The Effect of Water Availability on the Carbon Content of Grain and Above- and Belowground Residues in Common and Einkorn Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Plant Sampling
2.3. Statistical Analysis
3. Results
3.1. Effect of Water Supply on Grain, Straw, and Postharvest Residues
3.2. Effect of Water Supply, Year, and Cultivar on Carbon Content in Grain, Straw, and Postharvest Residues
3.3. The Amount of Carbon in Grain, Straw, and Postharvest Residues
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, S.; He, F.; Tian, D.; Zou, D.; Yan, Z.; Yang, Y.; Zhou, T.; Huang, K.; Shen, H.; Fang, J. Variations and determinants of carbon content in plants: A global synthesis. Biogeosciences 2018, 15, 693–702. [Google Scholar] [CrossRef]
- Radley, G.; Keenleyside, C.; Frelih-Larsen, A. Technical Guidance Handbook—Setting Up and Implementing Result-Based Carbon Farming Mechanisms in the EU; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Gancone, A.; Pubule, J.; Blumberga, D. Valorization methodology for agriculture sector climate change mitigation measures. Environ. Clim. Technol. 2021, 25, 944–954. [Google Scholar] [CrossRef]
- Bumbiere, K.; Diaz Sanchez, F.A.; Pubule, J.; Blumberga, D. Development and assessment of carbon farming solutions. Environ. Clim. Technol. 2022, 26, 898–916. [Google Scholar] [CrossRef]
- Ru, F.Y.; Lu, Y.; Qiqi, L.; Xiaoyu, W.; Baogui, Z.; Hui, X.G. Estimation of stubble biomass in major field crops using residue cutting height. Res. Crops 2018, 19, 1–12. [Google Scholar] [CrossRef]
- He, F.; Shi, L.; Tian, J.; Mei, L. Effects of long-term fertilisation on soil organic carbon sequestration after a 34-year rice-wheat rotation in Taihu lake basin. Plant Soil Environ. 2021, 67, 1–7. [Google Scholar] [CrossRef]
- Sukhoveeva, O.E. Input of organic carbon to soil with post-harvest crop residues. Eurasian Soil Sci. 2022, 55, 810–818. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cheng, Y.H.; Chen, K.E.; Tsay, Y.F. Nitrate transport, signaling, and use efficiency. Annu. Rev. Plant Biol. 2018, 69, 85–122. [Google Scholar] [CrossRef] [PubMed]
- Donald, C.M.; Hamblin, J. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv. Agron. 1976, 28, 361–405. [Google Scholar] [CrossRef]
- Ismail, A.M.A. A Critical analysis of “harvest index”. Qatar Univ. Sci. J 1993, 13, 253–263. [Google Scholar]
- Unger, J.S.; Glasner, C. Cost analysis of chaff harvesting concepts in Germany. Agronomy 2019, 9, 579. [Google Scholar] [CrossRef]
- Weiß, B.D.; Glasner, C. Evaluation of the process steps of pretreatment, pellet production and combustion for an energetic utilization of wheat chaff. Front. Environ. Sci. 2018, 6, 36. [Google Scholar] [CrossRef]
- McCartney, D.H.; Block, H.C.; Dubeski, P.L.; Ohama, A.J. Review: The composition and availability of straw and chaff from small grain cereals for beef cattle in western Canada. Can. J. Anim. Sci. 2006, 86, 443–455. [Google Scholar] [CrossRef]
- De Ridder, N.; Seligman, N.G.; van Keulen, H. Analysis of environmental and species effects on the magnitude of biomass investment in the reproductive effort of annual pasture plants. Oecologia 1981, 49, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Okelana, M.A.O.; Adedipe, N.O. Effects of gibberellic acid, benzyladenine and 2-chloroethylphosphonic acid (CEPA) on growth and fruit abscission in the Cowpea (Vigna unguiculata L.). Ann. Bot. 1982, 49, 485–491. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Schneider, F. Roots are key to increasing the mean residence time of organic carbon entering temperate agricultural soils. Glob. Chang. Biol. 2021, 27, 4921–4934. [Google Scholar] [CrossRef]
- Kätterer, T.; Bolinder, M.A.; Andrén, O.; Kirchmann, H.; Menichetti, L. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric. Ecosyst. Environ. 2011, 141, 184–192. [Google Scholar] [CrossRef]
- Passioura, J.B. Physiology of grain yield in wheat growing on stored water. Funct. Plant Biol. 1976, 3, 559–565. [Google Scholar] [CrossRef]
- Araus, J.L.; Slafer, G.A.; Reynolds, M.P.; Royo, C. Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 2002, 89, 925–940. [Google Scholar] [CrossRef]
- Unkovich, M.; Baldock, J.; Forbes, M. Variability in harvest index of grain crops and potential significance for carbon accounting: Examples from Australian agriculture. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; Volume 105, pp. 173–219. ISBN 978-0-12-381023-6. [Google Scholar]
- Iizumi, T.; Ramankutty, N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 2016, 11, 034003. [Google Scholar] [CrossRef]
- Wimmerová, M.; Hlavinka, P.; Pohanková, E.; Kersebaum, K.C.; Trnka, M.; Klem, K.; Žalud, Z. Is crop growth model able to reproduce drought stress caused by rain-out shelters above winter wheat? Acta Univ. Agric. Silvic. Mendelianae Brun. 2018, 66, 225–233. [Google Scholar] [CrossRef]
- Agricultural Statistical Data Czech Republic. Available online: https://www.czso.cz/csu/czso/final-harvest-figures-2022 (accessed on 7 January 2024).
- Knoema World Data Atlas. Available online: https://knoema.com/atlas/World/topics/Agriculture/Crops-Production-Area-Harvested/Wheat-area-harvested (accessed on 7 January 2024).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; ISBN 9251042195. [Google Scholar]
- Kuresova, G.; Haberle, J.; Svoboda, P.; Wollnerova, J.; Moulik, M.; Chrpova, J.; Raimanova, I. Effects of post-anthesis drought and irrigation on grain yield, canopy temperature and 13C discrimination in common wheat, spelt, and einkorn. Agronomy 2022, 12, 2941. [Google Scholar] [CrossRef]
- Raimanová, I.; Svoboda, P.; Kurešová, G.; Haberle, J. The effect of different post-anthesis water supply on the carbon isotope discrimination of winter wheat grain. Plant Soil Environ. 2016, 62, 329–334. [Google Scholar] [CrossRef]
- Svoboda, P.; Kurešová, G.; Raimanová, I.; Kunzová, E.; Haberle, J. The effect of different fertilization treatments on wheat root depth and length density distribution in a long-term experiment. Agronomy 2020, 10, 1355. [Google Scholar] [CrossRef]
- Haberle, J.; Svoboda, P. Impacts of use of observed and exponential functions of root distribution in soil on water utilization and yield of wheat, simulated with a crop model. Arch. Agron. Soil Sci. 2014, 60, 1533–1542. [Google Scholar] [CrossRef]
- Redin, M.; Recous, S.; Aita, C.; Dietrich, G.; Skolaude, A.C.; Ludke, W.H.; Schmatz, R.; Giacomini, S.J. How the chemical composition and heterogeneity of crop residue mixtures decomposing at the soil surface affects C and N mineralization. Soil Biol. Biochem. 2014, 78, 65–75. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Janzen, H.H.; Gregorich, E.G.; Angers, D.A.; VandenBygaart, A.J. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric. Ecosyst. Environ. 2007, 118, 29–42. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Kammann, C.; Hagemann, N. EBC-Guidelines for the Certification of Biochar Based Carbon Sinks, Version 2.1; Ithaka Institute: Arbaz, Switzerland, 2020; Available online: https://www.european-biochar.org/media/doc/2/c_en_sink-value_2-1.pdf (accessed on 7 January 2024).
- Chirinda, N.; Olesen, J.E.; Porter, J.R. Root carbon input in organic and inorganic fertilizer-based systems. Plant Soil 2012, 359, 321–333. [Google Scholar] [CrossRef]
- Johnson, J.M.-F.; Allmaras, R.R.; Reicosky, D.C. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron. J. 2006, 98, 622–636. [Google Scholar] [CrossRef]
- Adler, E. Lignin chemistry-past, present, and future. Wood Sci. Technol. 1977, 11, 169–218. [Google Scholar] [CrossRef]
- Poorter, H.; Bergkotte, M. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 1992, 15, 221–229. [Google Scholar] [CrossRef]
- Adapa, P.; Tabil, L.; Schoenau, G. Compaction characteristics of barley, canola, oat and wheat straw. Biosyst. Eng. 2009, 104, 335–344. [Google Scholar] [CrossRef]
- Merali, Z.; Collins, S.R.A.; Elliston, A.; Wilson, D.R.; Käsper, A.; Waldron, K.W. Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. Biotechnol. Biofuels 2015, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Larsson, A.; Moldin, A.; Edlund, U. Comparison of lignin distribution, structure, and morphology in wheat straw and wood. Ind. Crops Prod. 2022, 187, 115432. [Google Scholar] [CrossRef]
- Reinelt, L.; Whitaker, J.; Kazakou, E.; Bonnal, L.; Bastianelli, D.; Bullock, J.M.; Ostle, N.J. Drought effects on root and shoot traits and their decomposability. Funct. Ecol. 2023, 37, 1044–1054. [Google Scholar] [CrossRef]
- Brandolini, A.; Hidalgo, A.; Moscaritolo, S. Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. J. Cereal Sci. 2008, 47, 599–609. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A.; Stankowski, S.; Sobolewska, M.; Kępińska-Pacelik, J. Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. Eur. Food Res. Technol. 2021, 247, 1525–1538. [Google Scholar] [CrossRef]
- Clivot, H.; Mouny, J.C.; Duparque, A.; Dinh, J.L.; Denoroy, P.; Houot, S.; Vertès, F.; Trochard, R.; Bouthier, A.; Sagot, S.; et al. Modeling soil organic carbon evolution in long-term arable experiments with AMG model. Environ. Model. Softw. 2019, 118, 99–113. [Google Scholar] [CrossRef]
- Czarnes, S.; Dexter, A.R.; Bartoli, F. Wetting and drying cycles in the maize rhizosphere under controlled conditions. Mechanics of the root-adhering soil. Plant Soil 2000, 221, 253–271. [Google Scholar] [CrossRef]
- Toosi, A.T.; Christensen, B.T. Filling gaps in models simulating carbon storage in agricultural soils: The role of cereal stubbles. Sci. Rep. 2021, 11, 18299. [Google Scholar] [CrossRef]
- Stella, T.; Mouratiadou, I.; Gaiser, T.; Berg-Mohnicke, M.; Wallor, E.; Ewert, F.; Nendel, C. Estimating the contribution of crop residues to soil organic carbon conservation. Environ. Res. Lett. 2019, 14, 094008. [Google Scholar] [CrossRef]
- Shand, W.J.; Ørskov, E.R.; Morrice, L.A.F. Rumen degradation of straw 5. Botanical fractions and degradability of different varieties of oat and wheat straws. Anim. Prod. 1988, 47, 387–392. [Google Scholar] [CrossRef]
- Kernan, J.A.; Coxworth, E.C.; Crowle, W.L.; Spurr, D.T. The nutritional value of crop residue components from several wheat cultivars grown at different fertilizer levels. Anim. Feed Sci. Technol. 1984, 11, 301–311. [Google Scholar] [CrossRef]
- Preece, C.; Livarda, A.; Christin, P.A.; Wallace, M.; Martin, G.; Charles, M.; Jones, G.; Rees, M.; Osborne, C.P. How did the domestication of Fertile Crescent grain crops increase their yields? Funct. Ecol. 2017, 31, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Du, Y.; Wang, J.; Wu, A.; Qiao, S.; Xu, B.; Zhang, S.; Siddique, K.H.M.; Chen, Y. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Front. Plant Sci. 2017, 8, 672. [Google Scholar] [CrossRef] [PubMed]
- Camargo-Alvarez, H.; Elliott, R.J.R.; Olin, S.; Wang, X.; Wang, C.; Ray, D.K.; Pugh, T.A.M. Modelling crop yield and harvest index: The role of carbon assimilation and allocation parameters. Model. Earth Syst. Environ. 2023, 9, 2617–2635. [Google Scholar] [CrossRef]
- Pausch, J.; Kuzyakov, Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Glob. Chang. Biol. 2018, 24, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bláha, L. Importance of root-shoot ratio for crops production. Agron. Agric. Sci. 2019, 2, 12. [Google Scholar] [CrossRef]
- Heinemann, H.; Hirte, J.; Seidel, F.; Don, A. Increasing root biomass derived carbon input to agricultural soils by genotype selection—A review. Plant Soil 2023, 490, 19–30. [Google Scholar] [CrossRef]
- Remus, R.; Augustin, J. Dynamic linking of 14C partitioning with shoot growth allows a precise determination of plant-derived C input to soil. Plant Soil 2016, 408, 493–513. [Google Scholar] [CrossRef]
Factor | Grain | Straw 1 | Chaff | Combine Straw 2 | Stubble | Roots |
---|---|---|---|---|---|---|
t ha−1 | ||||||
Treatment | ||||||
Control | 6.45 ± 2.68 b | 8.06 ± 1.82 b | 1.72 ± 0.53 a | 6.87 ± 1.50 b | 2.32 ± 0.56 a | 3.29 ± 0.49 |
Stress | 4.60 ± 2.14 c | 7.06 ± 1.99 c | 1.35 ± 0.47 b | 6.21 ± 1.88 b | 1.89 ± 0.58 b | 2.97 ± 1.19 |
Irrigation | 6.86 ± 2.48 a | 9.02 ± 2.11 a | 1.85 ± 0.54 a | 8.03 ± 1.99 a | 2.16 ± 0.47 a | 3.69 ± 0.86 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ns |
Year | ||||||
2020 | 6.67 ± 3.09 a | 8.94 ± 1.09 a | 1.98 ± 0.60 a | 7.84 ± 0.90 a | 2.33 ± 0.44 a | 3.18 ± 1.01 b |
2021 | 6.34 ± 2.51 a | 8.83 ± 1.90 a | 1.70 ± 0.26 b | 7.74 ± 1.91 a | 2.28 ± 0.42 a | 3.97 ± 0.70 a |
2022 | 4.90 ± 2.04 b | 6.36 ± 2.09 b | 1.23 ± 0.53 c | 5.53 ± 1.91 b | 1.76 ± 0.61 b | 2.80 ± 0.67 b |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.05 |
Cultivar | ||||||
Artix | 7.63 ± 1.60 a | 7.19 ± 1.86 b | 1.49 ± 0.54 b | 6.33 ± 1.67 b | 1.88 ± 0.43 c | 3.29 ± 1.10 |
Butterfly | 7.37 ± 1.94 a | 8.03 ± 2.01 b | 1.98 ± 0.60 a | 6.93 ± 1.76 b | 2.11 ± 0.69 b | 3.56 ± 0.73 |
Rumona | 2.91 ± 0.70 b | 8.92 ± 2.15 a | 1.44 ± 0.38 b | 7.84 ± 2.10 a | 2.38 ± 0.40 a | 3.10 ± 0.89 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ns |
Factor | Grain | Straw | Chaff | Roots |
---|---|---|---|---|
% | ||||
Treatment | ||||
Control | 45.15 ± 0.70 | 45.74 ± 0.81 b | 42.19 ± 0.58 b | 35.33 ± 4.74 |
Stress | 45.15 ± 0.77 | 46.31 ± 1.12 a | 44.45 ± 1.26 a | 35.52 ± 4.74 |
Irrigation | 44.84 ± 0.95 | 44.92 ± 0.89 c | 41.06 ± 0.85 c | 33.88 ± 4.74 |
p | 0.053 | <0.001 | <0.01 | ns |
Year | ||||
2020 | 45.64 ± 0.54 a | 46.16 ± 1.36 a | 42.74 ± 2.2 a | 36.97 ± 5.27 a |
2021 | 44.90 ± 0.89 b | 45.91 ± 0.62 b | 42.61 ± 1.49 a | 32.01 ± 3.69 b |
2022 | 44.61 ± 0.61 b | 44.90 ± 0.74 c | 42.34 ± 1.48 a | 35.76 ± 3.77 a |
p | <0.001 | <0.001 | ns | <0.01 |
Cultivar | ||||
Artix | 44.63 ± 0.62 c | 45.86 ± 0.59 a | 41.95 ± 1.31 b | 34.63 ± 4.58 |
Butterfly | 45.00 ± 1.01 b | 45.18 ± 0.92 b | 42.71 ± 1.77 ab | 34.02 ± 3.30 |
Rumona | 45.52 ± 0.46 a | 45.93 ± 1.47 a | 43.03 ± 1.95 a | 36.08 ± 5.91 |
p | <0.001 | <0.001 | 0.047 | ns |
Factor | Grain | Straw 1 | Chaff | Combine Straw 2 | Stubble | Roots |
---|---|---|---|---|---|---|
t ha−1 | ||||||
Treatment | ||||||
Control | 2.91 ± 1.22 a | 3.69 ± 0.79 ab | 0.73 ± 0.21 a | 3.17 ± 0.70 ab | 1.06 ± 0.25 a | 1.15 ± 0.14 |
Stress | 2.08 ± 0.97 b | 3.28 ± 0.99 b | 0.60 ± 0.22 b | 2.80 ± 0.87 b | 0.87 ± 0.27 b | 1.03 ± 0.35 |
Irrigation | 3.08 ± 1.16 a | 4.05 ± 0.93 a | 0.76 ± 0.22 a | 3.50 ± 0.85 a | 0.97 ± 0.20 ab | 1.24 ± 0.33 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ns |
Year | ||||||
2020 | 3.05 ± 1.40 a | 4.13 ± 0.44 a | 0.85 ± 0.24 a | 3.55 ± 0.39 a | 1.08 ± 0.19 a | 1.17 ± 0.38 |
2021 | 2.84 ± 1.09 b | 4.05 ± 0.83 a | 0.73 ± 0.11 b | 3.51 ± 0.77 a | 1.05 ± 0.20 a | 1.27 ± 0.22 |
2022 | 2.19 ± 0.89 c | 2.85 ± 0.90 b | 0.52 ± 0.18 c | 2.41 ± 0.77 b | 0.79 ± 0.27 b | 0.99 ± 0.21 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ns |
Cultivar | ||||||
Artix | 3.41 ± 0.73 a | 3.30 ± 0.87 b | 0.63 ± 0.23 b | 2.83 ± 0.77 b | 0.86 ± 0.20 b | 1.11 ± 0.32 |
Butterfly | 3.32 ± 0.89 a | 3.62 ± 0.89 b | 0.85 ± 0.24 a | 3.16 ± 0.77 ab | 0.95 ± 0.32 b | 1.20 ± 0.23 |
Rumona | 1.32 ± 0.33 b | 4.09 ± 0.95 a | 0.62 ± 0.11 b | 3.48 ± 0.90 a | 1.09 ± 0.18 a | 1.10 ± 0.35 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimanova, I.; Svoboda, P.; Moulik, M.; Wollnerova, J.; Haberle, J. The Effect of Water Availability on the Carbon Content of Grain and Above- and Belowground Residues in Common and Einkorn Wheat. Plants 2024, 13, 181. https://doi.org/10.3390/plants13020181
Raimanova I, Svoboda P, Moulik M, Wollnerova J, Haberle J. The Effect of Water Availability on the Carbon Content of Grain and Above- and Belowground Residues in Common and Einkorn Wheat. Plants. 2024; 13(2):181. https://doi.org/10.3390/plants13020181
Chicago/Turabian StyleRaimanova, Ivana, Pavel Svoboda, Michal Moulik, Jana Wollnerova, and Jan Haberle. 2024. "The Effect of Water Availability on the Carbon Content of Grain and Above- and Belowground Residues in Common and Einkorn Wheat" Plants 13, no. 2: 181. https://doi.org/10.3390/plants13020181
APA StyleRaimanova, I., Svoboda, P., Moulik, M., Wollnerova, J., & Haberle, J. (2024). The Effect of Water Availability on the Carbon Content of Grain and Above- and Belowground Residues in Common and Einkorn Wheat. Plants, 13(2), 181. https://doi.org/10.3390/plants13020181