Com. 1982, 104, 765–770. [Google Scholar] [CrossRef]
- Wang, N.N.; Shih, M.C.; Li, N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J. Exp. Bot. 2005, 56, 909–920. [Google Scholar] [CrossRef]
- Yamagami, T.; Tsuchisaka, A.; Yamada, K.; Haddon, W.F.; Harden, L.A.; Theologis, A. Biochemical diversity among the 1-aminocyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 2003, 278, 49102–49112. [Google Scholar] [CrossRef] [PubMed]
- Tsuchisaka, A.; Theologis, A. Unique and overlapping expression patterns among the Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 2004, 136, 2982–3000. [Google Scholar] [CrossRef]
- Linkies, A.; Müller, K.; Morris, K.; Turěcková, V.; Wenk, M.; Cadman, C.S.; Corbineau, F.; Strnad, M.; Lynn, J.R.; Finch-Savage, W.E.; et al. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: A comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 2009, 21, 3803–3822. [Google Scholar] [CrossRef]
- Ruduś, I.; Sasiak, M.; Kępczyński, J. Regulation of ethylene biosynthesis at the level of 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene. Acta Physiol. Plant. 2013, 35, 295–307. [Google Scholar] [CrossRef]
- Lin, Z.; Zhong, S.; Grierson, D. Recent advances in ethylene research. J. Exp. Bot. 2009, 60, 3311–3336. [Google Scholar] [CrossRef]
- Petruzzelli, L.; Coraggio, I.; Leubner-Metzger, G. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-amonocyclopropane-1-carboxylic acid oxidase. Planta 2000, 211, 144–149. [Google Scholar] [CrossRef]
- Petruzelli, L.; Sturaro, M.; Mainieri, D.; Leubner-Metzger, G. Calcium requirement for ethylene-dependent responses involving 1-aminocyclopropane-1-carboxylic acid oxidase in radicle tissues of germinated pea seeds. Plant Cell Env. 2003, 26, 661–671. [Google Scholar] [CrossRef]
- Puga-Hermida, M.I.; Gallardo, M.; Rodriguez-Gacio, M.D.; Matilla, A.J. The heterogeneity of turnip-tops (Brassica rapa) seeds inside the silique affects germination, the activity of the final step of the ethylene pathway, and abscisic acid and polyamine content. Funct. Plant Biol. 2003, 30, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Gniazdowska, A.; Krasuska, U.; Bogatek, R. Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta 2010, 232, 1397–1407. [Google Scholar] [CrossRef] [PubMed]
- Oracz, K.; El-Maarouf-Bouteau, H.; Bogatek, R.; Corbineau, F.; Bailly, C. Release of sunflower seed dormancy by cyanide: Cross-talk with ethylene signaling pathway. J. Exp. Bot. 2008, 59, 2241–2251. [Google Scholar] [CrossRef]
- McMahon-Smith, J.; Artega, R.N. Molecular control of ethylene production by cyanide in Arabidopsis thaliana. Physiol. Plant. 2000, 109, 180–187. [Google Scholar] [CrossRef]
- Narsai, R.; Law, S.R.; Carrie, C.; Xu, L.; Whelan, J. In depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis thaliana. Plant Physiol. 2011, 157, 1342–1362. [Google Scholar] [CrossRef]
- Abeles, F.B.; Lonski, J. Stimulation of lettuce seed germination by ethylene. Plant Physiol. 1969, 44, 277–280. [Google Scholar] [CrossRef]
- Fu, J.R.; Yang, S.F. Release of heat pretreatment-induced dormancy in lettuce seeds by ethylene or cytokinin in relation to the production of ethylene and the synthesis of 1-aminocyclopropane-1-carboxylic acid during germination. J. Plant Growth Reg. 1983, 2, 185–192. [Google Scholar] [CrossRef]
- Petruzzelli, L.; Harren, F.; Perrone, C.; Reuss, J. On the role of ethylene in seed germination and early root growth of Pisum sativum. J. Plant Physiol. 1995, 145, 83–86. [Google Scholar] [CrossRef]
- Hoffman, N.E.; Fu, J.R.; Yang, S.F. Identification and metabolism of 1-(malonylamino)cyclopropane-1-carboxylic acid in germinating peanut seeds. Plant Physiol. 1983, 71, 197–199. [Google Scholar] [CrossRef]
- Gomez-Jimenez, E.; Olivares, E.; Matilla, A.J. 1-aminocyclopropane-1-carboxylate oxidase from embryonic axes of germinating chick-pea (Cicer arietinum L.) seeds: Cellular immunolocalization and alterations in its expression by indole-3-acetic acid, abscisic acid and spermine. Seed Sci. Res. 2001, 11, 243–253. [Google Scholar]
- Rodriguez-Gacio, M.C.; Matilla, A.J. The last step of the ethylene biosynthesis pathway in turnip (Brassica rapa) seeds: Alterations related to development and germination and its inhibition during desiccation. Physiol. Plant. 2001, 112, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Gacio, M.C.; Nicolas, C.; Matilla, A.J. The final step of the ethylene biosynthesis pathway in turnip tops (Brassica rapa L. cv. Rapa): Molecular characterization of the 1-aminocyclopropane-1-carboxylate oxidase BeACO1 throughout zygotic embryogenesis and germination of heterogenous seeds. Physiol. Plant. 2004, 121, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Samimy, C.; Taylor, A.G. Influence of seed quality on ethylene production of germinating snap bean seeds. J. Am. Soc. Hort. Sci. 1983, 108, 767–769. [Google Scholar] [CrossRef]
- Górecki, R.J.; Ashino, H.; Satoh, S.; Esashi, Y. Ethylene production in pea and cocklebur seeds of differing vigour. J. Exp. Bot. 1991, 42, 407–414. [Google Scholar] [CrossRef]
- Chojnowski, M.; Corbineau, F.; Côme, D. Physiological and biochemical changes induced in sunflower seeds by osmopriming and subsequent drying, storage and aging. Seed Sci. Res. 1997, 7, 323–332. [Google Scholar] [CrossRef]
- Khan, A.A. ACC-derived ethylene production, a sensitive test for seed vigor. J. Am. Soc. Hort. Sci. 1994, 119, 1083–1090. [Google Scholar] [CrossRef]
- Corbineau, F. Markers of seed quality: From present to future. Seed Sci. Res. 2012, 22, S61–S68. [Google Scholar] [CrossRef]
- Alonso, J.M.; Hirayama, T.; Roman, G.; Nourizadeh, S.; Ecker, J.R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 1999, 284, 2148–2152. [Google Scholar] [CrossRef]
- Chen, Y.F.; Etheridge, N.; Schaller, G.E. Ethylene signal transduction. Ann. Bot. 2005, 95, 5901–5915. [Google Scholar] [CrossRef]
- Benavente, L.M.; Alonso, J.M. Molecular mechanisms of ethylene signaling in Arabidopsis. Mol. BioSyst. 2006, 2, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.D.; Cho, Y.H.; Sheen, J. Emerging connections in the ethylene signaling network. Trends Plant Sci. 2009, 14, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Merchante, C.; Alonso, J.M.; Stepanova, A.N. Ethylene signaling: Simple ligand, complex regulation. Cur. Op. Plant Biol. 2013, 16, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Ju, C.; Chang, C. Mechanistic insights in ethylene perception and signal transduction. Plant Physiol. 2015, 169, 85–95. [Google Scholar] [CrossRef]
- Binder, B.M. Ethylene signaling in plants. J. Biol. Chem. 2020, 295, 7710–7725. [Google Scholar] [CrossRef]
- Hirayama, T.; Kieber, J.J.; Hirayama, N.; Kogan, M.; Guzman, P.; Nourizadeh, S.; Alonso, J.M.; Dailey, W.P.; Dancis, A.; Ecker, J.R. RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 1999, 97, 383–393. [Google Scholar] [CrossRef]
- Rodriguez, F.I.; Esch, J.J.; Hall, A.E.; Binder, B.M.; Schaller, G.E.; Bleecker, A.B. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 1999, 283, 996–998. [Google Scholar] [CrossRef]
- Sakai, H.; Hua, J.; Chen, Q.G.; Chang, C.; Medrano, L.J.; Bleecker, A.B.; Meyerowitz, E.M. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc. Nati. Acad. Sci. USA 1998, 95, 5812–5817. [Google Scholar] [CrossRef]
- Hua, J.; Sakai, H.; Nourizadeh, S.; Chen, Q.G.; Bleecker, A.B.; Ecker, J.R.; Meyerowitz, E.M. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 1998, 10, 1321–1332. [Google Scholar] [CrossRef]
- Shakeel, S.N.; Wang, X.; Binder, B.M.; Schaller, G.E. Mechanisms of signal transduction by ethylene: Overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 2013, 5, plt010. [Google Scholar] [CrossRef]
- Hall, B.; Shakeel, S.; Schaller, G. Ethylene receptors: Ethylene perception and signaling transduction. J. Plant Growth Reg. 2007, 26, 118–130. [Google Scholar] [CrossRef]
- Qu, X.; Hall, B.P.; Gao, Z.; Schaller, G.E. A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS. BMC Plant Biol. 2007, 7, 3. [Google Scholar]
- Grefen, C.; Harter, K. Plant two-component systems: Principles, functions, complexity and cross talk. Planta 2004, 219, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.M.; Ecker, J.R. The ethylene pathway: A paradigm for plant hormone signalling and interaction. Sci. STKE 2001, 2001, re1. [Google Scholar] [CrossRef]
- Hall, B.P.; Shakeel, S.N.; Amir, M.; Haq, N.U.; Qu, X.; Schaller, G.E. Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol. 2012, 159, 682–695. [Google Scholar] [CrossRef] [PubMed]
- Stepanova, A.N.; Alonso, J.M. Arabidopsis ethylene signaling pathway. Sci. STKE 2005, 276, 1–4. [Google Scholar] [CrossRef]
- Qiao, H.; Chang, K.N.; Yazaki, J.; Ecker, J.R. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev. 2009, 23, 512–521. [Google Scholar] [CrossRef]
- Guo, H.; Ecker, J.R. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 2003, 115, 667–677. [Google Scholar] [CrossRef]
- Potuschak, T.; Vansiri, A.; Binder, B.M.; Lechner, E.; Vierstra, R.D.; Genschik, P. The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 2006, 18, 3047–3057. [Google Scholar] [CrossRef]
- Gagne, J.M.; Smalle, J.; Gingerich, D.J.; Walker, J.M.; Yoo, S.-D.; Yanagisawa, S.; Vierstra, R.D. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc. Natl. Acad. Sci. USA 2004, 101, 6803–6808. [Google Scholar] [CrossRef]
- Cheng, M.C.; Liao, P.M.; Kuo, W.W.; Lin, T.P. The Arabidopsis ethylene response factor1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 2013, 162, 1566–1582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Qi, B.; Wang, L.; Zhao, B.; Rode, S.; Riggan, N.D.; Ecker, J.R.; Qiao, H. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nat. Commun. 2016, 7, 13018. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, F.; Rode, S.; Chin, K.K.; Ko, E.E.; Kim, J.; Lyer, V.R.; Qiao, H. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis. BMC Genom. 2017, 18, 538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, L.; Qi, B.; Zhao, B.; Ko, E.E.; Riggan, N.D.; Chin, K.; Qiao, H. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proc. Natl. Acad. Sci. USA 2017, 114, 10274–10279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, L.; Ko, E.E.; Shao, K.; Qiao, H. Histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate ethylene-induced transcriptional repression. Plant Cell 2018, 30, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, F.; Qiao, H. Chromatin regulation in the response of ethylene: Nuclear events in ethylene signaling. Small Methods 2020, 4, 1900288. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Zhang, F.; Shao, Z.; Zhao, B.; Huang, A.; Tran, J.; Hernandez, F.V.; Qiao, H. EIN2-directed histone acetylation requires EIN3-mediated positive feedback regulation in response to ethylene. Plant Cell 2021, 33, 322–337. [Google Scholar] [CrossRef]
- Xie, F.; Liu, Q.; Wen, C.-K. Receptor signal output mediated by the ETR1 N terminus is primarily subfamily I receptor dependent. Plant Physiol. 2006, 142, 492–508. [Google Scholar] [CrossRef]
- Xie, F.; Qiu, L.; Wen, C.-K. Possible modulation of Arabidopsis ETR1 N-terminal signaling by CTR. Plant Signal Behav. 2012, 7, 1243–1245. [Google Scholar] [CrossRef]
- An, F.; Zhao, Q.; Ji, Y.; Li, W.; Jiang, Z.; Yu, X.; Zhang, C.; Han, Y.; He, W.; Liu, Y.; et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 2010, 22, 2384–2401. [Google Scholar] [CrossRef]
- Qiu, L.P.; Xie, F.; Yu, J.; Wen, C.K. Arabidopsis RTE1 is essential to ethylene receptor ETR1 amino-terminal signaling independent of CTR. Plant Physiol. 2012, 159, 1263–1276. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Clay, J.M.; Chang, C. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis. Plant J. 2014, 77, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Cui, X.; Rivarola, M.; Gao, T.; Chang, C.; Dong, C.-H. Molecular association of Arabidopsis RTH with its homolog RTE1 in regulating ethylene signaling. J. Exp. Bot. 2017, 68, 2821–2832. [Google Scholar] [CrossRef] [PubMed]
- Bisson, M.M.; Groth, G. New insight in ethylene signaling: Autokinase activity of ETR1 modulates the interaction of receptors and EIN. Mol. Plant 2010, 3, 882–889. [Google Scholar] [CrossRef]
- Bisson, M.M.; Groth, G. New paradigm in ethylene signaling: EIN2, the central regulator of the signaling pathway, interacts directly with the upstream receptors. Plant Signal Behav. 2011, 6, 164–166. [Google Scholar] [CrossRef]
- Lohrmann, J.; Harter, K. Plant two-component signaling systems and the role of response regulators. Plant Physiol. 2002, 128, 363–369. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Wen, C.-K. An alternate route of ethylene receptor signaling. Front. Plant Sci. 2014, 5, 648. [Google Scholar] [CrossRef]
- Desikan, R.; Last, K.; Harrett-Williams, R.; Tagliavia, C.; Harter, K.; Hooley, R.; Hancock, J.T.; Neill, S.J. Ethylene-induced stomatal closure in Arabidopsis occurs via atrbohf-mediated hydrogen peroxide synthesis. Plant J. 2006, 47, 907–916. [Google Scholar] [CrossRef]
- Street, I.H.; Aman, S.; Zubo, Y.; Ramzan, A.; Wang, X.; Shakeel, S.N.; Kieber, J.J.; Schaller, G.E. Ethylene inhibits cell proliferation of the Arabidopsis root meristem. Plant Physiol. 2015, 169, 338–350. [Google Scholar] [CrossRef]
- Zdaeska, M.; Cuyacot, A.R.; Tarr, P.T.; Yamoune, A.; Szmitkowska, A.; Hrdinová, V.; Gelová, Z.; Meyerowitz, E.M.; Hejátko, J. ETR1 integrates response to ethylene and cytokinins into a single multistep phosphorelay pathway to control root growth. Mol. Plant. 2019, 12, 1338–1352. [Google Scholar] [CrossRef]
- Piya, S.; Binder, B.M.; Hewezi, T. Canonical and noncanonical ethylene signaling pathways that regulate Arabidopsis susceptibility to the cyst nematode Heterodera schachtii. New Phytol. 2019, 221, 946–959. [Google Scholar] [CrossRef]
- Nakano, T.; Suzuki, K.; Fujimura, T.; Shinshi, H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006, 140, 411–432. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.N.; Zhong, S.; Weirauch, M.T.; Hon, G.; Pelizzola, M.; Li, H.; Huang, S.-S.C.; Schmitz, R.J.; Urich, M.A.; Kuo, D.; et al. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife 2013, 2, e00675. [Google Scholar] [CrossRef] [PubMed]
- Gasch, P.; Fundinger, M.; Müller, J.T.; Lee, T.; Bailey-Serres, J.; Mustroph, A. Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis. Plant Cell 2016, 28, 160–180. [Google Scholar] [CrossRef]
- Müller, M.; Munné-Bosch, S. Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiol. 2015, 169, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, T.; Li, Y.; Wang, Z.; Cao, H.; Chen, F.; Li, Y.; Soppe, W.J.J.; Li, W.; Liu, Y. ETR1/RDO3 regulates seed dormancy by relieving the inhibitory effect of the ERF12-TPL complex on DELAY OF GERMINATION1 Expression. Plant Cell 2019, 31, 832–847. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, D.J.; Lee, S.C.; Isa, N.M.; Gramuglia, S.; Fukao, T.; Bassel, G.W.; Correia, C.S.; Corbineau, F.; Theodoulou, F.L.; Bailey-Serres, J.; et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 2011, 479, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gomes, M.M.; Bailly, C.; Nambara, E.; Corbineau, F. Role of ethylene and of the proteolytic N-degron pathway in regulation of Arabidopsis seed dormancy. J. Int. Plant Biol. 2021, 63, 2110–2122. [Google Scholar] [CrossRef]
- Shu, K.; Liu, X.D.; Xie, Q.; He, Z.H. Two faces of one seed: Hormonal regulation of dormancy and germination. Mol. Plant 2016, 9, 34–45. [Google Scholar] [CrossRef]
- Beaudoin, N.; Serizet, C.; Gosti, F.; Giraudat, J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 2000, 12, 1103–1115. [Google Scholar] [CrossRef]
- Ghassemian, M.; Nambara, E.; Cutler, S.; Kawaide, H.; Kamiya, Y.; McCourt, P. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 2000, 12, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Kornneef, M.; Bentsink, L.; Hilhorst, H. Seed dormancy and germination. Curr. Opin. Plant Biol. 2002, 5, 33–36. [Google Scholar] [CrossRef]
- Cheng, W.H.; Chiang, M.H.; Hwang, S.G.; Lin, P.C. Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol. Biol. 2009, 71, 61–80. [Google Scholar] [CrossRef]
- Dong, H.; Zhen, Z.; Peng, J.; Chang, L.; Gong, Q.; Wang, N.N. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J. Exp. Bot. 2011, 62, 4875–4887. [Google Scholar] [CrossRef]
- Ogawa, M.; Hanada, A.; Yamauchi, Y.; Kuwahara, A.; Kamiya, Y.; Yamaguchi, S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 2003, 15, 1591–1604. [Google Scholar] [CrossRef]
- Karssen, C.M.; Zagórsky, S.; Kepczynski, J.; Groot, S.P.C. Key role for endogenous gibberellins in the control of seed germination. Ann. Bot. 1989, 63, 71–80. [Google Scholar] [CrossRef]
- Brady, S.M.; McCourt, P. Hormone cross-talk in seed dormancy. J. Plant Growth 2003, 22, 25–31. [Google Scholar] [CrossRef]
- Ouaked, F.; Rozhon, W.; Lecourieux, D.; Hirt, H. A MAPK pathway mediates ethylene signaling in plants. EMBO J. 2003, 22, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Chiwocha, S.D.; Cutler, A.J.; Abrams, S.R.; Ambrose, S.J.; Yang, J.; Ross, A.R.; Kermode, A.R. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J. 2005, 42, 35–48. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Li, K.; Sun, F.; Hu, H.; Li, X.; Zhao, Y.; Han, C.; Zhang, W.; Duan, Y.; et al. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol. Biol. 2007, 64, 633–644. [Google Scholar] [CrossRef]
- Subbiah, V.; Reddy, K.J. Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. J. Biosci. 2010, 35, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, S.B.; Taylorson, R.B. Promotion of seed germination by nitrate, nitrite, hydroxylamine, and ammonium salts. Plant Physiol. 1974, 54, 304–309. [Google Scholar] [CrossRef]
- Whitaker, C.; Beckett, R.P.; Minibayeva, F.V.; Kranner, I. Alleviation of dormancy by reactive oxygen species in Bidens pilosa L. seeds. S. Afr. J. Bot. 2010, 76, 601–605. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Zu, Y.; Tang, Z. Ethylene antagonizes the inhibition of germination in Arabidopsis induced by salinity by modeling the concentration of hydrogen peroxide. Acta Physiol. Plant 2012, 34, 1895–1904. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, L.; Paul, M.; Zu, Y.; Tang, Z. Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: Evidence for the involvement of nitric oxide simulated by sodium niroprusside. Plant Physiol. Biochem. 2013, 73, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, S.; Wang, J.; Shen, H.; Yang, L. Interaction between reactive oxygen species and hormones during the breaking of embryo dormancy in Sorbus pohuashanensis by exogenous nitric oxide. J. For. Res. 2021, 33, 435–444. [Google Scholar] [CrossRef]
- Huarte, H.R.; Puglia, G.D.; Prjibelski, A.D.; Raccuia, S.A. Seed transcriptome annotation reveals enhanced expression of genes related to ROS homeostasis and ethylene metabolism at alternating temperatures in wild cardoon. Plants 2020, 9, 1225. [Google Scholar] [CrossRef]
Parasitic Plants | Weeds | Cultivated Plants |
---|---|---|
Orobanche ramosa Stiga asiatica Striga hermonthica Stiga lutea | Amaranthus caudatus Arabidopsis thaliana Chenopodium album Rumex crispus Xanthium pennsylvanicum Spergula arvensis | Amaranthus retroflexus Arachis hypogea Beta vulgaris Brassica oleracea Helianthus annuus Lactuca sativa Malus domestica Prunus avium Prunus persica |
Type of Dormancy | Species | References | |
---|---|---|---|
Primary and secondary dormancies | Amaranthus caudatus | Love-lies-bleeding | [70,71] |
Secondary dormancy | Amaranthus paniculatus | Red amaranth | [72] |
Primary dormancy | Amaranthus retroflexus | Redroot-pigweed | [67,73,74] |
Primary dormancy | Arabidopsis thaliana | Arabidopsis | [59,60,61,62] |
Primary dormancy | Arachis hypogaea | Peanut | [75] |
Primary dormancy | Brassica oleracea | Chinese cabbage | [76] |
Primary dormancy | Chenopodium album | Lambs’ quarters | [77,78] |
Thermo-dormancy | Cicer arietinum | Chick-pea | [79] |
Primary dormancy | Fagus sylvatica | Beechnut | [56] |
Primary and secondary dormancies | Helianthus annuus | Sunflower | [57,58,80] |
Thermo- and secondary dormancies | Lactuca sativa | Lettuce | [81,82,83,84] |
Primary dormancy | Prunus avium | Bird cherry | [55] |
Primary dormancy | Prunus persica | Peach | [54] |
Primary dormancy | Pyrus malus | Apple | [49,50,51,52,53] |
Primary dormancy | Rhus coriaria | Sicilian sumac | [85] |
Primary and secondary dormancies | Rumex crispus | Curly dock | [63,64] |
Primary dormancy | Sisymbrium officinale | Hedge mustard | [86] |
Primary dormancy | Spergula arvensis | Spurry | [87] |
Primary dormancy | Stylosanthes humilis | Pencil flower | [88] |
Primary dormancy | Trifolium subterraneum | Subterranean clover | [65] |
Primary and secondary dormancies | Xanthium pennsylvanicum | Cocklebur | [66,67,68,69] |
Germination (%) in the Presence of | |||||||
---|---|---|---|---|---|---|---|
Air | C2H4 | Precursor of C2H4 | Inhibitor of C2H4 Synthesis | Inhibitor of C2H4 Action | |||
Embryos | Water | Water | ACC | AOA | CoCl2 | STS | 2,5-NBD |
Dormant | 18 ± 8 a | 99 ± 1 b | 98 ± 2 b | 10 ± 5 a | 15 ± 4 a | 10 ± 4 a | 0 c |
Non-dormant | 98 ± 1 b | 100 b | 100 b | 50 ± 7 d | 48 ± 5 d | 78 ± 4 e | 0 c |
Mutant or Transgenic Lines | Gene/Locus | Seed Dormancy | Hormone Sensitivity | References |
---|---|---|---|---|
etr1-1 | ETR1 | Enhanced | C2H4 insensitive | [59,60,61,178,179,181,186,187,188,189] |
etr1-2 | ETR1 | ABA hypersensibility | ||
etr1-3 | ETR1 | Enhanced | Reduced C2H4 sensitivity | |
etr1-6 | ETR1 | Slighly enhanced | More sensitive to ABA | |
etr1-8 | ETR1 | Enhanced | - | |
ein2-1, ein2-5, ein2-49 | EIN2 | Enhanced | ABA hypersensibility | [178,181,187,188,189] |
ein4-4 | EIN4 | Enhanced | - | |
ein6 | EIN6 | Enhanced | ABA hypersensibility | |
ctr1-1, ctr1-10 | CTR1 | Early germination | Reduced ABA sensitivity | [178,181,186,188,189] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corbineau, F. Ethylene, a Signaling Compound Involved in Seed Germination and Dormancy. Plants 2024, 13, 2674. https://doi.org/10.3390/plants13192674
Corbineau F. Ethylene, a Signaling Compound Involved in Seed Germination and Dormancy. Plants. 2024; 13(19):2674. https://doi.org/10.3390/plants13192674
Chicago/Turabian StyleCorbineau, Françoise. 2024. "Ethylene, a Signaling Compound Involved in Seed Germination and Dormancy" Plants 13, no. 19: 2674. https://doi.org/10.3390/plants13192674
APA StyleCorbineau, F. (2024). Ethylene, a Signaling Compound Involved in Seed Germination and Dormancy. Plants, 13(19), 2674. https://doi.org/10.3390/plants13192674