Salt Stress Induces Contrasting Physiological and Biochemical Effects on Four Elite Date Palm Cultivars (Phoenix dactylifera L.) from Southeast Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Plant Culture, and Salinity Stress
2.2. Phenotypical Measurements
2.3. Physiological Measurements
2.3.1. Stomatal Conductance and Chlorophyll Fluorescence
2.3.2. Relative Water Content and Electrolyte Leakage
2.4. Biochemical Measurements
2.4.1. Total Soluble Sugar Content
2.4.2. Proline Contents
2.4.3. Enzymatic Activities
2.4.4. Activity of Catalases
2.4.5. Peroxidases Activity
2.4.6. Total Phenolic Contents
2.4.7. H2O2 Levels
2.4.8. Total Chlorophyll and Anthocyanin Contents
2.4.9. Ion Analysis
2.5. Salt Tolerance Evaluation
2.6. Statistical Analysis
3. Results
3.1. Pheno-Physiological Evaluation
3.2. Biochemical Evaluation
3.2.1. Na+/K+ ratio
3.2.2. Organic Osmolytes Accumulation
3.2.3. TC and TA Contents
3.2.4. Hydrogen Peroxide Accumulation and Antioxidant Enzyme Activities
3.2.5. MFV Values and Genotypes Ranking
3.2.6. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
BFG | Boufeggous |
BSK | Bouskri |
CAT | Catalase |
CCI | Chlorophyll content index |
CF | Chlorophyll fluorescence |
EC | Electrical conductivity |
EDTA | Ethylenediaminetetraacetic acid |
EL | Electrolyte leakage |
H2O2 | Hydrogen peroxide |
HCl | Hydrochloric acid |
HNO3 | Nitric acid |
LA | Leaf area |
MEJ | Mejhoul |
MFV | Membership function value |
NaCl | Sodium chloride |
NJD | Nejda |
PCA | Principal component analysis |
POX | Peroxidases |
PSII | Photosystem II |
PVPP | Polyvinylpolypyrrolidone |
ROS | Reactive oxygen species |
RWC | Relative water content |
SC | Stomatal conductance |
SH. E | Shoot elongation |
STC | Salt tolerance coefficient |
T.SUG | Total soluble sugars |
TA | Total anthocyanin |
TC | Total chlorophyll |
TCA | Trichloroacetic acid |
TPHe | Total phenolic compounds |
References
- Sahbeni, G.; Ngabire, M.; Musyimi, P.K.; Székely, B. Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review. Remote Sens. 2023, 15, 2540. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; de Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Tanji, K.K.; Wallender, W.W. Nature and extent of agricultural salinity and sodicity. In Agricultural Salinity Assessment and Management, 2nd ed.; Wallender, W.W., Tanji, K.K., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 1–26. [Google Scholar]
- Antipolis, S. Les Menaces sur les Sols Dans les Pays Méditerranéens, 1st ed.; Benoit, G., Ed.; Plan Bleu Centre d’activités régionales: Valbonne, France, 2003. [Google Scholar]
- El Ouali, A.; Roubil, A.; Lahrach, A.; Moudden, F.; Ouzerbane, Z.; Hammani, O.; El Hmaidi, A. Assessment of groundwater quality and its recharge mechanisms using hydrogeochemical and isotopic data in the Tafilalet plain (south-eastern Morocco). Mediterr. Geosci. Rev. 2023, 5, 1–14. [Google Scholar] [CrossRef]
- Chakroun, H.; Zemni, N.; Benhmid, A.; Dellaly, V.; Slama, F.; Bouksila, F.; Berndtsson, R. Evapotranspiration in Semi-Arid Climate: Remote Sensing vs. Soil Water Simulation. Sensors 2023, 23, 2823. [Google Scholar] [CrossRef] [PubMed]
- Sedra, M.H. Date Palm Status and Perspective in Morocco. In Date Palm Genetic Resources and Utilization, 1st ed.; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 257–323. [Google Scholar]
- Bouziane, M. Le marché des dattes au Maroc: Prévisions et stratégies de développement. Pack Info 2010, 89, 50–52. [Google Scholar]
- MAPM. Available online: https://www.agriculture.gov.ma/fr/actualites/prodcution-previsionnelle-des-dattes-au-titre-de-la-campagne-agricole-2023-2024 (accessed on 5 January 2024).
- Yaish, M.W.; Kumar, P.P. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front. Plant Sci. 2015, 6, 348. [Google Scholar] [CrossRef]
- Benaffari, W.; Boutasknit, A.; Anli, M.; Ait-El-Mokhtar, M.; Ait-Rahou, Y.; Ben-Laouane, R.; Ben Ahmed, H.; Mitsui, T.; Baslam, M.; Meddich, A. The Native Arbuscular Mycorrhizal Fungi and Vermicompost-Based Organic Amendments Enhance Soil Fertility, Growth Performance, and the Drought Stress Tolerance of Quinoa. Plants 2022, 11, 393. [Google Scholar] [CrossRef]
- Mohanty, A.; Chakraborty, K.; Mondal, S.; Jena, P.; Panda, R.K.; Samal, K.C.; Chattopadhyay, K. Relative contribution of ion exclusion and tissue tolerance traits govern the differential response of rice towards salt stress at seedling and reproductive stages. Environ. Exp. Bot. 2022, 206, 105131. [Google Scholar] [CrossRef]
- Choudhary, S.; Wani, K.I.; Naeem, M.; Khan, M.M.A.; Aftab, T. Cellular Responses, Osmotic Adjustments, and Role of Osmolytes in Providing Salt Stress Resilience in Higher Plants: Polyamines and Nitric Oxide Crosstalk. J. Plant Growth Regul. 2023, 42, 539–553. [Google Scholar] [CrossRef]
- Singh, A.; Rajput, V.D.; Sharma, R.; Ghazaryan, K.; Minkina, T. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environ. Res. 2023, 235, 116585. [Google Scholar] [CrossRef]
- Dabravolski, S.A.; Isayenkov, S.V. The regulation of plant cell wall organisation under salt stress. Front. Plant Sci. 2023, 14, 1118313. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hakeem, K.R.; Nahar, K.; Alharby, H.F. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 1st ed.; Hasanuzzaman, M., Hakeem, K.R., Nahar, K., Alharby, H.F., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Jogawat, A. Osmolytes and Their Role in Abiotic Stress Tolerance in Plants. In Molecular Plant Abiotic Stress, 1st ed.; Roychoudhury, A., Tripathi, D., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 91–104. [Google Scholar]
- Alotaibi, K.D.; Alharbi, H.A.; Yaish, M.W.; Ahmed, I.; Alharbi, S.A.; Alotaibi, F.; Kuzyakov, Y. Date palm cultivation: A review of soil and environmental conditions and future challenges. Land Degrad. Dev. 2023, 34, 2431–2444. [Google Scholar] [CrossRef]
- Alshiekheid, M.A.; Dwiningsih, Y.; Alkahtani, J. Analysis of Morphological, Physiological, and Biochemical Traits of Salt Stress Tolerance in Asian Rice Cultivars at Different Stages. Preprints 2023, 2023030251. [Google Scholar] [CrossRef]
- Sedra, M.H.; El Filali, H.; Benzine, A.; Allaoui, M.; Nour, S.; Boussak, Z. La palmeraie marocaine: Evaluation du patrimoine phénicicole. Fruits 1996, 51, 247–259. [Google Scholar]
- Sedra, M. Le Palmier Dattier Base de la Mise en Valeur des Oasis au Maroc, 1st ed.; INRA: Rabat, Morocco, 2001. [Google Scholar]
- Benaceur, I.; Admishi, Y.; Baha, L.; Meziani, R.; Jaiti, F. Response of a Moroccan Abelmoschus esculentus L. ecotype originated from Tafilalet to salt stress at seed germination and plantlet stages. Plant Physiol. Rep. 2023, 28, 289–298. [Google Scholar] [CrossRef]
- Manette, A.S.; Richard, C.J.; Brett, F.C.; Dolores, W.M. Water relations in winter wheat as drought resistance indicator. Crop Sci. 1988, 28, 526–531. [Google Scholar]
- Sairam, P.K.; Srivastava, G.C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long-term salt stress. Plant Sci. 2002, 162, 897–904. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Benhiba, L.; Fouad, M.O.; Essahibi, A.; Ghoulam, C.; Qaddoury, A. Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought. Trees 2015, 29, 1725–1733. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.M.; Hucl, P.A. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem. 1999, 76, 350–354. [Google Scholar] [CrossRef]
- Wu, H.; Guo, J.; Wang, C.; Li, K.; Zhang, X.; Yang, Z.; Li, M.; Wang, B. An effective screening method and a reliable screening trait for salt tolerance of Brassica napus at the germination stage. Front. Plant Sci. 2019, 10, 530. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Zhou, H. Plant salt response: Perception, signaling, and tolerance. Front. Plant Sci. 2022, 13, 1053699. [Google Scholar] [CrossRef] [PubMed]
- Colin, L.; Ruhnow, F.; Zhu, J.-K.; Zhao, C.; Zhao, Y.; Persson, S. The cell biology of primary cell walls during salt stress. Plant Cell 2023, 35, 201–217. [Google Scholar] [CrossRef]
- Zhu, J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Satheesh, N.; Kherawat, B.S.; Kumar, A.; Kim, H.-U.; Chung, S.-M.; Kumar, M. Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules—Current Perspectives and Future Directions. Plants 2023, 12, 864. [Google Scholar] [CrossRef]
- Alrasbi, S.A.R.; Hussain, N.; Schmeisky, H. Evaluation of the growth of date palm seedlings irrigated with saline water in the Sultanate of Oman. Acta Hortic. 2010, 882, 233–246. [Google Scholar] [CrossRef]
- Ramoliya, P.J.; Pandey, A.N. Soil salinity and water status affect growth of Phoenix dactylifera seedlings. New Zealand J. Crop Hortic. Sci. 2003, 31, 345–353. [Google Scholar] [CrossRef]
- Al Kharusi, L.; Assaha, D.V.M.; Al-Yahyai, R.; Yaish, M.W. Screening of Date Palm (Phoenix dactylifera L.) Cultivars for Salinity Tolerance. Forests 2017, 8, 136. [Google Scholar] [CrossRef]
- Cramer, G.R.; Lynch, J.; Läuchli, A.; Epstein, E. Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings effects of supplemental Ca2+. Plant Physiol. 1987, 83, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Maathuis, F.J.; Amtmann, A. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann. Bot. 1999, 84, 123–133. [Google Scholar] [CrossRef]
- Shabala, S. Regulation of potassium transport in leaves: From molecular to tissue level. Ann. Bot. 2003, 92, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Juan, M.; Rivero, R.M.; Romero, L.; Ruiz, J.M. Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environ. Exp. Bot. 2005, 54, 193–201. [Google Scholar] [CrossRef]
- Tejera, N.A.; Soussi, M.; Lluch, C. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ. Exp. Bot. 2006, 58, 17–24. [Google Scholar] [CrossRef]
- Jin, T.; An, J.; Xu, H.; Chen, J.; Pan, L.; Zhao, R.; Wang, N.; Gai, J.; Li, Y. A soybean sodium/hydrogen exchanger GmNHX6 confers plant alkaline salt tolerance by regulating Na+/K+ homeostasis. Front. Plant Sci. 2022, 13, 938635. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Munshi, A.D.; Kumar, R.; Pandey, R.N.; Arora, A.; Bhat, J.S.; Sureja, A.K. Effect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol. Plant. 2010, 32, 103–114. [Google Scholar] [CrossRef]
- Berthomieu, P.; Conejero, G.; Nublat, A.; Brackenbury, W.J.; Lambert, C.; Savio, C.; Uozumi, N.; Oiki, S.; Yamada, K.; Cellier, F.; et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J. 2003, 22, 2004–2014. [Google Scholar] [CrossRef]
- Li, H.; Feng, H.; He, Y.; Liu, J.; Zhu, Y. Screening of Leaf Mustard (Brassica Juncea L.) Cultivars for Salinity Tolerance. Commun. Soil Sci. Plant Anal. 2023, 54, 2657–2674. [Google Scholar] [CrossRef]
- Madani, S.M.; Piri, S.; Sedaghathoor, S. The Response of Three Mandarin Cultivars Grafted on Sour Orange Rootstock to Salinity Stress. Int. J. Fruit Sci. 2022, 22, 264–274. [Google Scholar] [CrossRef]
- Bhusal, N.; Lee, M.; Lee, H.; Adhikari, A.; Han, A.R.; Han, A.; Kim, H.S. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci. Total Environ. 2021, 779, 146466. [Google Scholar] [CrossRef] [PubMed]
- Sheikh-Mohamadi, M.-H.; Etemadi, N.; Aalifar, M.; Pessarakli, M. Salt stress triggers augmented levels of Na+, K+ and ROS alters salt-related gene expression in leaves and roots of tall wheatgrass (Agropyron elongatum). Plant Physiol. Biochem. 2022, 183, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Lalarukh, I.; Zahra, N.; Shahzadi, A.; Hafeez, M.B.; Shaheen, S.; Kausar, A.; Raza, A. Role of Aminolevulinic Acid in Mediating Salinity Stress Tolerance in Sunflower (Helianthus annuus L.). J. Soil Sci. Plant Nutr. 2023, 23, 5345–5359. [Google Scholar] [CrossRef]
- Talubaghi, M.J.; Daliri, M.S.; Mazloum, P.; Rameeh, V.; Mousavi, A. Effect of salt stress on growth, physiological and biochemical parameters and activities of antioxidative enzymes of rice cultivars. Cereal Res. Commun. 2023, 51, 403–411. [Google Scholar] [CrossRef]
- Karimi, R.; Merati, M.; Shayganfar, A. Phytochemical characterization of five commercial Vitis vinifera cultivars in response to salinity. Acta Physiol. Plant. 2023, 45, 108. [Google Scholar] [CrossRef]
- Hui, T.; Zhang, Y.; Jia, R.; Hu, Y.; Wang, W.; Wang, Y.; Wang, Y.; Zhu, Y.; Yang, L.; Xiang, B. Metabolomic analysis reveals responses of Spirodela polyrhiza L. to salt stress. J. Plant Interact. 2023, 18, 2210163. [Google Scholar] [CrossRef]
- Azeem, M.; Sultana, R.; Mahmood, A.; Qasim, M.; Siddiqui, Z.S.; Mumtaz, S.; Javed, T.; Umar, M.; Adnan, M.Y.; Siddiqui, M.H. Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor. J. Plant Growth Regul. 2023, 42, 5266–5279. [Google Scholar] [CrossRef]
- Abeed, A.H.A.; AL-Huqail, A.A.; Albalawi, S.; Alghamdi, S.A.; Ali, B.; Alghanem, S.M.S.; Al-Haithloul, H.A.S.; Amro, A.; Tammam, S.A.; El-Mahdy, M.T. Calcium nanoparticles mitigate severe salt stress in Solanum lycopersicon by instigating the antioxidant defense system and renovating the protein profile. S. Afr. J. Bot. 2023, 161, 36–52. [Google Scholar] [CrossRef]
- Bhusal, N.; Park, I.H.; Jeong, S.; Choi, B.H.; Han, S.G.; Yoon, T.M. Photosynthetic traits and plant hydraulic dynamics in Gamhong apple cultivar under drought, waterlogging, and stress recovery periods. Sci. Hortic. 2023, 321, 112276. [Google Scholar] [CrossRef]
- Chunthaburee, S.; Dongsansuk, A.; Sanitchon, J.; Pattanagul, W.; Theerakulpisut, P. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi J. Biol. Sci. 2016, 23, 467–477. [Google Scholar] [CrossRef]
- Dabravolski, S.A.; Isayenkov, S.V. The Role of Anthocyanins in Plant Tolerance to Drought and Salt Stresses. Plants 2023, 12, 2558. [Google Scholar] [CrossRef] [PubMed]
- Weishu, W.; Yao, R.; Xingwang, W.; Chaozi, W.; Chenglong, Z.; Zailin, H.; Guanhua, H. Estimating sunflower canopy conductance under the influence of soil salinity. Agric. For. Meteorol. 2022, 314, 108778. [Google Scholar]
- Khatri, K.; Rathore, M.S. Photosystem photochemistry, prompt and delayed fluorescence, photosynthetic responses and electron flow in tobacco under drought and salt stress. Photosynthetica 2019, 57, 61–74. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Hafeez, A.; Rasheed, R.; Hussain, I.; Farooq, U.; Rizwan, M.; Ali, S. Evaluation of physio-morphological and biochemical responses for salt tolerance in wheat (Triticum aestivum L.) cultivars. J. Plant Growth Regul. 2023, 42, 4402–4422. [Google Scholar] [CrossRef]
- Shukry, W.M.; Abu-Ria, M.E.; Abo-Hamed, S.A.; Anis, G.B.; Ibraheem, F. The Efficiency of Humic Acid for Improving Salinity Tolerance in Salt Sensitive Rice (Oryza sativa): Growth Responses and Physiological Mechanisms. Gesunde Pflanz. 2023, 75, 2639–2653. [Google Scholar] [CrossRef]
- Zamljen, T.; Medic, A.; Hudina, M.; Veberic, R.; Slatnar, A. Biostimulative effect of amino acids on the enzymatic and metabolic response of two Capsicum annuum L. cultivars grown under salt stress. Sci. Hortic. 2023, 309, 111713. [Google Scholar] [CrossRef]
- Sivakumar, J.; Sridhar Reddy, M.; Sergeant, K.; Hausman, J.F.; ShaValli Khan, P.S.; Osman Basha, P. Principal component analysis-assisted screening and selection of salt-tolerant tomato genotypes. Plant Physiol. Rep. 2023, 28, 272–288. [Google Scholar] [CrossRef]
- Luyckx, A.; Lutts, S.; Quinet, M. Comparison of salt stress tolerance among two leaf and six grain cultivars of Amaranthus cruentus L. plants. Plants 2023, 12, 3310. [Google Scholar] [CrossRef]
Cultivar | Geographical Distribution | Fruit Characteristics | ||
---|---|---|---|---|
Color | Consistency | Maturity | ||
Mejhoul | Tafilalet-Ziz | Dark brown | Half soft | Late |
Boufeggous | Moroccan oases | Dark brown | Soft | Season |
Nejda | Drâa | Light brown | Half soft | Season |
Bouskri | Draa, Bani, Saghro, Todra | Dark brown | Dry | Mid-late |
Evaluated Parameter | MEJ | BFG | NJD | BSK | |
---|---|---|---|---|---|
Elongation (cm) | 0 mM | 5.02 ± 0.15 a | 9.23 ± 0.2 b | 6.41 ± 0.28 c | 4.95 ± 0.83 a |
154 mM | 0.70 ± 0.29 e | 16.44 ± 0.98 k | 0.63 ± 1.47 e | 5.71 ± 1.12 c | |
Leaf area (cm2) | 0 mM | 32.36 ± 1.23 a | 27.62 ± 0.41 b | 22.1 ± 0.26 d | 26.82 ± 1.81 b |
154 mM | 17.32 ± 1 d | 22.41 ± 0.14 b | 8.2 ± 1.21 a | 20.13 ± 0.14 b | |
Electrolyte leakage (%) | 0 mM | 11.96 ± 0.32 ad | 13.11 ± 0.19 bd | 12.88 ± 1.51 d | 12.06 ± 0.14 d |
154 mM | 52.49 ± 1.38 a | 21.76 ± 1.29 b | 37.98 ± 0.28 c | 24.16 ± 0.25 d | |
Fv/Fm | 0 mM | 0.7425 ± 0.12 a | 0.7625 ± 1.49 a | 0.73 ± 0.41 a | 0.75 ± 0.21 a |
154 mM | 0.57 ± 0.22 a | 0.71 ± 0.41 b | 0.545 ± 1.32 a | 0.72 ± 0.017 b | |
Stomatal conductance (mmol/m2/s) | 0 mM | 82.64 ± 0.05 a | 82.83 ± 0.43 a | 86.94 ± 1.83 b | 67.95 ± 1.26 c |
154 mM | 22.15 ± 1.94 a | 42.96 ± 2.22 b | 19.35 ± 1.31 c | 43.32 ± 1.75 e |
Genotype | Mean MFV | Ranking |
---|---|---|
MEJ | 0.26 | S |
BFG | 0.71 | T |
NJD | 0.27 | S |
BSK | 0.82 | T |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benaceur, I.; Meziani, R.; El Fadile, J.; Hoinkis, J.; Canas Kurz, E.; Hellriegel, U.; Jaiti, F. Salt Stress Induces Contrasting Physiological and Biochemical Effects on Four Elite Date Palm Cultivars (Phoenix dactylifera L.) from Southeast Morocco. Plants 2024, 13, 186. https://doi.org/10.3390/plants13020186
Benaceur I, Meziani R, El Fadile J, Hoinkis J, Canas Kurz E, Hellriegel U, Jaiti F. Salt Stress Induces Contrasting Physiological and Biochemical Effects on Four Elite Date Palm Cultivars (Phoenix dactylifera L.) from Southeast Morocco. Plants. 2024; 13(2):186. https://doi.org/10.3390/plants13020186
Chicago/Turabian StyleBenaceur, Ibtissame, Reda Meziani, Jamal El Fadile, Jan Hoinkis, Edgardo Canas Kurz, Ulrich Hellriegel, and Fatima Jaiti. 2024. "Salt Stress Induces Contrasting Physiological and Biochemical Effects on Four Elite Date Palm Cultivars (Phoenix dactylifera L.) from Southeast Morocco" Plants 13, no. 2: 186. https://doi.org/10.3390/plants13020186
APA StyleBenaceur, I., Meziani, R., El Fadile, J., Hoinkis, J., Canas Kurz, E., Hellriegel, U., & Jaiti, F. (2024). Salt Stress Induces Contrasting Physiological and Biochemical Effects on Four Elite Date Palm Cultivars (Phoenix dactylifera L.) from Southeast Morocco. Plants, 13(2), 186. https://doi.org/10.3390/plants13020186