Chemical Markers in Italian Propolis: Chrysin, Galangin and CAPE as Indicators of Geographic Origin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Analyses of Propolis Samples
2.1.1. Total Polyphenol and Total Flavonoid Quantification
2.1.2. Quantification of Pinocembrin, Chrysin, Galangin and CAPE through HPLC-DAD
2.2. Antiradical Activity of Propolis Samples
3. Conclusions
4. Materials and Methods
4.1. Sample Collection
4.2. Phytochemical Analyses
4.2.1. Quantification of Total Polyphenols and Total Flavonoids
4.2.2. HPLC-DAD Analysis
4.3. Antiradical Activity of Propolis
4.4. Multivariate Modeling
4.5. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burlando, B.; Cornara, L. Honey in Dermatology and Skin Care: A Review. J. Cosmet. Dermatol. 2013, 12, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Simone-Finstrom, M.; Spivak, M. Propolis and Bee Health: The Natural History and Significance of Resin Use by Honey Bees. Apidologie 2010, 41, 295–311. [Google Scholar] [CrossRef]
- Bankova, V. Chemical Diversity of Propolis and the Problem of Standardization. J. Ethnopharmacol. 2005, 100, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Hata, T.; Tazawa, S.; Ohta, S.; Rhyu, M.-R.; Misaka, T.; Ichihara, K. Artepillin C, a Major Ingredient of Brazilian Propolis, Induces a Pungent Taste by Activating TRPA1 Channels. PLoS ONE 2012, 7, e48072. [Google Scholar] [CrossRef]
- Valipour, M. Therapeutic Prospects of Naturally Occurring P38 MAPK Inhibitors Tanshinone IIA and Pinocembrin for the Treatment of SARS-CoV-2-induced CNS Complications. Phytother. Res. 2023, 37, 3724–3743. [Google Scholar] [CrossRef] [PubMed]
- Governa, P.; Cusi, M.G.; Borgonetti, V.; Sforcin, J.M.; Terrosi, C.; Baini, G.; Miraldi, E.; Biagi, M. Beyond the Biological Effect of a Chemically Characterized Poplar Propolis: Antibacterial and Antiviral Activity and Comparison with Flurbiprofen in Cytokines Release by LPS-Stimulated Human Mononuclear Cells. Biomedicines 2019, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing, China, 2010. [Google Scholar]
- European Parliament; European Council; European Commission Regulation. Regulation (EU) 2015/2283. Available online: https://eur-lex.europa.eu/eli/reg/2015/2283/oj (accessed on 1 September 2024).
- Biagi, M.; Pecorari, R.; Appendino, G.; Miraldi, E.; Magnano, A.; Governa, P.; Cettolin, G.; Giachetti, D. Herbal Products in Italy: The Thin Line between Phytotherapy, Nutrition and Parapharmaceuticals; A Normative Overview of the Fastest Growing Market in Europe. Pharmaceuticals 2016, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Gardini, S.; Bertelli, D.; Marchetti, L.; Graziosi, R.; Pinetti, D.; Plessi, M.; Marcazzan, G.L. Chemical Composition of Italian Propolis of Different Ecoregional Origin. J. Apic. Res. 2018, 57, 639–647. [Google Scholar] [CrossRef]
- Papotti, G.; Bertelli, D.; Bortolotti, L.; Plessi, M. Chemical and Functional Characterization of Italian Propolis Obtained by Different Harvesting Methods. J. Agric. Food Chem. 2012, 60, 2852–2862. [Google Scholar] [CrossRef]
- Aliboni, A.; D’Andrea, A.; Massanisso, P. Propolis Specimens from Different Locations of Central Italy: Chemical Profiling and Gas Chromatography−Mass Spectrometry (GC−MS) Quantitative Analysis of the Allergenic Esters Benzyl Cinnamate and Benzyl Salicylate. J. Agric. Food Chem. 2011, 59, 282–288. [Google Scholar] [CrossRef]
- Popova, M.P.; Bankova, V.S.; Bogdanov, S.; Tsvetkova, I.; Naydenski, C.; Marcazzan, G.L.; Sabatini, A.-G. Chemical Characteristics of Poplar Type Propolis of Different Geographic Origin. Apidologie 2007, 38, 306–311. [Google Scholar] [CrossRef]
- Parco Nazionale Foreste Casentinesi. Popolus spp. Available online: https://www.parcoforestecasentinesi.it/sites/default/files/Quattordicesima.pdf (accessed on 2 September 2024).
- Zhang, C.-p.; Huang, S.; Wei, W.-t.; Ping, S.; Shen, X.-g.; Li, Y.-j.; Hu, F.-l. Development of High-Performance Liquid Chromatographic for Quality and Authenticity Control of Chinese Propolis. J. Food Sci. 2014, 79, C1315–C1322. [Google Scholar] [CrossRef]
- Tolba, M.F.; Azab, S.S.; Khalifa, A.E.; Abdel-Rahman, S.Z.; Abdel-Naim, A.B. Caffeic Acid Phenethyl Ester, a Promising Component of Propolis with a Plethora of Biological Activities: A Review on Its Anti-inflammatory, Neuroprotective, Hepatoprotective, and Cardioprotective Effects. IUBMB Life 2013, 65, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, A.; Faraloni, C.; Venturini, S.; Baini, G.; Miraldi, E.; Biagi, M. Characterization of Phenolic Profile and Antioxidant Activity of the Leaves of the Forgotten Medicinal Plant Balsamita major Grown in Tuscany, Italy, during the Growth Cycle. Plant Biosyst.—Int. J. Deal. All Asp. Plant Biol. 2021, 155, 908–913. [Google Scholar] [CrossRef]
- Pressi, G.; Bertaiola, O.; Guarnerio, C.; Barbieri, E.; Rigillo, G.; Governa, P.; Biagi, M.; Guzzo, F.; Semenzato, A. In Vitro Cell Culture of Rhus coriaria L.: A Standardized Phytocomplex Rich of Gallic Acid Derivatives with Antioxidant and Skin Repair Activity. Cosmetics 2022, 9, 12. [Google Scholar] [CrossRef]
- Biagi, M.; Collodel, G.; Corsini, M.; Pascarelli, N.A.; Moretti, E. Protective Effect of Propolfenol® on Induced Oxidative Stress in Human Spermatozoa. Andrologia 2018, 50, e12807. [Google Scholar] [CrossRef] [PubMed]
- Kasote, D.; Bankova, V.; Viljoen, A.M. Propolis: Chemical Diversity and Challenges in Quality Control. Phytochem. Rev. 2022, 21, 1887–1911. [Google Scholar] [CrossRef]
- Matsuda, A.H.; de Almeida-Muradian, L.B. Validated Method for the Quantification of Artepillin-C in Brazilian Propolis. Phytochem. Anal. 2008, 19, 179–183. [Google Scholar] [CrossRef]
- Blicharska, N.; Seidel, V. Chemical Diversity and Biological Activity of African Propolis. In Progress in the Chemistry of Organic Natural Products 109; Springer: Cham, Switzerland, 2019; pp. 415–450. [Google Scholar]
- Kalogeropoulos, N.; Konteles, S.J.; Troullidou, E.; Mourtzinos, I.; Karathanos, V.T. Chemical Composition, Antioxidant Activity and Antimicrobial Properties of Propolis Extracts from Greece and Cyprus. Food Chem. 2009, 116, 452–461. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Anastasiadou, P.; Papadopoulos, A.; Machera, K. Revisiting Greek Propolis: Chromatographic Analysis and Antioxidant Activity Study. PLoS ONE 2017, 12, e0170077. [Google Scholar] [CrossRef]
- Kumazawa, S.; Bonvehí, J.S.; Torres, C.; Mok-Ryeon, A.; Bermejo, F.J.O. Chemical and Functional Characterisation of Propolis Collected from East Andalusia (Southern Spain). Phytochem. Anal. 2013, 24, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Saftić, L.; Peršurić, Ž.; Fornal, E.; Pavlešić, T.; Kraljević Pavelić, S. Targeted and Untargeted LC-MS Polyphenolic Profiling and Chemometric Analysis of Propolis from Different Regions of Croatia. J. Pharm. Biomed. Anal. 2019, 165, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Finetti, F.; Biagi, M.; Ercoli, J.; Macrì, G.; Miraldi, E.; Trabalzini, L. Phaseolus vulgaris L. var. Venanzio Grown in Tuscany: Chemical Composition and In Vitro Investigation of Potential Effects on Colorectal Cancer. Antioxidants 2020, 9, 1181. [Google Scholar] [CrossRef] [PubMed]
- Governa, P.; Biagi, M. Copaifera langsdorffii Desf.: In Vitro Investigation on Anti-Helicobacter pylori and Anti-Inflammatory Activities of Oleoresin and Fruit Methanolic Extract. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2020, 154, 117–124. [Google Scholar] [CrossRef]
- Sberna, G.; Biagi, M.; Marafini, G.; Nardacci, R.; Biava, M.; Colavita, F.; Piselli, P.; Miraldi, E.; D’Offizi, G.; Capobianchi, M.R.; et al. In Vitro Evaluation of Antiviral Efficacy of a Standardized Hydroalcoholic Extract of Poplar Type Propolis against SARS-CoV-2. Front. Microbiol. 2022, 13, 799546. [Google Scholar] [CrossRef]
- PCA-Scikit Learn. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html (accessed on 2 September 2024).
- Matplotlib. Available online: https://matplotlib.org/ (accessed on 2 September 2024).
Sample Code | TPs (% w/w) | TFs (% w/w) | Sample Code | TPs (% w/w) | TFs (% w/w) |
---|---|---|---|---|---|
N1 | 5.34 ± 0.64 | 3.38 ± 0.17 | C10 | 23.84 ± 1.08 | 21.78 ± 1.78 |
N2 | 21.86 ± 3.07 | 18.13 ± 0.06 | C11 | 22.70 ± 2.06 | 19.63 ± 2.36 |
N3 | 10.45 ± 1.88 | 9.26 ± 0.18 | C12 | 27.36 ± 3.35 | 21.42 ± 0.98 |
N4 | 18.20 ± 2.09 | 11.04 ± 0.37 | C13 | 16.58 ± 1.61 | 11.60 ± 0.14 |
N5 | 14.78 ± 3.28 | 12.28 ± 0.63 | S1 | 27.88 ± 4.24 | 24.28 ± 3.27 |
C1 | 28.31 ± 4.61 | 26.64 ± 2.01 | S2 | 21.41 ± 2.58 | 16.65 ± 0.05 |
C2 | 23.24 ± 4.74 | 21.29 ± 0.02 | S3 | 22.53 ± 2.06 | 19.90 ± 0.65 |
C3 | 22.67 ± 4.28 | 18.15 ± 0.60 | S4 | 8.26 ± 2.19 | 5.33 ± 0.01 |
C4 | 27.85 ± 6.44 | 20.70 ± 2.16 | S5 | 12.10 ± 1.04 | 11.39 ± 0.01 |
C5 | 36.41 ± 0.30 | 18.33 ± 2.29 | S6 | 20.14 ± 2.30 | 16.56 ± 0.90 |
C6 | 31.45 ± 4.82 | 25.65 ± 3.74 | S7 | 19.64 ± 0.22 | 17.67 ± 0.04 |
C7 | 31.90 ± 5.78 | 20.50 ± 1.45 | I1 | 3.68 ± 0.37 | 3.57 ± 0.12 |
C8 | 21.67 ± 2.30 | 18.94 ± 0.24 | I2 | 3.04 ± 0.15 | 0.90 ± 0.10 |
C9 | 20.82 ± 2.01 | 20.43 ± 0.06 |
Geographical Region | TPs (% w/w) | TFs (% w/w) | Flavonoid/Polyphenol Ratio |
---|---|---|---|
N | 14.13 ± 6.47 a | 10.82 ± 5.32 a | 0.76 ± 0.13 a |
C | 25.75 ± 5.41 b | 20.39 ± 3.65 b | 0.81 ± 0.13 a |
S | 18.85 ± 6.60 ab | 15.97 ± 6.09 ab | 0.83 ± 0.10 a |
I | 3.36 ± 0.45 c | 2.24 ± 1.89 c | 0.63 ± 0.48 a |
Sample Code | PIN (% w/w) | CHR and GAL (% w/w) | CAPE (% w/w) | Samples Code | PIN (% w/w) | CHR and GAL (% w/w) | CAPE (% w/w) |
---|---|---|---|---|---|---|---|
N1 | 1.04 ± 0.14 | 0.60 ± 0.01 | 0.86 ± 0.41 | C10 | 10.16 ± 0.05 | 8.67 ± 0.14 | 1.65 ± 0.05 |
N2 | 8.20 ± 0.16 | 2.79 ± 0.17 | 1.30 ± 0.04 | C11 | 9.30 ± 0.08 | 10.03 ± 0.34 | 1.70 ±0.04 |
N3 | 2.28 ± 0.10 | 2.52 ± 0.07 | 0.96 ± 0.03 | C12 | 11.27 ± 0.05 | 7.13 ± 0.13 | 1.62 ± 0.07 |
N4 | * coeluition | <0.05 | 0.81 ± 0.03 | C13 | 4.91 ± 0.05 | 3.15 ± 0.07 | 1.01 ± 0.05 |
N5 | 5.53± 0.03 | 4.87 ± 0.11 | 1.37 ± 0.01 | S1 | 9.87 ± 0.32 | 12.22 ± 0.13 | 1.93 ± 0.05 |
C1 | 10.07 ± 0.12 | 9.38 ± 0.15 | 1.52 ± 0.02 | S2 | 8.14 ± 0.15 | 4.55 ± 0.01 | 1.96 ± 0.05 |
C2 | 8.16 ± 0.15 | 5.68 ± 0.10 | 1.80 ± 0.02 | S3 | 8.33 ± 0.03 | 6.24 ± 0.10 | 1.43 ± 0.01 |
C3 | 6.88 ± 0.09 | 5.38 ± 0.01 | 1.16 ± 0.01 | S4 | 3.08 ± 0.01 | 1.20 ± 0.03 | 1.59 ± 0.03 |
C4 | 8.05 ± 0.09 | 6.11 ± 0.18 | 1.53 ± 0.01 | S5 | 5.13 ± 0.22 | 2.63 ± 0.12 | 1.54 ± 0.05 |
C5 | 8.01 ± 0.24 | 6.58 ± 0.42 | 1.37 ± 0.01 | S6 | 8.01 ± 0.84 | 7.53 ± 0.42 | 1.74 ± 0.21 |
C6 | 11.53 ± 0.12 | 10.02 ± 0.40 | 1.57 ± 0.01 | S7 | 7.13 ± 0.13 | 7.70 ± 0.14 | 1.17 ± 0.07 |
C7 | 5.14 ± 0.17 | 4.31 ± 0.18 | 1.19 ± 0.01 | I1 | 1.46 ± 0.10 | 0.28 ± 0.01 | 0.14 ± 0.03 |
C8 | 9.97 ± 0.03 | 4.57 ± 0.04 | 1.54 ± 0.43 | I2 | 0.24 ± 0.11 | 0.07 ± 0.01 | 0.10 ± 0.01 |
C9 | 10.95 ± 0.13 | 6.47 ± 0.27 | 1.96 ± 0.41 |
Geographical Region | PIN (% w/w) | PIN/TF Ratio | CHR and GAL (% w/w) | CHR and GAL/TF Ratio | CAPE (% w/w) | CAPE/TP Ratio |
---|---|---|---|---|---|---|
N | 4.26 ± 3.24 a | 0.29 ± 0.19 a | 2.16 ± 1.93 a | 0.20 ± 0.15 a | 1.06 ± 0.26 a | 0.09 ± 0.04 a |
C | 8.80 ± 2.18 b | 0.43 ± 0.08 a | 6.73 ± 2.22 b | 0.33 ± 0.08 ab | 1.51 ± 0.27 b | 0.06 ± 0.02 ab |
S | 7.10 ± 2.28 ab | 0.46 ± 0.06 a | 6.01 ± 3.66 b | 0.35 ± 0.11 b | 1.62 ± 0.28 b | 0.10 ± 0.05 a |
I | 0.85 ± 0.86 c | 0.34 ± 0.10 a | 0.18 ± 0.15 c | 0.08 ± 0.01 ca | 0.12 ± 0.03 c | 0.04 ± 0.01 ab |
Samples | IC50 (µg/mL) | Samples | IC50 (µg/mL) |
---|---|---|---|
N1 | 67.27 | C10 | 23.67 |
N2 | 27.34 | C11 | 26.78 |
N3 | 40.76 | C12 | 18.92 |
N4 | 37.78 | C13 | 32.42 |
N5 | 33.48 | S1 | 21.93 |
C1 | 25.82 | S2 | 32.71 |
C2 | 30.04 | S3 | 29.48 |
C3 | 26.80 | S4 | 100.16 |
C4 | 27.09 | S5 | 64.75 |
C5 | 24.12 | S6 | 26.24 |
C6 | 27.70 | S7 | 30.46 |
C7 | 26.18 | I1 | 162.67 |
C8 | 36.13 | I2 | 220.59 |
C9 | 24.25 |
Geographical Region | IC50 |
---|---|
N | 41.33 ± 15.36 a |
C | 26.46 ± 4.09 a |
S | 43.68 ± 28.60 a |
I | 191.63 ± 40.96 b |
Samples Code | Area of Origin | Gps Coordinates | Region | Samples Code | Area of Origin | Gps Coordinates | Region |
---|---|---|---|---|---|---|---|
N1 | Valdilana (BI) | 45°39′25.66″ N 8°09′01.85″ E | Piedmont | C10 | Arcidosso (GR) | 42°52′20″ N 11°32′15″ E | Tuscany |
N2 | Arcisate (VA) | 45°51′18.98″ N 8°52′03.3″ E | Lombardia | C11 | Castello delle Forme, Marsciano (PG) | 42°58′47.06″ N 12°21′22.21″ E | Umbria |
N3 | Castellanza (VA) | 45°37′ N 8°54′ E | Lombardia | C12 | Deruta (PG) | 42°59′ N 12°25′ E | Umbria |
N4 | Pergine Valsugana (TN) | 46°04′ N 11°14′ E | Trentino-Alto Adige | C13 | Norma, Monti Lepini (LT) | 41°35′ N 12°58′ E | Lazio |
N5 | Castel San Pietro Terme (BO) | 44°23′52″ N 11°35′22″ E | Emilia-Romagna | S1 | Bellante (TE) | 42°45′ N 13°48′ E | Abruzzo |
C1 | Quarrata (PT) | 43°50′51″ N 10°59′00″ E | Tuscany | S2 | Massiccio Del Matese | 41°26′59.87″ N 14°22′19.21″ E | Molise/Campania |
C2 | Firenze Valdarno (FI) | 43°39′24″ N 11°26′58″ E | Tuscany | S3 | Campobasso (CB) | 41°33′39.6″ N 14°40′06.24″ E | Molise |
C3 | Figline Valdarno (FI) | 43°37′ N 11°28′ E | Tuscany | S4 | Rodi Garganico (FG) | 41°55′19.9″ N 15°52′37.86″ E | Puglia |
C4 | Grassina Ponte a Ema (FI) | 43°44′22.42″ N 11°17′51.73″ E | Tuscany | S5 | San Severo (FG) | 41°41′42.4″ N 15°22′45.4″ E | Puglia |
C5 | Greve in Chianti (FI) | 43°35′ N 11°19′ E | Tuscany | S6 | San Basile (CS) | 39°48′34.56″ N 16°09′47.81″ E | Calabria |
C6 | Reggello (FI) | 43°41′ N 11°32′ E | Tuscany | S7 | Cicala (CZ) | 39°01′19.88″ N 16°29′09.96″ E | Calabria |
C7 | San Polo in Chianti (FI) | 43°40′18.13″ N 11°21′46.13″ E | Tuscany | I1 | Isola di Capraia (LI) | 43°02′55.32″ N 9°50′25.08″ E | Tuscany |
C8 | Batignano (GR) | 42°52′02.22″ N 11°09′57.84″ E | Tuscany | I2 | Pianoconte (ME) | 38°28′38.2″ N 14°55′43.8″ E | Sicily |
C9 | Montorsaio (GR) | 42°53′26″ N 11°12′13″ E | Tuscany |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miraldi, E.; Cappellucci, G.; Baini, G.; Pistone, E.S.; Allodi, M.; Costantino, G.; Spaggiari, C.; Biagi, M. Chemical Markers in Italian Propolis: Chrysin, Galangin and CAPE as Indicators of Geographic Origin. Plants 2024, 13, 2734. https://doi.org/10.3390/plants13192734
Miraldi E, Cappellucci G, Baini G, Pistone ES, Allodi M, Costantino G, Spaggiari C, Biagi M. Chemical Markers in Italian Propolis: Chrysin, Galangin and CAPE as Indicators of Geographic Origin. Plants. 2024; 13(19):2734. https://doi.org/10.3390/plants13192734
Chicago/Turabian StyleMiraldi, Elisabetta, Giorgio Cappellucci, Giulia Baini, Elia Silvia Pistone, Marika Allodi, Gabriele Costantino, Chiara Spaggiari, and Marco Biagi. 2024. "Chemical Markers in Italian Propolis: Chrysin, Galangin and CAPE as Indicators of Geographic Origin" Plants 13, no. 19: 2734. https://doi.org/10.3390/plants13192734
APA StyleMiraldi, E., Cappellucci, G., Baini, G., Pistone, E. S., Allodi, M., Costantino, G., Spaggiari, C., & Biagi, M. (2024). Chemical Markers in Italian Propolis: Chrysin, Galangin and CAPE as Indicators of Geographic Origin. Plants, 13(19), 2734. https://doi.org/10.3390/plants13192734