Phenological and Fungal Interactions of Malesherbia auristipulata Ricardi (Passifloraceae) in the Atacama Desert: Adaptations and Conservation in an Extreme Ecosystem
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surrounding Plant Species in Its Natural Habitat
2.2. Phenological Study of Malesherbia auristipulata in Its Natural Habitat
2.3. Endophytic Fungi Associated with Malesherbia auristipulata
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garreaud, R.D.; Molina, A.; Farias, M. Andean uplift, ocean cooling and Atacama hyperaridity: A climate modeling perspective. Earth Planet. Sci. Lett. 2010, 292, 39–50. [Google Scholar] [CrossRef]
- Seyfried, H.; Wörner, G.; Uhlig, D.; Kohler, I.; Calvo, C. Introducción a la geología y morfología de los Andes en el norte de Chile. Chungará 1999, 30, 7–39. [Google Scholar] [CrossRef]
- Eschel, G.; Araus, V.; Undurraga, S.; Soto, D.; Moraga, C.; Montecinos, A.; Moyano, T.; Maldonado, J.; Díaz, F.; Varala, K.; et al. Plant ecological genomics at the limits of life in the Atacama desert. Plant Biol. 2021, 118, e2101177118. [Google Scholar] [CrossRef] [PubMed]
- Houston, J.; Hartley, A.J. The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int. J. Clim. 2003, 23, 1453–1464. [Google Scholar] [CrossRef]
- Rundel, P.W.; Dillon, M.O.; Palma, B.; Mooney, H.A.; Gulmon, S.L.; Ehleringer, J.R. The Phytogeography and Ecology of the Coastal Atacama and Peruvian Deserts. Aliso A J. Syst. Florist. Bot. 1991, 13, 1–49. [Google Scholar] [CrossRef]
- Ruhm, J.; Böhnert, T.; Mutke, J.; Luebert, F.; Montesinos-Tubée, D.B.; Weigend, M. Two Sides of the Same Desert: Floristic Connectivity and Isolation Along the Hyperarid Coast and Precordillera in Peru and Chile. Front. Ecol. Evol. 2022, 10, 1–17. [Google Scholar] [CrossRef]
- García, G.M.; Gardeweg, P.M.; Clavero, R.J.; Herail, G. Hoja Arica, Región de Tarapacá; Servicio Nacional de Geología y Minería: Santiago, Chile, 2004; p. 150. [Google Scholar]
- Salas, R.; Kast, R.; Montecinos, P.; Salas, I. Geología y Recursos Minerales del Departamento de Arica; Instituto de Investigaciones Geológicas: Santiago, Chile, 1966; p. 111. [Google Scholar]
- Arroyo, M.T.K.; Squeo, F.A.; Armesto, J.J.; Villagran, C. Effects of Aridity on Plant Diversity in the Northern Chilean Andes: Results of a Natural Experiment. Ann. Mo. Bot. Gard. 1988, 75, 55. [Google Scholar] [CrossRef]
- Morales, M.S.; Crispín-Delacruz, D.B.; Álvarez, C.; Christie, D.A.; Ferrero, E.M.; Andreu-Hayles, L.; Villalba, R.; Guerra, A.; Ticse-Otarola, G.; Rodríguez-Ramírez, E.C.; et al. Drought increase since the mid-20th century in the northern South American Altiplano revealed by a 389-year precipitation record. Clim. Past 2023, 19, 457–476. [Google Scholar] [CrossRef]
- Veloso, J.M.V. Analysis of an extreme precipitation event in the Atacama Desert on January 2020 and its relationship to humidity advection along the Southeast Pacific. Atmosfera 2020, 35, 421–448. [Google Scholar] [CrossRef]
- Benoit, C. Libro Rojo de La Flora Terrestre de Chile, (Primera Parte); Corporación Nacional Forestal: Santiago, Chile, 1989; p. 157. [Google Scholar]
- Ministerio del Medio Ambiente. Aprueba y oficializa clasificación de especies según estado de conservación, Décimosexto Proceso; Diario Oficial de la República de Chile, Ministerio del Interior y Seguridad Pública: Santiago, Chile, 2020; pp. 1–6. [Google Scholar]
- Carevic, F.S.; Delatorre-Herrera, J.; Carrasco, A. Plant water variables and reproductive traits are influenced by seasonal climatic variables in Prosopis burkartii (Fabaceae) at Northern Chile. Flora Morphol. Distrib. Funct. Ecol. 2017, 233, 7–11. [Google Scholar] [CrossRef]
- Baron, N.C.; Rigobelo, E.C. Endophytic fungi: A tool for plant growth promotion and sustainable agriculture. Mycology 2022, 13, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles: Tansley review. N. Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Redman, R.S.; Sheehan, K.B.; Stout, R.G.; Rodriguez, R.J.; Henson, J.M. Thermotolerance Generated by Plant/Fungal Symbiosis. Science 2002, 298, 1581. [Google Scholar] [CrossRef] [PubMed]
- Herre, E.A.; Mejía, L.C.; Mejía, M.; Kyllo, D.A.; Rojas, E.; Maynard, Z.; Butler, A.; Van Bael, S.A. Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 2007, 88, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, R.; Marticorena, C. Catálogo de Las Plantas Vasculares de Chile; Editorial Universidad de Concepción: Santiago, Chile, 2019; p. 424. [Google Scholar]
- Pinto, R.; Luebert, F. Data on the vascular flora of the coastal desert of Arica and Tarapacá, Chile, and its phytogeographical relationships with southern Perú. Gayana Bot. 2009, 66, 28–49. [Google Scholar]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Innis, M.A.; Gelfand, D. Optimization of PCRs. In PCR Protocols: A Guide to Methods and Applications; Academic Press: San Diego, CA, USA, 1990; pp. 3–12. [Google Scholar]
- Khalmuratova, I.; Choi, D.-H.; Woo, J.-R.; Jeong, M.-J.; Oh, Y.; Kim, Y.-G.; Lee, I.-J.; Choo, Y.-S.; Kim, J.-G. Diversity and Plant Growth-Promoting Effects of Fungal Endophytes Isolated from Salt-Tolerant Plants. J. Microbiol. Biotechnol. 2020, 30, 1680–1687. [Google Scholar] [CrossRef]
- Rathcke, B.; Lacey, E.P. Phenological Patterns of Terrestrial Plants. Annu. Rev. Ecol. Syst. 1985, 16, 179–214. [Google Scholar] [CrossRef]
- Arroyo, M.T.K.; Armesto, J.J.; Villagran, C. Plant Phenological Patterns in the High Andean Cordillera of Central Chile. J. Ecol. 1981, 69, 205–223. [Google Scholar] [CrossRef]
- Tilman, D. Resource Competition and Community Structure; Princeton University Press: Oxford, UK, 1982; p. 294. [Google Scholar]
- Arnold, A.E.; Mejía, L.C.; Kyllo, D.; Rojas, E.I.; Maynard, Z.; Robbins, N.; Herre, E.A. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA 2003, 100, 15649–15654. [Google Scholar] [CrossRef]
- Clay, K. Fungal Endophytes of Grasses: A Defensive Mutualism between Plants and Fungi. Ecology 1988, 69, 10–16. [Google Scholar] [CrossRef]
- Holmgren, M.; Stapp, P.; Dickman, C.R.; Gracia, C.; Graham, S.; Gutiérrez, J.R.; Hice, C.; Jaksic, F.; Kelt, D.A.; Letnic, M.; et al. Extreme climatic events shape arid and semiarid ecosystems. Front. Ecol. Environ. 2006, 4, 87–95. [Google Scholar] [CrossRef]
- Akram, S.; Ahmed, A.; He, P.; He, P.; Liu, Y.; Wu, Y.; Munir, S.; He, Y. Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. J. Fungi 2023, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Porras-Alfaro, A.; Bayman, P. Hidden Fungi, Emergent Properties: Endophytes and Microbiomes. Annu. Rev. Phytopathol. 2011, 49, 291–315. [Google Scholar] [CrossRef]
- García-Orenes, F.; Guerrero, C.; Roldán, A.; Mataix-Solera, J.; Cerdà, A.; Campoy, M.; Zornoza, R.; Bárcenas, G.; Caravaca, F. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil Tillage Res. 2010, 109, 110–115. [Google Scholar] [CrossRef]
- Gorbushina, A.A. Life on the rocks. Environ. Microbiol. 2007, 9, 1613–1631. [Google Scholar] [CrossRef]
- Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature 2001, 409, 1092–1101. [Google Scholar] [CrossRef]
- Pointing, S.B.; Belnap, J. Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 2012, 10, 551–562. [Google Scholar] [CrossRef]
- Lindow, S.E.; Brandl, M.T. Microbiology of the Phyllosphere. Appl. Environ. Microbiol. 2003, 69, 1875–1883. [Google Scholar] [CrossRef]
- Levin, D.A. The Role of Trichomes in Plant Defense. Q. Rev. Biol. 1973, 48, 3–15. [Google Scholar] [CrossRef]
- Wagner, G.J. Secreting Glandular Trichomes: More than Just Hairs. Plant Physiol. 1991, 96, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Leveau, J.H. Microbial communities in the phyllosphere. In Biology of the Plant Cuticle; Riederer, M., Müller, C., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2006; pp. 334–359. [Google Scholar]
- Kabir, N.; Wahid, S.; Rehman, S.U.; Qanmber, G. The intricate world of trichome development: From signaling pathways to transcriptional regulation. Environ. Exp. Bot. 2024, 217, 105549. [Google Scholar] [CrossRef]
- Karabourniotis, G.; Liakopoulos, G.; Nikolopoulos, D.; Bresta, P. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure–function coordination. J. For. Res. 2020, 31, 1–12. [Google Scholar] [CrossRef]
- Yamada, M.; Sonoda, R. A Fluorescens microscopic study of the infection process of Discula theae-sinensis in tea. JARQ 2014, 48, 399–402. [Google Scholar] [CrossRef]
- Niremberg, H.; O’Donnell, K. New Fusarium species and combinations within the Giberella fujikuroi species complex. Mycologia 1998, 3, 434–438. [Google Scholar] [CrossRef]
- Elvira-Recuenco, M.; Iturritxa, E.; Majada, J.; Alia, R.; Raposo, R. Adaptive potential of maritime pine (Pinus pisaster) populations to the emerging pitck canker pathogen, Fusarium circinatum. PLoS ONE 2014, 12, e114971. [Google Scholar]
- Hernandez-Escribano, L.; Visser, E.A.; Iturritxa, E.; Raposo, R.; Naidoo, S. The transcriptome of Pinus pinaster under Fusarium circinatum challenge. BMC Genom. 2020, 21, 28–36. [Google Scholar] [CrossRef]
- Maria, Z.; Shamsi, S.; Hosen, S.; Bashar, A. Morpho-Molecular Characterization of Endophytic Fungi from Three Traditional Medicinal Plants. Bangladesh J. Bot. 2024, 53, 361–372. [Google Scholar] [CrossRef]
- Lin, X.-R.; Yang, D.; Wei, Y.-F.; Ding, D.-C.; Ou, H.-P.; Yang, S.-D. Amaranth Plants with Various Color Phenotypes Recruit Different Soil Microorganisms in the Rhizosphere. Plants 2024, 13, 2200. [Google Scholar] [CrossRef]
- Devi, W.; Surendirakumar, K. In vitro antagonistic activity of endophytic fungi associated with medicinal plants of Lamiaceae towards phytopathogenic fungi. J. Mycopathol. Res. 2024, 62, 447–451. [Google Scholar]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
Family | Scientific Name | Common Name | Native/Endemic | Habit | Distribution * |
---|---|---|---|---|---|
Aizoaceae | Tetragonia microcarpa Phil. | Aguanosa | native | annual herb | AYP, TAR, ANT, ATA |
Asteraceae | Ambrosia artemisioides Meyen & Walp. ex Meyen | Tikara, Pikara, Cadillo, Chaspaksa, Monte verde, Tola negra, Pegapega, Lipelipe | native | shrub | AYP, TAR, ANT |
Asteraceae | Senecio zapahuirensis Martic. & Quezada | Desconocido | endemic | shrub | AYP, TAR |
Asteraceae | Trichocline caulescens Phil. | Wanti, Garra de león, Bailabaila | endemic | perennial herb | AYP, TAR, ANT |
Asteraceae | Trixis cacalioides (Kunth) D. Don | Visavisa | native | shrub | AYP, TAR, ANT, ATA |
Chenopodiaceae | Atriplex glaucescens Phil. | Juirajuira, Piyaya | endemic | shrub | AYP, TAR, ANT, ATA |
Chenopodiaceae | Chenopodium petiolare Kunth. | Juirajuira, Kañawa, Quinua de gentiles, Piyaya hembra | native | perennial herb | AYP, TAR, ANT, ATA, COQ, VAL |
Fabaceae | Hoffmannseggia minor (Phil.) Ulibarri | Algarrobilla, Bilankichu, Kulchau, Mutukuru, Motokoro | native | perennial herb | AYP, TAR, ANT |
Malvaceae | Cristaria dissecta Hook. & Arn. var. Dissecta | Malvavisco, Malva | native | perennial herb | AYP, TAR, ANT, ATA, COQ, VAL, RME, LBO |
Malvaceae | Tarasa operculata (Cav.) Krapov. | Poq’ot’ola, Qhella hembra, Qhella blanca, Malva, Tarasa | native | shrub | AYP, TAR, ANT |
Montiaceae | Cistanthe amarantoides (Phil.) Carolin ex Herschkovitz | Anojarjinchu, Tiqintiqi, Oreja de chancho | endemic | perennial herb | AYP, TAR, ANT, ATA, COQ |
Nycataginaceae | Allionia incarnata L. (hierba perenne, nativa) | Desconocido | native | perennial herb | AYP, TAR, ANT, ATA |
Passifloraceae | Malesherbia auristipulata Ricardi | Ají de zorra, Piojillo | endemic | shrub | AYP, TAR |
Solanaceae | Exodeconus flavus (I.M. Johnst.) Axelius & D’Arcy | Desconocido | native | annual herb | AYP, TAR |
Solanaceae | Nolana rhombifolia Martic. & Quezada | Suspiro | endemic | annual herb | AYP |
Solanaceae | Reyesia juniperoides (Werderm.) D’Arcy | Canchalahua | endemic | perennial herb | AYP, TAR |
Solanaceae | Solanum peruvianum L. | Tomatillo | native | perennial herb | AYP, TAR |
Verbenaceae | Glandularia gynobasis (Wedd.) N. O’Leary & P. Peralta | Nametusangaya, Mamapasankayo, Flor del campo | endemic | perennial herb | AYP, TAR |
Vegetative (%) | Flowering (%) | Fruiting (%) | Dead (%) | |||||
---|---|---|---|---|---|---|---|---|
Month/Phenophase | Adult | Juvenile | Adult | Juvenile | Adult | Juvenile | Adult | Juvenile |
Jan. | 81.6 | 100 | 15.8 | 0 | 2.6 | 0 | 0 | 0 |
Feb. | 81.6 | 100 | 15.8 | 0 | 2.6 | 0 | 0 | 0 |
Mar. | 73.7 | 100 | 21.1 | 0 | 5.3 | 0 | 0 | 0 |
Apr. | 68.4 | 100 | 23.7 | 0 | 7.9 | 0 | 0 | 0 |
May | 63.2 | 100 | 28.9 | 0 | 7.9 | 0 | 0 | 0 |
Jun. | 65.8 | 95.7 | 26.3 | 4.3 | 7.9 | 0 | 0 | 0 |
Jul. | 57.9 | 82.6 | 28.9 | 4.3 | 13.2 | 8.7 | 0 | 4.3 |
Aug. | 57.9 | 73.9 | 26.3 | 8.7 | 15.8 | 8.7 | 0 | 8.7 |
Sep. | 57.9 | 86.9 | 36.8 | 0 | 5.3 | 4.4 | 0 | 8.7 |
Oct. | 61.1 | 78.3 | 25.0 | 4.3 | 13.9 | 0 | 1 | 17.4 |
Nov. | 61.8 | 69.6 | 17.6 | 0 | 20.6 | 0 | 2 | 30.4 |
Dec. | 62.9 | 56.5 | 17.1 | 4.3 | 20 | 0 | 2 | 39.2 |
Code | BLASTN Identity | % Identity | Root | Stem | Leaf |
---|---|---|---|---|---|
A9 | Alternaria alstroemeriae NR_163686.1 | 99.82 | + | ||
A23 | Alternaria alstroemeriae NR_163686.1 | 100 | + | ||
A7 | Alternaria sorghi NR_160246.1 | 99.83 | + | ||
A17 | Alternaria sorghi NR_160246.1 | 99.83 | + | ||
A30 | Alternaria sorghi NR_160246.1 | 99.65 | + | ||
A34 | Alternaria sorghi NR_160246.1 | 99.13 | + | ||
A36 | Alternaria sorghi NR_160246.1 | 99.65 | + | ||
A39 | Alternaria sorghi NR_160246.1 | 99.65 | + | ||
A44 | Alternaria sorghi NR_160246.1 | 99.83 | + | ||
A55 | Alternaria sorghi NR_160246.1 | 99.65 | + | ||
A61 | Alternaria sorghi NR_160246.1 | 99.65 | + | ||
A62 | Alternaria sorghi NR_160246.1 | 99.83 | + | ||
A63 | Alternaria sorghi NR_160246.1 | 99.83 | + | ||
A59 | Aureobasidium melanogenum NR_159598.1 | 99.49 | + | ||
A37 | Didymella keratinophila NR_158275.1 | 99.82 | + | ||
A19 | Fusarium biomiforme NR_111885.1 | 84.83 | + | ||
A14 | Fusarium circinatum NR_120263.1 | 97.85 | + | ||
A13 | Fusarium nurragi NR_159860.1 | 92.93 | + | ||
A58 | Fusarium nurragi NR_159860.1 | 91.96 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepúlveda Chavera, G.F.; Belmonte Schwarzbaum, E.; Valderrama Saez, N.; Arismendi Macuer, M.; Huanca-Mamani, W. Phenological and Fungal Interactions of Malesherbia auristipulata Ricardi (Passifloraceae) in the Atacama Desert: Adaptations and Conservation in an Extreme Ecosystem. Plants 2024, 13, 3035. https://doi.org/10.3390/plants13213035
Sepúlveda Chavera GF, Belmonte Schwarzbaum E, Valderrama Saez N, Arismendi Macuer M, Huanca-Mamani W. Phenological and Fungal Interactions of Malesherbia auristipulata Ricardi (Passifloraceae) in the Atacama Desert: Adaptations and Conservation in an Extreme Ecosystem. Plants. 2024; 13(21):3035. https://doi.org/10.3390/plants13213035
Chicago/Turabian StyleSepúlveda Chavera, German F., Eliana Belmonte Schwarzbaum, Nicolas Valderrama Saez, Mabel Arismendi Macuer, and Wilson Huanca-Mamani. 2024. "Phenological and Fungal Interactions of Malesherbia auristipulata Ricardi (Passifloraceae) in the Atacama Desert: Adaptations and Conservation in an Extreme Ecosystem" Plants 13, no. 21: 3035. https://doi.org/10.3390/plants13213035
APA StyleSepúlveda Chavera, G. F., Belmonte Schwarzbaum, E., Valderrama Saez, N., Arismendi Macuer, M., & Huanca-Mamani, W. (2024). Phenological and Fungal Interactions of Malesherbia auristipulata Ricardi (Passifloraceae) in the Atacama Desert: Adaptations and Conservation in an Extreme Ecosystem. Plants, 13(21), 3035. https://doi.org/10.3390/plants13213035