The Developmental Cycle of Spirodela polyrhiza Turions: A Model for Turion-Based Duckweed Overwintering?
Abstract
:1. Introduction
2. Resting Fronds
2.1. Resting Fronds Still Capable of Growth
2.2. Turions
3. The Developmental Cycle of Spirodela polyrhiza Turions
3.1. Turion Formation
3.1.1. Signals Governing Turion Formation
3.1.2. The Molecular Nature of Turion Formation
The Turion-Inducing Effect of Abscisic Acid
Specific Molecular Events Associated with Turion Formation
Transcriptome Analyses of S. polyrhiza Turion Formation
3.1.3. The Final Product: The Turion
3.2. Turion Dormancy
3.2.1. Innate Dormancy
3.2.2. Innate Dormancy Becomes Imposed Dormancy
3.3. Turion Activation: The Resumption of Growth
3.3.1. Turion Surfacing
3.3.2. Germination and Sprouting
Light Dependence of Turion Germination
Structural Changes Leading to Turion Germination
Ion Requirements of Phytochrome-Mediated Turion Germination
The Role of Starch Breakdown in Germination and Sprouting
Mechanistic Aspects of Reserve Starch Degradation
4. The Turion Biology of S. polyrhiza: A Good Model for Turion-Based Duckweed Overwintering?
4.1. Other Duckweed Turions in Relation to S. polyrhiza
4.2. Other Duckweed Turion-Like Fronds in Relation to S. polyrhiza
4.3. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Sculthorpe, C.D. The Biology of Aquatic Vascular Plants; Edward Arnold: London, UK, 1967; 610p. [Google Scholar]
- Landolt, E. The Family of Lemnaceae—A Monographic Study, Vol. 1. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae) (Vol. 2); 71. Heft; Veröffentlichungen des Geobotanischen Institutes der Eidgenössischen Technischen Hochschule, Stiftung Rübel: Zürich, Switzerland, 1986. [Google Scholar]
- Bog, M.; Appenroth, K.-J.; Sree, K.S. Key to the determination of taxa of Lemnaceae: An update. Nord. J. Bot. 2020, 38, e02658. [Google Scholar] [CrossRef]
- Acosta, K.; Appenroth, K.J.; Borisjuk, L.; Edelman, M.; Heinig, U.; Jansen, M.A.K.; Oyama, T.; Pasaribu, B.; Schubert, I.; Sorrels, S.; et al. Return of the Lemnaceae: Duckweed as a model plant system in the genomics and postgenomics era. Plant Cell 2021, 33, 3207–3234. [Google Scholar] [CrossRef] [PubMed]
- Haigh, A.L.; Gibernau, M.; Maurin, O.; Bailey, P.; Carlsen, M.M.; Hay, A.; Leempoel, K.; McGinnie, C.; Mayo, S.; Morris, S.; et al. Target sequence data shed new light on the infrafamilial classification of Araceae. Am. J. Bot. 2023, 110, 16117. [Google Scholar] [CrossRef]
- Tippery, N.P.; Les, D.H.; Appenroth, K.J.; Sree, K.S.; Crawford, D.J.; Bog, M. Lemnaceae and Orontiaceae are phylogenetically and morphologically distinct from Araceae. Plants 2021, 10, 2639. [Google Scholar] [CrossRef] [PubMed]
- Bog, M.; Appenroth, K.-J.; Sree, K.S. Duckweed (Lemnaceae): Its molecular taxonomy. Front. Sustain. Food Syst. 2019, 3, 117. [Google Scholar] [CrossRef]
- Bog, M.; Sree, K.S.; Fuchs, J.; Hoang, P.T.N.; Schubert, I.; Kuever, J.; Rabenstein, A.; Paolacci, S.; Jansen, M.A.K.; Appenroth, K.-J. A taxonomic revision of Lemna sect. Uninerves (Lemnaceae). Taxon 2020, 69, 56–66. [Google Scholar] [CrossRef]
- Braglia, L.; Lauria, M.; Appenroth, K.-J.; Bog, M.; Breviario, D.; Grasso, A.; Gaazzi, F.; Morell, L. Duckweed species genotyping and interspecific hybrid discovery by tubulin-based polymorphism fingerprinting. Front. Plant Sci. 2021, 12, 625670. [Google Scholar] [CrossRef]
- Braglia, L.; Ceschin, S.; Iannelli, M.A.; Bog, M.; Fabriani, M.; Frugis, G.; Gavazzi, F.; Giani, S.; Mariani, F.; Muzzi, M.; et al. Characterization of the cryptic interspecific hybrid Lemna × mediterranea by an integrated approach provides new insights into duckweed diversity. J. Exp. Bot. 2024, 75, 3092–3110. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Jansen, M.A.K.; Lam, E.; Shoham, T.; Sree, K.S. Important terms in duckweed research defined. Duckweed Forum (ISCDRA Newsl.) 2024, 12, 90–94. Available online: http://www.ruduckweed.org/ (accessed on 14 October 2024).
- Romano, L.E.; Braglia, L.; Iannelli, M.A.; Lee, Y.; Morello, L. A survey of duckweed species in southern Italy provided first occurrences of the hybrid Lemna × mediterranea in the wild. BioRxiv 2024. [Google Scholar] [CrossRef]
- Kandeler, R. Überlebensstrategien bei Wasserlinsen. Biol. Rundsch. 1988, 26, 347–354. [Google Scholar]
- Kim, I. Cellular features of the fronds and turions in Spirodela polyrhiza. Appl. Microsc. 2013, 43, 140–145. [Google Scholar] [CrossRef]
- Tippery, N.P.; Les, D.H. Tiny plants with enormous potential: Phylogeny and evolution of duckweeds. In The Duckweed Genomes; Cao, X., Fourounjian, P., Wang, W., Eds.; Compendium of Plant Genomes; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Ziegler, P.; Sree, K.S.; Appenroth, K.-J. Duckweeds for water remediation and toxicity testing. Toxicol. Environ. Chem. 2016, 98, 1127–1154. [Google Scholar] [CrossRef]
- Ziegler, P.; Sree, K.S.; Appenroth, K.-J. The uses of duckweed in relation to water remediation. Desalination Water Treat. 2017, 63, 327–342. [Google Scholar] [CrossRef]
- Hoang, P.T.N.; Fuchs, J.; Schubert, V.; Tran, T.B.N.; Schubert, I. Chromosome numbers and genome sizes of all 36 duckweed species (Lemnaceae). Plants 2022, 11, 2674. [Google Scholar] [CrossRef]
- Park, H.; Park, J.H.; Lee, Y.; Woo, D.U.; Jeon, H.H.; Sung, Y.W.; Sim, S.; Kim, S.H.; Lee, K.O.; Kim, J.-Y.; et al. Genome of the world’s smallest flowering plant, Wolffia australiana, helps explain its specialized physiology and unique morphology. Commun. Biol. 2021, 4, 900. [Google Scholar] [CrossRef]
- Newton, R.J.; Shelton, D.R.; Disharoon, S.; Duffey, J.E. Turion formation and germination in Spirodela polyrhiza. Am. J. Bot. 1978, 65, 421–428. [Google Scholar] [CrossRef]
- Topp, C.; Henke, R.; Keresztes, A.; Fischer, W.; Eberius MAppenroth, K.J. A novel mechanism of abscission in fronds of Lemna minor L. and the effect of silver ions. Plant Biol. 2011, 13, 517–523. [Google Scholar] [CrossRef]
- Kim, I. Structural differentiation of the connective stalk in Spirodela polyrhiza (L.) Schleiden. Appl. Microsc. 2016, 46, 83–88. [Google Scholar] [CrossRef]
- Sree, K.S.; Sudakaran, S.; Appenroth, K.-J. How fast can angiosperms grow? Species and clonal diversity of growth rates in the genus Wollfia (Lemnaceae). Acta Physiol. Plant. 2015, 37, 204. [Google Scholar] [CrossRef]
- Ziegler, P.; Adelmann, K.; Zimmer, S.; Schmidt, C.; Appenroth, K.-J. Relative in vitro growth rates of duckweeds (Lemnaceae)—The most rapidly growing higher plants. Plant Biol. 2015, 17 (Suppl. 1), 33–41. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, P.; Appenroth, K.J.; Sree, K.S. Survival strategies of duckweeds, the world´s smallest angiosperms. Plants 2023, 12, 2215. [Google Scholar] [CrossRef] [PubMed]
- Landolt, E.; Kandeler, R. The Family of Lemnaceae—A Monographic Study, Vol. 2. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae) (Vol. 4); 95. Heft; Veröffentlichungen des Geobotanischen Institutes der Eidgenössischen Technischen Hochschule, Stiftung Rübel: Zürich, Switzerland, 1987. [Google Scholar]
- Appenroth, K.-J.; Schubert, I.; Sree, K.S. Das Comeback der Wasserlinse. Biol. Rundsch. 2022, 78, 70–75. [Google Scholar]
- Jewell, M.D.; Bell, G. Overwintering and re-emergence in Lemna minor. Aquat. Bot. 2023, 186, 103633. [Google Scholar] [CrossRef]
- Crawford, D.J.; Landolt, E.; Les, D.H.; Kimball, R.T. Speciation in duckweeds (Lemnaceae): Phylogenetic and ecological references. Aliso J. Syst. Florist. Bot. 2006, 22, 231–242. [Google Scholar] [CrossRef]
- Pieterse, A.H.; Bhalla, P.R.; Sabharwal, P.S. Chemical induction of turions in Wolffiella floridana (J.D. Smith) Thompson. Acta Bot. Neerl. 1970, 19, 901–905. [Google Scholar] [CrossRef]
- Godziemba-Czyz, J. Characteristic of vegetative and resting forms in Wolffia arrhiza (L.) Wimm. II. Anatomy, physical and physiological properties. Acta Soc. Bot. Pol. 1970, 39, 421–443. [Google Scholar] [CrossRef]
- Czopek, M. Photosynthesis and respiration of turions and vegetative fronds of Spirodela polyrrhiza. Acta Soc. Bot. Pol. 1967, 36, 87–96. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Opfermann, J.; Hertel, W.; Augsten, H. Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. II. Influence of after-ripening on germination kinetics. J. Plant Physiol. 1989, 135, 274–279. [Google Scholar] [CrossRef]
- Bartley, M.R.; Spence, D.H.N. Dormancy and propagation in helophytes and hydrophytes. Arch. Hydrobiol. Beih. Ergeb. Limnol. 1987, 27, 139–155. [Google Scholar]
- Adamec, L. Ecophysiological characteristics of turions of aquatic plants: A review. Aquat. Bot. 2018, 148, 64–77. [Google Scholar] [CrossRef]
- Jacobs, D.L. An ecological life-history of Spirodela polyrhiza (Greater Duckweed) with emphasis on the turion phase. Ecol. Monogr. 1947, 17, 437–469. [Google Scholar] [CrossRef]
- Henssen, A. Die Dauerorgane von Spirodela polyrrhiza (L.) Schleid. in physiologischer Betrachtung. Flora 1954, 141, 523–566. [Google Scholar] [CrossRef]
- Appenroth, K.-J. Clonal differences in the formation of turions are independent of the specific turion-inducing signal in Spirodela polyrhiza (Great Duckweed). Plant Biol. 2002, 4, 688–693. [Google Scholar] [CrossRef]
- Sree, K.S.; Adelmann, K.; Garcia, C.; Lam, E.; Appenroth, K.-J. Natural variance of salt tolerance and induction of starch accumulation in duckweeds. Planta 2015, 241, 1395–1404. [Google Scholar] [CrossRef]
- Sree, K.S.; Appenroth, K.-J. Starch accumulation in duckweeds (Lemnaceae) induced by nutrient deficiency. Emir. J. Food Agric. 2022, 34, 204–212. [Google Scholar] [CrossRef]
- Bog, M.; Braglia, L.; Morello, L.; Noboa Melo, K.I.; Schubert, I.; Shchepin, O.N.; Sree, K.S.; Xu, S.; Lam, E.; Appenroth, K.J. Strategies for intraspecific genotyping of duckweed: Comparison of five orthogonal methods applied to the Giant Duckweed Spirodela polyrhiza. Plants 2022, 11, 3033. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Adamec, L. Specific turion yields of different clones of Spirodela polyrhiza depend on external phosphate threshholds. Plant Biol. 2015, 17 (Suppl. 1), 125–129. [Google Scholar] [CrossRef]
- Kuehdorf, K.; Jetschke, G.; Ballani, L.; Appenroth, K.-J. The clonal dependence of turion formation in the duckweed Spirodela polyrhiza—An ecogeographical approach. Physiol. Plant. 2014, 150, 46–54. [Google Scholar] [CrossRef]
- Hitsman, H.W.; Simons, A.M. Latitudinal variation in norms of reaction of phenology in the greater duckweed Spirodela polyrhiza. J. Evol. Biol. 2020, 33, 1405–1416. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Hertel, W.; Jungnickel, F.; Augsten, H. Influence of nutrient deficiency and light on turion formation in Spirodela polyrhiza (L.) Schleiden. Biochem. Physiol. Pflanz. 1989, 184, 395–403. [Google Scholar] [CrossRef]
- Appenroth, K.-J. Co-action of temperature and phosphate in inducing turion formation in Spirodela polyrhiza (Great Duckweed). Plant Cell Environ. 2002, 25, 1079–1085. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Nickel, G. Turion formation in Spirodela polyrhiza: The environmental signals that induce the developmental process in nature. Physiol. Plant. 2010, 138, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Olah, V.; Hepp, A.; Lakatos, G.; Meszaros, I. Cadmium-induced turion formation of Spirodela polyrhiza (L.) Schleiden. Acta Biol. Szeged. 2014, 58, 103–108. Available online: https://abs.bibl.u-szeged.hu/index.php/abs/article/view/2824 (accessed on 14 October 2024).
- Susplugas, S.; Srivastava, A.; Strasser, R.J. Changes in the photosynthetic activities during several stages of vegetative growth of Spirodela polyrhiza: Effect of chromate. J. Plant Physiol. 2000, 157, 503–512. [Google Scholar] [CrossRef]
- Strzalek, M.; Kufel, L.; Wysokinska, U. How does Stratiotes aloides L. affect the growth and turion formation of Spirodela polyrhiza (L.) Schleiden? Aquat. Bot. 2019, 154, 45–52. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Teller, S.; Horn, M. Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol. Plant. 1996, 38, 95–106. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Ziegler, P.; Sree, K.S. Accumulation of starch in duckweeds (Lemnaceae), potential energy plants. Physiol. Mol. Biol. Plants 2021, 27, 2621–2633. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Hertel, W.; Augsten, H. Phytochrome control of turion formation in Spirodela polyrhiza L. Schleiden. Ann. Bot. 1990, 66, 163–168. [Google Scholar] [CrossRef]
- Appenroth, K.-J. No photoperiodic control of the formation of turions in eight clones of Spirodela polyrhiza. J. Plant Physiol. 2003, 160, 1329–1334. [Google Scholar] [CrossRef]
- Mejbel, H.S.; Simons, A.M. Aberrant clones: Birth order generates life history diversity in Greater Duckweed Spirodela polyrhiza. Ecol. Evol. 2018, 8, 2021–2031. [Google Scholar] [CrossRef] [PubMed]
- Xyländer, M.; Augsten, H.; Appenroth, K.-J. Influence of nickel on the life cycle of the duckweed Spirodela polyrhiza (L.) Schleiden. J. Plant Physiol. 1993, 142, 208–213. [Google Scholar] [CrossRef]
- Kuehdorf, K.; Appenroth, K.-J. Influence of salinity and high temperature on turion formation in the duckweed Spirodela polyrhiza. Aquat. Bot. 2012, 97, 69–72. [Google Scholar] [CrossRef]
- Chen, K.; Li, G.-J.; Bressan, R.A.; Song, C.-P.; Zhu, J.-K.; Zhao, Y. Abscisic acid dynamics, signalling, and functions in plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef]
- Perry, T.O.; Byrne, O.R. Turion induction in Spirodela polyrrhiza by abscisic acid. Plant Physiol. 1969, 44, 784–785. [Google Scholar] [CrossRef]
- Stewart, G.R. Abscisic acid and morphogenesis in Lemna polyrhiza L. Nature 1969, 221, 61–62. [Google Scholar] [CrossRef]
- Saks, Y.; Negbi, M.; Ilan, I. Involvement of native abscisic acid in the regulation of onset of dormancy in Spirodela polyrrhiza. Aust. J. Plant Physiol. 1980, 7, 73–79. [Google Scholar] [CrossRef]
- Smart, C.C.; Trewavas, A.J. Abscisic-acid-induced turion formation in Spirodela polyrrhiza L. I. Production and development of the turion. Plant Cell Environ. 1983, 6, 507–514. [Google Scholar] [CrossRef]
- Smart, C.C.; Fleming, A.J.; Chaloupkova, K.; Hanke, D.E. The physiological role of abscisic acid in eliciting turion morphogenesis. Plant Physiol. 1995, 108, 623–632. [Google Scholar] [CrossRef]
- Adamec, L.; Plackova, L.; Bitomsky, M.; Dolezal, K. Hormonal profiles in dormant turions of 22 aquatic plant species: Do they reflect functional or taxonomic traits? Ann. Bot. 2024, 134, 219–231. [Google Scholar] [CrossRef]
- Smart, C.; Longland, J.; Trewavas, A. The turion: A biological probe for the molecular action of abscisic acid. In Molecular Biology of Plant Growth Control; Fox, J.E., Jacobs, M., Eds.; Alan Liss: New York, NY, USA, 1987; pp. 345–359. ISBN 0-8451-2643-1. [Google Scholar]
- Smart, C.C. Molecular analysis of turion formation in Spirodela polyrrhiza: A model system for dormant bud induction. In Plant Dormancy; Lang, G.A., Ed.; CAB International: New York, NY, USA, 1996; pp. 269–281. [Google Scholar]
- Pan, W.; Liang, J.; Sui, J.; Li, J.; Liu, C.; Xin, Y.; Zhang, Y.; Wang, S.; Zhao, Y.; Zhang, J.; et al. ABA and bud dormancy in perennials: Current knowledge and future perspective. Genes 2021, 12, 1635. [Google Scholar] [CrossRef] [PubMed]
- Smart, C.C.; Trewavas, A.J. Abscisic-acid-induced turion formation in Spirodela polyrrhiza L. II. Ultrastructure of the turion: A stereological analysis. Plant Cell Environ. 1983, 6, 515–522. [Google Scholar] [CrossRef]
- Smart, C.C.; Trewavas, A.J. Abscisic-acid-induced turion formation in Spirodela polyrrhiza L. III. Specific changes in protein synthesis and translatable RNA during turion development. Plant Cell Environ. 1984, 7, 121–132. [Google Scholar] [CrossRef]
- Smart, C.C.; Trewavas, A.J. Abscisic-acid-induced turion formation in Spirodela polyrrhiza L. IV. Comparative ion flux characteristics of the turion and the vegetative frond and the effect of ABA during early turion development. Plant Cell Environ. 1984, 7, 521–553. [Google Scholar] [CrossRef]
- Longland, J.M.; Fry, S.C.; Trewavas, A.J. Developmental control of apiogalacturonan biosynthesis and UDP-apiose production in a duckweed. Plant Physiol. 1989, 90, 972–976. [Google Scholar] [CrossRef]
- Smart, C.C.; Fleming, A.J. A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during an abscisic-acid-induced morphogenic response in Spirodela polyrrhiza. Plant J. 1993, 4, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Flores, S.; Smart, C.C. Abscisic acid-induced changes in inositol metabolism in Spirodela polyrrhiza. Planta 2000, 211, 823–832. [Google Scholar] [CrossRef]
- Smart, C.C.; Fleming, A.J. Hormonal and environmental regulation of a plant PDR5-like ABC transporter. J. Biol. Chem. 1996, 271, 19351–19357. [Google Scholar] [CrossRef]
- Chaloupkova, K.; Smart, C.C. The abscisic acid induction of a novel peroxidase is antagonized by cytokinin in Spirodela polyrrhiza L. Plant Physiol. 1994, 105, 497–507. [Google Scholar] [CrossRef]
- Wang, W.; Messing, J. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed). BMC Plant Biol. 2012, 12, 5. [Google Scholar] [CrossRef]
- Stitt, M.; Zeeman, S.C. Starch turnover: Pathways, regulation and role in growth. Curr. Opin. Plant Biol. 2012, 15, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Ballicora, M.A.; Iglesias, A.A.; Preis, J. ADP-glucose pyrophosphorylase: A regulatory enzyme for plant starch synthesis. Photosynth. Res. 2004, 79, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, Y.; Messing, J. RNA-Seq transcriptome analysis of Spirodela dormancy without reproduction. BMC Genom. 2014, 15, 60. [Google Scholar] [CrossRef]
- Pasaribu, B.; Acosta, K.; Aylward, A.; Liang, Y.; Abramson, B.W.; Colt, K.; Hartwick, N.T.; Shanklin, J.; Michael, T.P.; Lam, E. Genomics of turions from the Greater Duckweed reveal its pathways for dormancy and re-emergence strategy. New Phytol. 2023, 239, 116–131. [Google Scholar] [CrossRef]
- Pasaribu, B.; Lam, E. Transcriptome of mature turions reveals duckweed survival strategy. Resolving the transcriptome landscape in dormant turions of Spirodela polyrhiza: Commentary: Finding molecular clues to the mystery of duckweed survival. Duckweed Forum (ISCDRA Newsl.) 2023, 11, 99–104. Available online: http://www.ruduckweed.org/ (accessed on 14 October 2024).
- Li, G.; Chen, Y.; Zhao, X.; Yang, J.; Wang, X.; Li, X.; Hu, S.; Hou, H. Genome-wide analysis of the growth-regulating factor (GRF) family in aquatic plants and their roles in the ABA-induced turion formation of Spirodela polyrhiza. Int. J. Mol. Sci. 2022, 23, 10485. [Google Scholar] [CrossRef]
- Zhao, Z.; Shi, H.J.; Wang, M.L.; Cui, L.; Yang, Z.G.; Zhao, Y. Analysis of DNA methylation of Spirodela polyrhiza/Greater Duckweed) in response to abscisic acid using methylation-sensitive amplified polymorphism. Russ. J. Plant Physiol. 2015, 62, 127–135. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Bergfeld, R. Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. XI. Structural changes during red light induced responses. J. Plant Physiol. 1993, 141, 583–588. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Keresztes, A.; Krzysztofowicz, E.; Gabrys, H. Light-induced degradation of starch granules in turions of Spirodela polyrhiza studied by electron microscopy. Plant Cell Physiol. 2011, 52, 384–391. [Google Scholar] [CrossRef]
- Xu, Y.-L.; Fang, Y.; Li, Q.; Yang, G.-L.; Guo, L.; Chen, G.-K.; Tan, L.; He, K.-Z.; Jin, Y.-L.; Zhao, H. Turion, an innovative duckweed-based starch production system for economical biofuel manufacture. Ind. Crops Prod. 2018, 124, 108–114. [Google Scholar] [CrossRef]
- Xu, Y.-L.; Tan, L.; Guo, L.; Yang, G.-L.; Li, Q.; Lai, F.; He, K.-Z.; Jin, Y.-L.; Du, A.; Fang, Y.; et al. Increasing starch productivity of Spirodela polyrhiza by precisely controlling the spectral composition and nutrient status. Ind. Crops Prod. 2019, 134, 284–291. [Google Scholar] [CrossRef]
- Adamec, L.; Kucerova, A.; Janacek, S. Mineral nutrients, photosynthetic pigments and storage carbohydrates in turions of 21 aquatic plant species. Aquat. Bot. 2020, 165, 103238. [Google Scholar] [CrossRef]
- Ley, S.; Dölger, K.; Appenroth, K.-J. Carbohydrate metabolism as a possible physiological modulator of dormancy in turions of Spirodela polyrhiza (L.) Schleiden. Plant Sci. 1997, 129, 1–7. [Google Scholar] [CrossRef]
- van der Schoot, C.; Rinne, P.L.H. Dormancy cycling at the shoot apical meristem: Transitioning between self-organisation and self-arrest. Plant Sci. 2011, 180, 120–131. [Google Scholar] [CrossRef]
- Chao, W.S.; Foley, M.E.; Horvath, D.P.; Anderson, J.V. Signals regulating dormancy in vegetative buds. Int. J. Plant Dev. Biol. 2007, 1, 49–56. [Google Scholar]
- Graeber, K.; Nakabayashi, K.; Miatton, E.; Leubner-Metzger, G.; Soppe, W.J.J. Molecular mechanisms of seed dormancy. Plant Cell Environ. 2012, 35, 1769–1786. [Google Scholar] [CrossRef] [PubMed]
- Beer, S. Effects of CO2 and O2 on the photosynthetic O2 evolution of Spirodela polyrhiza turions. Plant Physiol. 1985, 79, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Olah, V.; Hepp, A.; Meszaros, I. Temporal dynamics in photosynthetic activity of Spirodela polyrhiza turions during dormancy release and germination. Environ. Exp. Bot. 2017, 136, 50–58. [Google Scholar] [CrossRef]
- Adamec, L. Dark respiration and photosynthesis of dormant and sprouting turions of aquatic plants. Fundam. Appl. Limnol. 2011, 179, 151–158. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Palharini, L.; Ziegler, P. Low-molecular weight carbohydrates modulate dormancy and are required for post-germination growth in turions of Spirodela polyrhiza. Plant Biol. 2013, 15, 284–291. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Gabrys, H. Light-induced starch degradation in non-dormant turions of Spirodela polyrhiza. Photochem. Photobiol. 2001, 73, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Dölger, K.; Tirlapur, U.K.; Appenroth, K.-J. Phytochrome-regulated starch degradation in germinating turions of Spirodela polyrhiza. Photochem. Photobiol. 1997, 66, 124–127. [Google Scholar] [CrossRef]
- Olah, V.; Hepp, A.; Meszaros, I. Comparative study on the sensitivity of turions and active fronds of giant duckweed (Spirodela polyrhiza (L.) Schleiden) to heavy metal treatments. Chemosphere 2015, 132, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Adamec, L. Ecophysiological characterization of dormancy states in turions of the aquatic carnivorous plant Aldrovanda vesiculosa. Biol. Plant. 2003, 47, 395–402. [Google Scholar] [CrossRef]
- Weber, J.A.; Nooden, L.D. The causes of sinking and floating in turions of Myriophyllum verticillatum. Aquat. Bot. 2005, 83, 219–226. [Google Scholar] [CrossRef]
- Jones, D.H.; Atkinson, B.S.; Ware, A.; Sturrock, C.J.; Bishopp, A.; Wells, D.M. Preparation, scanning and analysis of duckweed using X-ray computed microtomography. Front. Plant Sci. 2021, 11, 617830. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Oelmüller, R. Regulation of transcript level and nitrite reductase activity by phytochrome and nitrate in turions of Spirodela polyrhiza. Physiol. Plant. 1995, 93, 272–278. [Google Scholar] [CrossRef]
- Augsten, H.; Kunz, E.; Appenroth, K.-J. Photophysiology of turion germination in Spirodela polyrrhiza (L.) SCHLEIDEN. I. Phytochrome-mediated responses of light- and dark.grown turions. J. Plant Physiol. 1988, 132, 90–93. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Augsten, H. Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. V. Demonstration of a calcium-requiring phase during phytochrome-mediated germination. Photochem. Photobiol. 1990, 52, 61–65. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Gabrys, H. Ion antagonism between calcium and magnesium in phytochrome-mediated degradation of storage starch in Spirodela polyrhiza. Plant Sci. 2003, 165, 1261–1265. [Google Scholar] [CrossRef]
- Tirlapur, U.K.; Dahse, I.; Probandt, R.; Fischer, W.; Appenroth, K.-J. Phytochrome-induced transmissible signal elicits germination response in turions of Spirodela polyrhiza. Physiol. Plant. 1999, 105, 539–545. [Google Scholar] [CrossRef]
- Sokolovski, S.G.; Appenroth, K.-J. Light-induced germination and endogenous ion currents in turions of Spirodela polyrhiza. J. Plant Physiol. 2000, 156, 684–688. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Augsten, H.; Mohr, H. Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. X. Role of nitrate in the phytochrome-mediated response. Plant Cell Environ. 1992, 15, 743–748. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Oelmüller, R.; Schuster, C.; Mohr, H. Regulation of transcript level and synthesis of nitrate reductase by phytochrome and nitrate in turions of Spirodela polyrhiza (L.) Schleiden. Planta 1992, 188, 587–593. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Teller, S. Are NADP-dependent isocitrate dehydrogenases and ferredoxin-dependent glutamate synthase co-regulated by the same photoreceptors? Planta 2004, 218, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Teller, S.; Appenroth, K.-J. The appearance of glutamine synthetase in turions of Spirodela polyrhiza (L.) Schleiden as regulated by blue and red light, nitrate and ammonium. J. Exp. Bot. 1994, 45, 1219–1226. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Augsten, H.; Mattner, A.; Teller, S.; Döhler, G. Effects of UVB irradiation on enzymes of nitrogen metabolism in turions of Spirodela polyrhiza (L.) Schleiden. J. Photochem. Photobiol. B Biol. 1993, 18, 215–220. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Ziegler, P. Light-induced degradation of storage starch in turions of Spirodela polyrhiza depends on nitrate. Plant Cell Environ. 2008, 31, 1460–1469. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Gabrys, H.; Scheuerlein, R.W. Ion antagonism in phytochrome-mediated calcium-dependent germination of turions of Spirodela polyrhiza (L.) Schleiden. Planta 1999, 208, 583–587. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Komusiewicz, J.; Hertel, W.; Augsten, H. Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. VIII. Calcium dependence and β-amylase activity. Planta 1991, 186, 81–87. [Google Scholar] [CrossRef]
- Luka, Z.A.; Xyländer, C.; van Leeuwen, N.; Schmidt, K.-H.; Appenroth, K.-J. Different regulation of β-amylase and starch phosphorylase by light in dormant and non-dormant turions of Spirodela polyrhiza. J. Plant Physiol. 1999, 154, 37–45. [Google Scholar] [CrossRef]
- Reimann, R.; Ritte, G.; Steup, M.; Appenroth, K.-J. Association of α-amylase and the R1 protein with starch granules precedes the initiation of net starch degradation in turions of Spirodela polyrhiza. Physiologia. Plant. 2002, 114, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Beck, E.; Ziegler, P. Biosynthesis and degradation of starch in higher plants. Annu. Rev. Plant Biol. 1989, 40, 95–117. [Google Scholar] [CrossRef]
- Smith, A.M.; Zeeman, S.C.; Smith, S.M. Starch degradation. Annu. Rev. Plant Biol. 2005, 56, 73–98. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, P. Carbohydrate degradation during germination. In Seed Development and Germination; Kigel, J., Galili, G., Eds.; Dekker: New York, NY, USA, 1995; pp. 447–474. [Google Scholar] [CrossRef]
- Reimann, R.; Ziegler, P.; Appenroth, K.-J. The binding of α-amylase to starch plays a decisive role in the initiation of storage starch degradation in turions of Spirodela polyrhiza. Physiol. Plant. 2007, 129, 334–341. [Google Scholar] [CrossRef]
- Zeeman, S.C.; Delatte, T.; Messerli, G.; Umhang, M.; Stettler, M.; Mettler, T.; Streb, S.; Reinhold, H.; Kötting, O. Starch breakdown: Recent discoveries suggest distinct pathways and novel mechanisms. Funct. Plant Biol. 2007, 34, 465–473. [Google Scholar] [CrossRef]
- Zeeman, S.C.; Kossmann, J.; Smith, A.M. Starch: Its metabolism, evolution and biotechnological modification in plants. Annu. Rev. Plant Biol. 2010, 61, 209–234. [Google Scholar] [CrossRef]
- Blennow, A.; Engelsen, S.B.; Nielsen, T.H.; Baunsgaard, L.; Mikkelsen, R. Starch phosphorylation: A new front line in starch research. Trends Plant Sci. 2002, 7, 445–450. [Google Scholar] [CrossRef]
- Hejazi, M.; Steup, M.; Fettke, J. The plastidial glucan, water dikinase (GWD) catalyses multiple phosphotransfer reactions. FEBS J. 2012, 279, 1963–1966. [Google Scholar] [CrossRef]
- Reimann, R.; Hippler, M.; Machelett, B.; Appenroth, K.-J. Light induces phosphorylation of glucan water dikinase, which precedes starch degradation in turions of the duckweed Spirodela polyrhiza. Plant Physiol. 2004, 135, 121–128. [Google Scholar] [CrossRef]
- Appenroth, K.-J. Degradation of storage starch as a photomorphogenetic event: Turions of the duckweed Spirodela polyrhiza represent a novel model system for starch degradation in plants. In IPS News Letter; Matthias-Schleiden-Institute, Friedrich-Schiller-University: Jena, Germany, 2008; pp. 19–28. [Google Scholar]
- Laird, R.A.; Barks, P.M. Skimming the surface: Duckweed as a model system in ecology and evolution. Am. J. Bot. 2018, 105, 1962–1966. [Google Scholar] [CrossRef] [PubMed]
- Appenroth, K.-J.; Ziegler, P.; Sree, K.S. Duckweed as a model organism for investigating plant-microbe interactions in an aquatic environment and its applications. Endocytobiosis Cell Res. 2016, 27, 94–106. [Google Scholar]
- Thingujam, D.; Pajerowska-Mukhtar, K.M.; Mukhtar, M.S. Duckweed: Beyond an efficient plant model system. Biomolecules 2024, 14, 628. [Google Scholar] [CrossRef]
- Olah, V.; Hepp, A.; Meszaros, I. Assessment of Giant Duckweed (Spirodela polyrhiza L. Schleiden) turions as model objects in ecotoxicological applications. Bull. Environ. Contam. Toxicol. 2016, 96, 596–601. [Google Scholar] [CrossRef] [PubMed]
- van Overbeeck, J.; Loeffler, J.E.; Mason, M.I.R. Mode of action of abscisic acid. In Biochemistry and Physiology of Plant Growth Substances; Wightman, F., Setterfield, G., Eds.; Runge Press: Ottawa, ON, Canada, 1968; pp. 1593–1607. Available online: https://archive.org/details/biochemistryphys0000inte_n9i1 (accessed on 4 September 2024).
- Bog, M.; Baumbach, H.; Schween, U.; Hellwig, F.; Landolt, E.; Appenroth, K.-J. Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta 2010, 232, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Docauer, D.M. A Nutrient Basis for the Distribution of the Lemnaceae. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, USA, 1983. [Google Scholar]
- Dudley, J.L. Turion formation in strains of Lemna minor (6591) and Lemna turionifera (6573,A). Aquat. Bot. 1987, 27, 207–215. [Google Scholar] [CrossRef]
- Wang, L.; Li, S.; Sun, L.; Tong, Y.; Yang, L.; Zhu, Y.; Wang, Y. Over-expression of phosphoserine aminotransferase-encoding gene (AtPSAT1) prompts starch accumulation in L. turionifera under nitrogen starvation. Int. J. Mol. Sci. 2022, 23, 11563. [Google Scholar] [CrossRef]
- Wang, L.; Kuang, Y.; Zheng, S.; Tong, Y.; Zhu, Y.; Wang, Y. Overexpression of the phosphoserine phosphatase-encoding gene (AtPSP1) promotes starch accumulation in Lemna turionifera 5511 under sulfur deficiency. Plants 2023, 12, 1012. [Google Scholar] [CrossRef]
- Yu, C.; Zhao, X.; Qi, G.; Bai, Z.; Wang, Y.; Wang, S.; Ma, Y.; Liu, Q.; Hu, R.; Zhou, G. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed. Biotechnol. Biofuels 2017, 10, 167. [Google Scholar] [CrossRef]
- Godziemba-Czyz, J. Characteristic of vegetative and resting forms in Wolffia arrhiza (L.) Wimm. I. Growth and dynamics of their mutual transformations. Acta Soc. Bot. Pol. 1969, 38, 437–452. [Google Scholar] [CrossRef]
- Fujita, M.; Mori, K.; Kodera, T. Nutrient removal and starch production through cultivation of Wolffia arrhiza. J. Biosci. Bioeng. 1999, 87, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Soda, S.; Kawahata, Y.; Takai, Y.; Mishima, D.; Fujita, M. Kinetics of nutrient removal and biomass production by duckweed Wolffia arrhiza in continuous-flow mesocosms. Ecol. Eng. 2013, 57, 210–215. [Google Scholar] [CrossRef]
- McCann, M.J. Response diversity of free-floating plants to nutrient stoichiometry and temperature: Growth and resting body formation. Peer J. 2016, 4, e1781. [Google Scholar] [CrossRef]
- Beppu, T.; Takimoto, A. Growth of various ecotypes of Lemna paucicostata in Japan und various temperature conditions and their wintering forms. Bot. Mag. Tokio 1981, 94, 107–144. [Google Scholar] [CrossRef]
- Abrams, S.R.; Milborrow, B.V. Synthesis and biological activity of allenic analogues of abscisic acid. Phytochemistry 1991, 30, 3189–3195. [Google Scholar] [CrossRef]
- Milborrow, B.V.; Abrams, S.R. Metabolism of allenic analogues of abscisic acid. Phytochemistry 1993, 32, 827–832. [Google Scholar] [CrossRef]
- Utami, D.; Kawahata, A.; Sugawara, M.; Jog, R.N.; Miwa, K.; Morikawa, M. Effect of exogenous general plant growth regulators onnthe growth of the duckweed Lemna minor. Front. Chem. 2018, 6, e251. [Google Scholar] [CrossRef]
- Hügel, B.; Rottenburg, T.; Kandeler, R. Phytochrome control of turion production and other developmental processes in Lemna perpusilla P146. Biochem. Physiol. Pflanz. 1979, 174, 761–771. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziegler, P. The Developmental Cycle of Spirodela polyrhiza Turions: A Model for Turion-Based Duckweed Overwintering? Plants 2024, 13, 2993. https://doi.org/10.3390/plants13212993
Ziegler P. The Developmental Cycle of Spirodela polyrhiza Turions: A Model for Turion-Based Duckweed Overwintering? Plants. 2024; 13(21):2993. https://doi.org/10.3390/plants13212993
Chicago/Turabian StyleZiegler, Paul. 2024. "The Developmental Cycle of Spirodela polyrhiza Turions: A Model for Turion-Based Duckweed Overwintering?" Plants 13, no. 21: 2993. https://doi.org/10.3390/plants13212993
APA StyleZiegler, P. (2024). The Developmental Cycle of Spirodela polyrhiza Turions: A Model for Turion-Based Duckweed Overwintering? Plants, 13(21), 2993. https://doi.org/10.3390/plants13212993