Effects of Biostimulants on the Eco-Physiological Traits and Fruit Quality of Black Chokeberry (Aronia melanocarpa L.)
Abstract
:1. Introduction
2. Results
2.1. Chlorophyll Fluorescence
2.2. Photosynthesis
2.3. Weight Loss
2.4. Texture
2.5. Ascorbic Acid
2.6. Anthocyanins, Total Phenolic Content, and Total Antioxidant C Apacity
2.7. Elemental Composition
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. In Vivo Chlorophyll Fluorescence Measurements
4.3. Photosynthesis Measurements
4.4. Determination of Weight Loss
4.5. Texture Analysis
4.6. Determination of Ascorbic Acid
4.7. Determination of Anthocyanins, Total Phenolic Content, and Total Antioxidant Capacity
4.7.1. Calculation of Concentration of Anthocyanin
4.7.2. Calculation of Concentration of Total Phenolics
4.7.3. Calculation of Concentration of Antioxidant Capacity
4.8. Mineral Analysis (ICP-OES)
4.9. Statistical Data Analysis
5. Conclusions
6. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Nikitin, E.; Zobov, V. Aronia melanocarpa Flavonol Extract-Antiradical and Immunomodulating Activities Analysis. Plants 2023, 12, 2976. [Google Scholar] [CrossRef] [PubMed]
- Le Sayec, M.; Xu, Y.; Laiola, M.; Gallego, F.A.; Katsikioti, D.; Durbidge, C.; Kivisild, U.; Armes, S.; Lecomte, M.; Fança-Berthon, P.; et al. The Effects of Aronia Berry (Poly)phenol Supplementation on Arterial Function and the Gut Microbiome in Middle-Aged Men and Women: Results from a Randomized Controlled Trial. Clin. Nutr. 2022, 41, 2549–2561. [Google Scholar] [CrossRef] [PubMed]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa Products and By-Products for Health and Nutrition: A Review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Kulling, S.E.; Rawel, H. Chokeberry (Aronia melanocarpa)—A Review on the Characteristic Components and Potential Health Effects. Planta Medica 2008, 74, 1625–1634. [Google Scholar] [CrossRef]
- Istas, G.; Wood, E.; Le Sayec, M.; Rawlings, C.; Yoon, J.; Dandavate, V.; Cera, D.; Rampelli, S.; Costabile, A.; Fromentin, E.; et al. Effects of Aronia Berry (Poly)phenols on Vascular Function and Gut Microbiota: A Double-Blind Randomized Controlled Trial in Adult Men. Am. J. Clin. Nutr. 2019, 110, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Wiloch, M.; Zawada, K.; Cyplik, W.; Kujawski, W. Evaluation of Antioxidant and Anti-Inflammatory Activity of Anthocyanin-Rich Water-Soluble Aronia Dry Extracts. Molecules 2020, 25, 4055. [Google Scholar] [CrossRef]
- Kaloudi, T.; Tsimogiannis, D.; Oreopoulou, V. Aronia melanocarpa: Identification and Exploitation of Its Phenolic Components. Molecules 2022, 27, 4375. [Google Scholar] [CrossRef]
- EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (accessed on 17 November 2022).
- Parađiković, N.; Teklić, T.; Zeljković, M.S.; Lisjak Špoljarević, M. Biostimulants Research in Some Horticultural Plant Species—A Review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrante, A.; Espen, L. Biostimulants on Crops: Their Impact under Abiotic Stress Conditions. Horticulturae 2022, 8, 189. [Google Scholar] [CrossRef]
- Rasul, F.; Gupta, S.; Olas, J.J.; Gechev, T.; Sujeeth, N.; Mueller-Roeber, B. Priming with a Seaweed Extract Strongly Improves Drought Tolerance in Arabidopsis. Int. J. Mol. Sci. 2021, 22, 1469. [Google Scholar] [CrossRef]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the Influences of Microbial Biostimulants on Horticultural Crops: Case Studies and Successful Paradigms. Horticulturae 2023, 9, 193. [Google Scholar] [CrossRef]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for Plant Growth and Mitigation of Abiotic Stresses: A Metabolomics Perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef] [PubMed]
- Kanatas, P.; Travlos, I.; Gazoulis, I.; Antonopoulos, N.; Tataridas, A.; Mpechliouli, N.; Petraki, D. Biostimulants and Herbicides: A Promising Approach towards Green Deal Implementation. Agronomy 2022, 12, 3205. [Google Scholar] [CrossRef]
- Moustakas, M.; Dobrikova, A.; Sperdouli, I.; Han’c, A.; Moustaka, J.; Adamakis, I.-D.S.; Apostolova, E. Photosystem II Tolerance to Excess Zinc Exposure and High Light Stress in Salvia sclarea L. Agronomy 2024, 14, 589. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Lucini, L.; Rea, E.; Colla, G. Plant Growth-Promoting Rhizobacteria (PGPR) as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar]
- Jannin, L.; Arkoun, M.; Ourry, A.; Laîné, P.; Goux, D.; Garnica, M.; Etienne, P. Microarray Analysis of the Effects of the Biostimulant Goëmar Goteo® on Mineral Nutrition of Oilseed Rape (Brassica napus L.) and Its Relationships with Foliar Application of Urea. J. Plant Growth Regul. 2013, 32, 644–657. [Google Scholar]
- Rouphael, Y.; Cardarelli, M.; Lucini, L.; Colla, G. A Combination of Protein Hydrolysate and Trichoderma harzianum T22 Increases Yield and Enhances the Nutrient Use Efficiency and Nutritional Quality of Greenhouse Lettuce. Front. Plant Sci. 2017, 8, 170. [Google Scholar]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Biostimulants: Importance of the Effect of Biostimulants on Stress Tolerance in Plants and Regulatory Aspects. Front. Plant Sci. 2019, 10, 1217. [Google Scholar]
- Hernández-Muñoz, P.; Almenar, E.; Valle, V.D.; Velez, D.; Gavara, R. Effect of Chitosan Coating Combined with Postharvest Calcium Treatment on Strawberry (Fragaria × ananassa) Quality during Refrigerated Storage. Food Chem. 2008, 110, 428–435. [Google Scholar] [CrossRef]
- Goulao, L.F.; Oliveira, C.M. Cell Wall Modifications during Fruit Ripening: When a Fruit Is Not the Fruit. Trends Food Sci. Technol. 2008, 19, 4–25. [Google Scholar] [CrossRef]
- Tsouvaltzis, P.; Gkountina, S.; Siomos, A.S. Quality Traits and Nutritional Components of Cherry Tomato in Relation to the Harvesting Period, Storage Duration and Fruit Position in the Truss. Plants 2023, 12, 315. [Google Scholar] [CrossRef] [PubMed]
- De Ketelaere, B.; Lammertyn, J.; Molenberghs, G.; Desmet, M.; Nicola, B.; De Baerdemaeker, J. Tomato Cultivar Grouping Based on Firmness Change, Shelf Life and Variance During Postharvest Storage. Postharvest Biol. Technol. 2004, 34, 187–201. [Google Scholar] [CrossRef]
- Almeida, D.P.; Huber, D.J. Cell Wall Modifications and Fruit Softening. Postharvest Biol. Technol. 2011, 55, 116–123. [Google Scholar]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Shelf Life Extension of Sweet Cherry Fruit by Preharvest Salicylic Acid Treatments. Postharvest Biol. Technol. 2011, 59, 112–120. [Google Scholar]
- Mahajan, P.V.; Caleb, O.J.; Singh, Z.; Watkins, C.B.; Geyer, M. Postharvest Treatments of Fresh Produce. Philos. Trans. R. Soc. A 2014, 372, 20130309. [Google Scholar] [CrossRef]
- Davey, M.W.; Montagu, M.V.; Inzé, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Fletcher, J. Plant L-Ascorbic Acid: Chemistry, Function, Metabolism, Bioavailability, and Effects of Processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Serrano, M.; Zapata, P.J.; Castillo, S.; Guillén, F.; Martínez-Romero, D.; Valero, D. Antioxidant and Nutritive Constituents during Sweet Pepper Development and Ripening Are Enhanced by Nitrophenolate Treatments. Food Chem. 2010, 118, 497–503. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Koukounaras, A.; Tsouvaltzis, P.; Siomos, A.S. Effect of root and foliar application of amino acids on the growth and yield of greenhouse tomato in different fertilization levels. J. Food Agric. Environ. 2013, 11, 644–648. [Google Scholar]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2017, 82, 277–285. [Google Scholar] [CrossRef]
- Ntanasi, T.; Karavidas, I.; Spyrou, G.P.; Giannothanasis, E.; Aliferis, K.A.; Saitanis, C.; Fotopoulos, V.; Sabatino, L.; Savvas, D.; Ntatsi, G. Plant Biostimulants Enhance Tomato Resilience to Salinity Stress: Insights from Two Greek Landraces. Plants 2024, 13, 1404. [Google Scholar] [CrossRef] [PubMed]
- Giannakoula, A.; Therios, I.; Chatzissavvidis, C. Effect of Lead and Copper on Photosynthetic Apparatus in Citrus (Citrus aurantium L.) Plants. The Role of Antioxidants in Oxidative Damage as a Response to Heavy Metal Stress. Plants 2021, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Ouzounidou, G.; Papadopoulou, K.; Asfi, M.; Mirtziou, I.; Gaitis, F. Efficacy of Different Chemicals on Shelf Life Extension of Parsley Stored at Two Temperatures. Int. J. Food Sci. Technol. 2013, 48, 1610–1617. [Google Scholar] [CrossRef]
- Ouzounidou, G.; Giannakoula, A.; Ilias, I.; Zamanidis, P. Alleviation of drought and salinity stress on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Braz. J. Bot. 2016, 39, 531–539. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant Action of a Plant-Derived Protein Hydrolysate Produced through Enzymatic Hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef]
- Lucini, L.; Miras-Moreno, B.; Colla, G. Modulation of Phenolics and Other Metabolites by Biostimulants in Ornamental and Vegetable Crops. Agronomy 2020, 10, 866. [Google Scholar]
- Karastergiou, A.; Gancel, A.-L.; Jourdes, M.; Teissedre, P.-L. Valorization of Grape Pomace: A Review of Phenolic Composition, Bioactivity, and Therapeutic Potential. Antioxidants 2024, 13, 1131. [Google Scholar] [CrossRef]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in Wood: Comparison of Different Estimation Methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Dichala, O.; Giannakoula, A.E.; Therios, I. Effect of Salinity on Physiological and Biochemical Parameters of Leaves in Three Pomegranate (Punica granatum L.) Cultivars. Appl. Sci. 2022, 12, 8675. [Google Scholar] [CrossRef]
- Su, C.; Li, T.; Wang, Y.; Ge, Z.; Xiao, J.; Shi, X.; Wang, B. Comparison of Phenolic Composition, Vitamin C, Antioxidant Activity, and Aromatic Components in Apricots from Xinjiang Congyan. J. Food Sci. 2021, 87, 231–250. [Google Scholar] [CrossRef] [PubMed]
Biostimulants | ||||
---|---|---|---|---|
Treatments | Magnablue® | Keyplex 120® | Keyplex 350® | Cropbiolife® |
1st control (H2O) | X | X | X | X |
2nd (Mgl + Kpl350) | 2 mL/lt | X | 2 mL/lt | X |
3rd (Cpl + Kpl120) | X | 0.5 mL/lt | X | 2 mL/lt |
4th (Kpl120) | X | 0.5 mL/lt | X | X |
5th (Mgl + Cpl + Kpl120) | 2 mL/lt | 0.5 mL/lt | X | 2 mL/lt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannakoula, A.; Ouzounidou, G.; Stefanou, S.; Daskas, G.; Dichala, O. Effects of Biostimulants on the Eco-Physiological Traits and Fruit Quality of Black Chokeberry (Aronia melanocarpa L.). Plants 2024, 13, 3014. https://doi.org/10.3390/plants13213014
Giannakoula A, Ouzounidou G, Stefanou S, Daskas G, Dichala O. Effects of Biostimulants on the Eco-Physiological Traits and Fruit Quality of Black Chokeberry (Aronia melanocarpa L.). Plants. 2024; 13(21):3014. https://doi.org/10.3390/plants13213014
Chicago/Turabian StyleGiannakoula, Anastasia, Georgia Ouzounidou, Stefanos Stefanou, George Daskas, and Olga Dichala. 2024. "Effects of Biostimulants on the Eco-Physiological Traits and Fruit Quality of Black Chokeberry (Aronia melanocarpa L.)" Plants 13, no. 21: 3014. https://doi.org/10.3390/plants13213014
APA StyleGiannakoula, A., Ouzounidou, G., Stefanou, S., Daskas, G., & Dichala, O. (2024). Effects of Biostimulants on the Eco-Physiological Traits and Fruit Quality of Black Chokeberry (Aronia melanocarpa L.). Plants, 13(21), 3014. https://doi.org/10.3390/plants13213014