Continuous Growth Monitoring and Prediction with 1D Convolutional Neural Network Using Generated Data with Vision Transformer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Workflow
2.2. Data Collection
2.3. Data Preprocessing
2.4. Image Converter Models for Growth Estimation Using Images
2.5. Growth Predictor Models for Growth Prediction Using Extracted Growth Factors
2.6. Computation
2.7. Plant Materials and Growth Condition
3. Results
3.1. Image Converter Using Computer Vision Technology and Top-View Images
3.2. Growth Predictor with Sequence Interpretation Algorithms
4. Discussion
4.1. Result Analysis Based on Data Condition
4.2. Perspectives of Deep Learning Modeling
4.3. Domain Knowledge-Based Interpretation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Körner, C. Paradigm Shift in Plant Growth Control. Curr. Opin. Plant Biol. 2015, 25, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Mattheis, J.P.; Fellman, J.K. Preharvest Factors Influencing Flavor of Fresh Fruit and Vegetables. Postharvest Biol. Technol. 1999, 15, 227–232. [Google Scholar] [CrossRef]
- Morison, J.I.L.; Lawlor, D.W. Interactions between Increasing CO2 Concentration and Temperature on Plant Growth. Plant Cell Environ. 1999, 22, 659–682. [Google Scholar] [CrossRef]
- Sawan, Z.M. Climatic Variables: Evaporation, Sunshine, Relative Humidity, Soil and Air Temperature and Its Adverse Effects on Cotton Production. Inf. Process. Agric. 2018, 5, 134–148. [Google Scholar] [CrossRef]
- Graamans, L.; Baeza, E.; van den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant Factories versus Greenhouses: Comparison of Resource Use Efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: Cambridge, MA, USA, 2019; ISBN 978-0-12-816692-5. [Google Scholar]
- McAusland, L.; Atkinson, J.A.; Lawson, T.; Murchie, E.H. High Throughput Procedure Utilising Chlorophyll Fluorescence Imaging to Phenotype Dynamic Photosynthesis and Photoprotection in Leaves under Controlled Gaseous Conditions. Plant Methods 2019, 15, 109. [Google Scholar] [CrossRef]
- Kaiser, E.; Morales, A.; Harbinson, J.; Kromdijk, J.; Heuvelink, E.; Marcelis, L.F.M. Dynamic Photosynthesis in Different Environmental Conditions. J. Exp. Bot. 2015, 66, 2415–2426. [Google Scholar] [CrossRef]
- van Iersel, M.W. Optimizing LED Lighting in Controlled Environment Agriculture. In Light Emitting Diodes for Agriculture: Smart Lighting; Dutta Gupta, S., Ed.; Springer: Singapore, 2017; pp. 59–80. ISBN 978-981-10-5807-3. [Google Scholar]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef]
- Yu, S.; Liu, X.; Tan, Q.; Wang, Z.; Zhang, B. Sensors, Systems and Algorithms of 3D Reconstruction for Smart Agriculture and Precision Farming: A Review. Comput. Electron. Agric. 2024, 224, 109229. [Google Scholar] [CrossRef]
- Humplík, J.F.; Lazár, D.; Husičková, A.; Spíchal, L. Automated Phenotyping of Plant Shoots Using Imaging Methods for Analysis of Plant Stress Responses—A Review. Plant Methods 2015, 11, 29. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Campillo, C.; Prieto, M.H.; Daza, C.; Moñino, M.J.; García, M.I. Using Digital Images to Characterize Canopy Coverage and Light Interception in a Processing Tomato Crop. Hortscience 2008, 43, 1780–1786. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X. Plant Diseases and Pests Detection Based on Deep Learning: A Review. Plant Methods 2021, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Koirala, A.; Walsh, K.B.; Wang, Z.; McCarthy, C. Deep Learning—Method Overview and Review of Use for Fruit Detection and Yield Estimation. Comput. Electron. Agric. 2019, 162, 219–234. [Google Scholar] [CrossRef]
- Reyes-Yanes, A.; Martinez, P.; Ahmad, R. Real-Time Growth Rate and Fresh Weight Estimation for Little Gem Romaine Lettuce in Aquaponic Grow Beds. Comput. Electron. Agric. 2020, 179, 105827. [Google Scholar] [CrossRef]
- Jin, X.; Zarco-Tejada, P.J.; Schmidhalter, U.; Reynolds, M.P.; Hawkesford, M.J.; Varshney, R.K.; Yang, T.; Nie, C.; Li, Z.; Ming, B.; et al. High-Throughput Estimation of Crop Traits: A Review of Ground and Aerial Phenotyping Platforms. IEEE Trans. Geosci. Remote Sens. 2021, 9, 200–231. [Google Scholar] [CrossRef]
- Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv 2017, arXiv:1706.05098. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- LeCun, Y. Generalization and network design strategies. Connect. Perspect. 1989, 1–19. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Lee, S.H.; Lee, S.; Song, B.C. Vision Transformer for Small-Size Datasets. arXiv 2021, arXiv:2112.13492. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Trockman, A.; Kolter, J.Z. Patches Are All You Need? arXiv 2022, arXiv:2201.09792. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Schuster, M.; Paliwal, K.K. Bidirectional Recurrent Neural Networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention, Proceedings of the MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Sonneveld, C.; Straver, N. Nutrient Solutions for Vegetables and Flowers Grown in Water or Substrates. Voedingspolossingen Glas. 1994, 8, 1–45. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Circ. Calif. Agric. Exp. Stn. 1938, 347, 39. [Google Scholar]
- Birch, C.P.D. A New Generalized Logistic Sigmoid Growth Equation Compared with the Richards Growth Equation. Ann. Bot. 1999, 83, 713–723. [Google Scholar] [CrossRef]
- Ünal, Z. Smart Farming Becomes Even Smarter with Deep Learning—A Bibliographical Analysis. IEEE Access 2020, 8, 105587–105609. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Yeom, M.-S.; Oh, M.-M. Effect of a Newly-Developed Nutrient Solution and Electrical Conductivity on Growth and Bioactive Compounds in Perilla frutescens var. Crispa. Agronomy 2021, 11, 932. [Google Scholar] [CrossRef]
- Yoon, H.I.; Lee, S.H.; Ryu, D.; Choi, H.; Park, S.H.; Jung, J.H.; Kim, H.-Y.; Yang, J.-S. Non-Destructive Assessment of Cannabis Quality during Drying Process Using Hyperspectral Imaging and Machine Learning. Front. Plant Sci. 2024, 15, 1365298. [Google Scholar] [CrossRef] [PubMed]
- Van Henten, E.J. Validation of a Dynamic Lettuce Growth Model for Greenhouse Climate Control. Agric. Syst. 1994, 45, 55–72. [Google Scholar] [CrossRef]
- Lim, E.; Kim, J.-O.; Oh, M.-M. Optimizing the Photon Ratio of Red, Green, and Blue LEDs for Lettuce Seedlings: A Mixture Design Approach. Plant Methods 2023, 19, 121. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Xu, Y. Applications of Deep-Learning Approaches in Horticultural Research: A Review. Hortic. Res. 2021, 8, 123. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Dey, R.; Salem, F.M. Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600. [Google Scholar]
- Antle, J.; Basso, B.; Conant, R.T.; Godfray, H.C.J.; Jones, J.W.; Herrero, M.; Howitt, R.E.; Keating, B.A.; Munoz-Carpena, R.; Rosenzweig, C.; et al. Towards a New Generation of Agricultural System Data, Models and Knowledge Products: Design and Improvement. Agric. Syst. 2017, 155, 255–268. [Google Scholar] [CrossRef]
- Peng, B.; Guan, K.; Tang, J.; Ainsworth, E.A.; Asseng, S.; Bernacchi, C.J.; Cooper, M.; Delucia, E.H.; Elliott, J.W.; Ewert, F.; et al. Towards a Multiscale Crop Modelling Framework for Climate Change Adaptation Assessment. Nat. Plants 2020, 6, 338–348. [Google Scholar] [CrossRef]
- Moon, T.; Kim, D.; Kwon, S.; Son, J.E. Process-Based Crop Modeling for High Applicability with Attention Mechanism and Multitask Decoders. Plant Phenomics 2023, 5, 0035. [Google Scholar] [CrossRef]
Algorithms | FFNN | ConvNet | ViT |
---|---|---|---|
Input size | 500 × 500 × 3 | ||
Layer | Flatten Dense-2048 Dense-2048 | Feature extraction layer Global average pooling | Cut patches (25 × 25) Linear projection-50 Positional embedding Multihead attention-8 Flatten |
MTL layer | Dense-256 Dense-256 | Dense-512 Dense-512 Dense-128 Dense-128 | Dense-2048 Dense-1024 |
Outputs | Dense-1 |
Algorithms | FFNN | LSTM and BiSLTM | 1D ConvNet |
---|---|---|---|
Input size | 144 × 7 | ||
Layer | Flatten Dense-1024 Dense-1024 | LSTM-1024 Layer normalization | Feature extraction layer Flatten Dense-2048 Dense-2048 |
MTL layer | Dense-512 Dense-512 | Dense-512 Dense-512 | Dense-512 Dense-64 |
Outputs | Dense-1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.-J.; Jang, S.-H.; Moon, T.; Seo, K.-S.; Choi, D.-S.; Oh, M.-M. Continuous Growth Monitoring and Prediction with 1D Convolutional Neural Network Using Generated Data with Vision Transformer. Plants 2024, 13, 3110. https://doi.org/10.3390/plants13213110
Choi W-J, Jang S-H, Moon T, Seo K-S, Choi D-S, Oh M-M. Continuous Growth Monitoring and Prediction with 1D Convolutional Neural Network Using Generated Data with Vision Transformer. Plants. 2024; 13(21):3110. https://doi.org/10.3390/plants13213110
Chicago/Turabian StyleChoi, Woo-Joo, Se-Hun Jang, Taewon Moon, Kyeong-Su Seo, Da-Seul Choi, and Myung-Min Oh. 2024. "Continuous Growth Monitoring and Prediction with 1D Convolutional Neural Network Using Generated Data with Vision Transformer" Plants 13, no. 21: 3110. https://doi.org/10.3390/plants13213110
APA StyleChoi, W. -J., Jang, S. -H., Moon, T., Seo, K. -S., Choi, D. -S., & Oh, M. -M. (2024). Continuous Growth Monitoring and Prediction with 1D Convolutional Neural Network Using Generated Data with Vision Transformer. Plants, 13(21), 3110. https://doi.org/10.3390/plants13213110