Variation in Thickness of Embryo Covering Structures and Their Role in the Regulation of Seed Physiological Dormancy of Chenopodium hircinum (Amaranthaceae)
Abstract
:1. Introduction
2. Results
2.1. Seed Traits
2.2. Seed Dormancy and Germination
3. Discussion
4. Materials and Methods
4.1. Study Species and Seed Collection
4.2. Seed Traits
4.3. Role of Embryo Covering Structures in Dormancy Regulation and Seed Germination
4.4. Dormancy-Breaking Treatments
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grenfell-Shaw, L.; Tester, M. Abiotic stress tolerance in quinoa. In The Quinoa Genome; Compendium of Plant Genomes; Schmöckel, S.M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 139–167. [Google Scholar]
- Ruiz, K.B.; Biondi, S.; Oses, R.; Acuña-Rodríguez, I.S.; Antognoni, F.; Martínez-Mosqueira, E.A.; Coulibaly, A.; Canahua-Murillo, A.; Pinto, M.; Zurita-Silva, A.; et al. Quinoa biodiversity and sustainability for food security under climate change. A review. Agron. Sustain. Dev. 2014, 34, 349–359. [Google Scholar] [CrossRef]
- Toderich, K.; Kravtsova, T.; Gasimova, K.; Alizade, V.; Yakovleva, O.; Ozturk, M. Seed heteromorphism and germination in Chenopodium quinoa Willd. related to crop introduction in marginalized environments. Pak. J. Bot. 2023, 55, 1459–1475. [Google Scholar] [CrossRef] [PubMed]
- Curti, R.N.; Ortega-Baes, P.; Ratto, S.; Bertero, D. Harnessing phenological traits of wild ancestor Chenopodium hircinum to improve climate adaptation of quinoa. Crop Pasture Sci. 2023, 74, 1058–1068. [Google Scholar] [CrossRef]
- Curti, R.N.; Ortega-Baes, P.; Sajama, J.; Jarvis, D.; Jellen, E.; Tester, M.; Bertero, D. Exploration and Collection of Quinoa’s Wild Ancestor in Argentina. In Biosaline Agriculture as a Climate Change Adaptation for Food Security; Springer International Publishing: Cham, Switzerland, 2022; pp. 167–178. [Google Scholar]
- Baskin, J.M.; Baskin, C.C. A classification system for seed dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Elsevier/Academic Press: San Diego, CA, USA, 2014; p. 1586. [Google Scholar]
- Bewley, J.D.; Black, M. Seeds: Physiology of Development and Germination; Plenum Press: New York, NY, USA, 1994; p. 387. [Google Scholar]
- Debeaujon, I.; Lepiniec, L.; Pourcel, L.; Routaboul, J.M. Seed coat development and dormancy. In Annual Plant Reviews Volume 27: Seed Development, Dormancy and Germination; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; pp. 25–49. [Google Scholar]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Koyro, H.W.; Eisa, S.S. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil 2008, 302, 79–90. [Google Scholar] [CrossRef]
- Ceccato, D.; Bertero, D.; Batlla, D.; Galati, B. Structural aspects of dormancy in quinoa (Chenopodium quinoa): Importance and possible action mechanisms of the seed coat. Seed Sci. Res. 2015, 25, 267–275. [Google Scholar] [CrossRef]
- Bruno, M.C.; Whitehead, W.T. Chenopodium cultivation and Formative period agriculture at Chiripa, Bolivia. Lat. Am. Antiq. 2003, 14, 339–355. [Google Scholar] [CrossRef]
- Burrieza, H.P.; López-Fernández, M.P.; Maldonado, S. Analogous reserve distribution and tissue characteristics in quinoa and grass seeds suggest convergent evolution. Front. Plant Sci. 2014, 5, 546. [Google Scholar] [CrossRef]
- Ninfali, P.; Panato, A.; Bortolotti, F.; Valentini, L.; Gobbi, P. Morphological analysis of the seeds of three pseudocereals by using light microscopy and ESEM-EDS. Eur. J. Histochem. 2020, 64, 3075. [Google Scholar] [CrossRef]
- Prego, I.; Maldonado, S.; Otegui, M. Seed structure and localization of reserves in Chenopodium quinoa. Ann. Bot. 1998, 82, 481–488. [Google Scholar] [CrossRef]
- Sukhorukov, A.P.; Zhang, M. Fruit and seed anatomy of Chenopodium and related genera (Chenopodioideae, Chenopodiaceae/Amaranthaceae): Implications for evolution and taxonomy. PLoS ONE 2013, 8, e61906. [Google Scholar] [CrossRef] [PubMed]
- López-Fernández, M.P.; Maldonado, S. Quinoa ricinosomes early mark suspensor and endosperm cells destined to die during late seed development. Ann.Bot. 2013, 112, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Loades, E.; Pérez, M.; Turečková, V.; Tarkowská, D.; Strnad, M.; Seville, A.; Kazumi, N.; Leubner-Metzger, G. Distinct hormonal and morphological control of dormancy and germination in Chenopodium album dimorphic seeds. Front. Plant Sci. 2023, 14, 1156794. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, X.; Zhang, M.; Donohue, K.; Hou, M.; Li, J.; Ge, W.; Zho, H.; Ma, L.; Yang, L.; et al. Climate and plant traits alter the relationship between seed dispersal and seed dormancy in alpine environment. Environ. Exp. Bot. 2024, 219, 105660. [Google Scholar] [CrossRef]
- Bertuzzi, T.; López-Spahr, D.; Gómez, C.A.; Sühring, S.; Malagrina, G.; Baskin, C.C.; Galíndez, G. Variation in seed dormancy of Chaco seasonally dry forest species: Effects of seed traits and population environmental conditions. Plants 2023, 12, 1790. [Google Scholar] [CrossRef]
- Fenner, M.; Thompson, K. The Ecology of Seeds; Cambridge University Press: Cambridge, UK, 2005; p. 250. [Google Scholar]
- Curti, R.N.; Bertero, H.D. Botanical context for domestication in South America. In The Quinoa Genoma; Compendium of Plant Genomes; Schmöckel, S.M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 13–31. [Google Scholar]
- Yang, A.; Akhtar, S.S.; Iqbal, S.; Qi, Z.; Alandia, G.; Saddiq, M.S.; Jacobsen, S.E. Saponin seed priming improves salt tolerance in quinoa. J. Agron. Crop Sci. 2018, 204, 31–39. [Google Scholar] [CrossRef]
- Demonsais, L.; Utz-Pugin, A.; Loubery, S.; Lopez-Molina, L. Identification of tannic cell walls at the outer surface of the endosperm upon Arabidopsis seed coat rupture. Plant J. 2020, 104, 567–580. [Google Scholar] [CrossRef]
- Rosbakh, S.; Hülsmann, L.; Weinberger, I.; Bleicher, M.; Poschlod, P. Bleaching and cold stratification can break dormancy and improve seed germination in Cyperaceae. Aquat. Bot. 2019, 158, 103128. [Google Scholar] [CrossRef]
- Tolaba, J.A.; Novara, L. Chenopodiaceae. Aportes Bot. Salta-Ser. Flora 2006, 7, 1–60. [Google Scholar]
- Wilson, H.D. Quinua and relatives (Chenopodium sect. Chenopodium subsect. Celluloid). Econ. Bot. 1990, 44, 92. [Google Scholar] [CrossRef]
- Rasband, W.S.; ImageJ; United States National Institutes of Health. Available online: https://imagej.net/ij/ (accessed on 1 November 2023).
- D’Ambrogio, A. Manual de Técnicas en Histología Vegetal; Hemisferio Sur: Buenos Aires, Argentina, 1986; p. 83. [Google Scholar]
- Zarlavsky, G.E. Histología Vegetal: Técnicas Simples y Complejas; Sociedad Argentina de Botánica: La Plata, Argentina, 2014; p. 198. [Google Scholar]
- International Seed Testing Association-ISTA. International Rules for Seed Testing; The International Seed Testing Association: Bassersdorf, Switzerland, 2017. [Google Scholar]
- Di Rienzo, J.A.; Guzmán, A.W.; Casanoves, F. A multiple-comparisons method based on the distribution of the root node distance of a binary tree. J. Agric. Biol. Environ. Stat. 2002, 7, 129–142. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat Versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina. Available online: http://www.infostat.com.ar (accessed on 1 November 2023).
Population | Viability (%) | Germination (%) | SM (mg) | P (μm) | SC (μm) | En (μm) | ECSs (μm) | ECSs:SM | Water Uptake (%) | |
---|---|---|---|---|---|---|---|---|---|---|
12 h | 24 h | |||||||||
C1 | 96 ± 2 a | 3 ± 3 c | 17.35 ± 0.24 c | 23.10 ± 0.15 c | 49.85 ± 6.04 a | 30.34 ± 0.69 a | 68.17 ± 5.11 a | 3.90 ± 0.31 a | 11.28 ± 1.19 c | 17.15 ± 1.05 c |
C2 | 90 ± 3 a | 16 ± 4 b | 13.63 ± 0.71 d | 19.40 ± 0.36 d | 32.71 ± 5.01 b | 30.09 ± 0.47 a | 49.63 ± 6.53 b | 3.65 ± 0.73 a | 17.37 ± 0.92 b | 25.38 ± 2.91 b |
C3 | 93 ± 2 a | 17 ± 2 b | 21.25 ± 0.62 b | 22.43 ± 0.42 c | 30.90 ± 2.05 b | 30.15 ± 0.49 a | 52.67 ± 2.72 b | 2.44 ± 0.11 b | 19.98 ± 1.22 b | 27.98 ± 2.89 b |
S1 | 98 ± 1 a | 57 ± 9 a | 25.45 ± 0.45 a | 26.60 ± 1.78 b | 23.27 ± 1.30 b | 29.81 ± 0.59 a | 48.66 ± 1.82 b | 1.93 ± 0.11 b | 25.82 ± 0.78 a | 48.08 ± 3.18 a |
S2 | 94 ± 2 a | 1 ± 1 c | 20.90 ± 0.38 b | 32.03 ± 0.71 a | 34.03 ± 4.76 b | 31.09 ± 0.54 a | 66.87 ± 5.99 a | 3.20 ± 0.32 a | 10.52 ± 0.58 c | 16.27 ± 0.80 c |
SM | P | SC | ECSs | %WA | |
---|---|---|---|---|---|
P | 0.53 | ||||
SC | −0.46 | −0.05 | |||
ECSs | −0.17 | 0.36 | 0.91 | ||
%WA | 0.59 | −0.07 | −0.51 | −0.59 | |
%G | 0.59 | −0.05 | −0.52 | −0.58 | 0.94 |
Locality | Population | Latitude (S) | Longitude (O) | Altitude (m.s.m) | Temperature (°C) | Precipitation (mm) |
---|---|---|---|---|---|---|
Cafayate | C1 | 26.06 | 65.97 | 1635 | 17.06 | 160 |
C2 | 26.06 | 65.96 | 1618 | 17.13 | 162 | |
C3 | 26.09 | 65.97 | 1612 | 17.04 | 171 | |
San Carlos | S1 | 25.88 | 65.93 | 1634 | 17.25 | 175 |
S2 | 25.90 | 65.93 | 1623 | 17.27 | 159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agüero-Martínez, P.F.; Cardozo, L.; Gómez, C.A.; López-Spahr, D.; Baskin, C.C.; Bertero, D.; Galíndez, G.; Curti, R. Variation in Thickness of Embryo Covering Structures and Their Role in the Regulation of Seed Physiological Dormancy of Chenopodium hircinum (Amaranthaceae). Plants 2024, 13, 2832. https://doi.org/10.3390/plants13192832
Agüero-Martínez PF, Cardozo L, Gómez CA, López-Spahr D, Baskin CC, Bertero D, Galíndez G, Curti R. Variation in Thickness of Embryo Covering Structures and Their Role in the Regulation of Seed Physiological Dormancy of Chenopodium hircinum (Amaranthaceae). Plants. 2024; 13(19):2832. https://doi.org/10.3390/plants13192832
Chicago/Turabian StyleAgüero-Martínez, Paola Fernanda, Leonardo Cardozo, Carlos A. Gómez, Diego López-Spahr, Carol C. Baskin, Daniel Bertero, Guadalupe Galíndez, and Ramiro Curti. 2024. "Variation in Thickness of Embryo Covering Structures and Their Role in the Regulation of Seed Physiological Dormancy of Chenopodium hircinum (Amaranthaceae)" Plants 13, no. 19: 2832. https://doi.org/10.3390/plants13192832
APA StyleAgüero-Martínez, P. F., Cardozo, L., Gómez, C. A., López-Spahr, D., Baskin, C. C., Bertero, D., Galíndez, G., & Curti, R. (2024). Variation in Thickness of Embryo Covering Structures and Their Role in the Regulation of Seed Physiological Dormancy of Chenopodium hircinum (Amaranthaceae). Plants, 13(19), 2832. https://doi.org/10.3390/plants13192832