Development and Validation of One-Step Reverse Transcription-Droplet Digital PCR for Plum Pox Virus Detection and Quantification from Plant Purified RNA and Crude Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reverse Primer Design and RT-qPCR Development
2.2. RT-ddPCR Development
2.3. Validation of One-Step RT-qPCR and RT-ddPCR
2.3.1. Analytical Specificity
2.3.2. Analytical Sensitivity
2.3.3. Selectivity, Repeatability, and Reproducibility
3. Materials and Methods
3.1. Viruses, Viroids, and Plant Materials
3.2. In Vitro GF305 Shoots’ Establishment
3.3. Sample Preparation
3.4. Design of the Reverse Primer
3.5. PPV CP Gene Cloning and Sequencing
3.6. RT-qPCR
3.7. RT-ddPCR
3.8. Validation Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPPC Diagnostic Protocols for Regulated Pests DP 2: Plum Pox Virus. ISPM 2018, 27, 1–18.
- Scholthof, K.B.G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; et al. Top 10 Plant Viruses in Molecular Plant Pathology. Mol. Plant Pathol. 2011, 12, 938–954. [Google Scholar] [CrossRef] [PubMed]
- Kamenova, I.; Borisova, A. Update on Distribution and Genetic Variability of Plum Pox Virus Strains in Bulgaria. Plant Pathol. J. 2019, 35, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Hajizadeh, M.; Gibbs, A.J.; Amirnia, F.; Glasa, M. The Global Phylogeny of Plum Pox Virus Is Emerging. J. Gen. Virol. 2019, 100, 1457–1468. [Google Scholar] [CrossRef]
- García, J.A.; Glasa, M.; Cambra, M.; Candresse, T. Plum Pox Virus and Sharka: A Model Potyvirus and a Major Disease. Mol. Plant Pathol. 2014, 15, 226–241. [Google Scholar] [CrossRef]
- Varga, A.; James, D. Detection and Differentiation of Plum Pox Virus Using Real-Time Multiplex PCR with SYBR Green and Melting Curve Analysis: A Rapid Method for Strain Typing. J. Virol. Methods 2005, 123, 213–220. [Google Scholar] [CrossRef]
- Cambra, M.; Bertolini, E.; Martínez, M.C.; Gorris, M.T.; Vidal, E.; Olmos, A. Diagnosis and Detection of Plum Pox Virus: State-of-the-Art and Future Options. Acta Hortic. 2015, 1063, 149–157. [Google Scholar] [CrossRef]
- Sattorov, M.; Sheveleva, A.; Fayziev, V.; Chirkov, S. First Report of Plum Pox Virus on Plum in Uzbekistan. Plant Dis. 2020, 104, 2533. [Google Scholar] [CrossRef]
- Mori, T.; Warner, C.; Ohno, S.; Mori, K.; Tobimatsu, T.; Sera, T. Genome Sequence Analysis of New Plum Pox Virus Isolates from Japan. BMC Res. Notes 2021, 14, 266. [Google Scholar] [CrossRef]
- Chirkov, S.; Sheveleva, A.; Gasanova, T.; Kwon, D.; Osipov, G. New Cherry-Adapted Plum Pox Virus Phylogroups Discovered in Russia. Plant Dis. 2022, 106, 2591–2600. [Google Scholar] [CrossRef]
- European and Mediterranean Plant Protection Organization. EPPO PM 7/32 (2) Plum Pox Virus. EPPO Bull. 2023, 53, 518–539. [Google Scholar] [CrossRef]
- Varga, A.; James, D. Use of Reverse Transcription Loop-Mediated Isothermal Amplification for the Detection of Plum Pox Virus. J. Virol. Methods 2006, 138, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Hadersdorfer, J.; Neumüller, M.; Treutter, D.; Fischer, T.C. Fast and Reliable Detection of Plum Pox Virus in Woody Host Plants Using the Blue LAMP Protocol. Ann. Appl. Biol. 2011, 159, 456–466. [Google Scholar] [CrossRef]
- Schneider, W.L.; Sherman, D.J.; Stone, A.L.; Damsteegt, V.D.; Frederick, R.D. Specific Detection and Quantification of Plum Pox Virus by Real-Time Fluorescent Reverse Transcription-PCR. J. Virol. Methods 2004, 120, 97–105. [Google Scholar] [CrossRef]
- Olmos, A.; Bertolini, E.; Gil, M.; Cambra, M. Real-Time Assay for Quantitative Detection of Non-Persistently Transmitted Plum Pox Virus RNA Targets in Single Aphids. J. Virol. Methods 2005, 128, 151–155. [Google Scholar] [CrossRef]
- Pasquini, G.; Bianco, P.A.; Boscia, D.; Campus, L.; Casati, P.; Digiaro, M.; Rubies, C. Protocollo Diagnostico per Plum Pox Virus (PPV). Petria 2013, 23, 351–394. [Google Scholar]
- Larionov, A.; Krause, A.; Miller, W.R. A Standard Curve Based Method for Relative Real Time PCR Data Processing. BMC Bioinform. 2005, 6, 62. [Google Scholar] [CrossRef]
- Gutiérrez-Aguirre, I.; Rački, N.; Dreo, T.; Ravnikar, M. Droplet Digital PCR for Absolute Quantification of Pathogens. Methods Mol. Biol. 2015, 1302, 331–347. [Google Scholar] [CrossRef]
- Baker, M. Digital PCR Hits Its Stride. Nat. Methods 2012, 9, 541–544. [Google Scholar] [CrossRef]
- Abachin, E.; Convers, S.; Falque, S.; Esson, R.; Mallet, L.; Nougarede, N. Comparison of Reverse-Transcriptase QPCR and Droplet Digital PCR for the Quantification of Dengue Virus Nucleic Acid. Biologicals 2018, 52, 49–54. [Google Scholar] [CrossRef]
- Lee, H.J.; Cho, I.S.; Ju, H.J.; Jeong, R.D. Development of a Reverse Transcription Droplet Digital PCR Assay for Sensitive Detection of Peach Latent Mosaic Viroid. Mol. Cell. Probes 2021, 58, 101746. [Google Scholar] [CrossRef] [PubMed]
- Mehle, N.; Dobnik, D.; Ravnikar, M.; Pompe Novak, M. Validated Reverse Transcription Droplet Digital PCR Serves as a Higher Order Method for Absolute Quantification of Potato Virus Y Strains. Anal. Bioanal. Chem. 2018, 410, 3815–3825. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Liu, X.; Lou, B.-H.; Zhou, C.; Wang, X. Development of a Sensitive and Reliable Droplet Digital PCR Assay for the Detection of “Candidatus Liberibacter Asiaticus”. J. Integr. Agric. 2018, 17, 483–487. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wang, Q.; Zhang, Y.; Shen, W.; Li, R.; Cao, M.; Chen, L.; Li, X.; Zhou, C.; et al. Development of a Sensitive and Reliable Reverse Transcription Droplet Digital PCR Assay for the Detection of Citrus Yellow Vein Clearing Virus. Arch. Virol. 2019, 164, 691–697. [Google Scholar] [CrossRef]
- Mehle, N.; Gregur, L.; Košir, A.B.; Dobnik, D. One-Step Reverse-Transcription Digital PCR for Reliable Quantification of Different Pepino Mosaic Virus Genotypes. Plants 2020, 9, 326. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Zhao, J.; Li, R.; Wang, Q.; Li, J.; Li, Z.; Zhou, Y. Development of a Sensitive and Reliable Reverse Transcription-Droplet Digital Polymerase Chain Reaction (RT-DdPCR) Assay for the Detection of Citrus Tristeza Virus. Eur. J. Plant Pathol. 2020, 156, 1175–1180. [Google Scholar] [CrossRef]
- Pandey, B.; Mallik, I.; Gudmestad, N.C. Development and Application of a Real-Time Reverse-Transcription PCR and Droplet Digital PCR Assays for the Direct Detection of Potato Mop Top Virus in Soil. Phytopathology 2020, 110, 58–67. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, H.J.; Cho, K.H.; Jeong, R.D. Detection and Quantification of Apple Stem Grooving Virus in Micropropagated Apple Plantlets Using Reverse-Transcription Droplet Digital PCR. Plant Pathol. J. 2022, 38, 417–422. [Google Scholar] [CrossRef]
- Vargas-Hernández, B.Y.; Ramírez-Pool, J.A.; Núñez-Muñoz, L.A.; Calderón-Pérez, B.; De La Torre-Almaráz, R.; Hinojosa-Moya, J.; Xoconostle-Cázares, B.; Ruiz-Medrano, R. Development of a Droplet Digital Polymerase Chain Reaction (DdPCR) Assay for the Detection of Tomato Brown Rugose Fruit Virus (ToBRFV) in Tomato and Pepper Seeds. J. Virol. Methods 2022, 302, 114466. [Google Scholar] [CrossRef]
- Luigi, M.; Manglli, A.; Corrado, C.L.; Tiberini, A.; Costantini, E.; Ferretti, L.; Tomassoli, L.; Bertin, S. Development, Validation, and Application of Reverse Transcription Real-Time and Droplet Digital PCR Assays for the Detection of the Potyviruses Watermelon Mosaic Virus and Zucchini Yellow Mosaic Virus in Cucurbits. Plants 2023, 12, 2364. [Google Scholar] [CrossRef]
- Tian, Y.; Fei, J.; Luo, J.; Chen, L.; Ye, J.; Du, W.; Yu, C. Development of a Reverse-Transcription Droplet Digital PCR Method for Quantitative Detection of Cucumber Green Mottle Mosaic Virus. Heliyon 2023, 9, e12643. [Google Scholar] [CrossRef] [PubMed]
- Luigi, M.; Tiberini, A.; Taglienti, A.; Bertin, S.; Dragone, I.; Sybilska, A.; Tarchi, F.; Goggioli, D.; Lewandowski, M.; Simoni, S.; et al. Molecular Methods for the Simultaneous Detection of Tomato Fruit Blotch Virus and Identification of Tomato Russet Mite, a New Potential Virus-Vector System Threatening Solanaceous Crops Worldwide. Viruses 2024, 16, 806. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Rana, A.; Sung, W.; Munir, M. Competitiveness of Quantitative Polymerase Chain Reaction (QPCR) and Droplet Digital Polymerase Chain Reaction (DdPCR) Technologies, with a Particular Focus on Detection of Antibiotic Resistance Genes (ARGs). Appl. Microbiol. 2021, 1, 426–444. [Google Scholar] [CrossRef]
- Voegel, T.; Nelson, L.M. Quantification of Agrobacterium Vitis from Grapevine Nursery Stock and Vineyard Soil Using Droplet Digital PCR. Am. Phytopathol. Soc. 2018, 102, 2136–2141. [Google Scholar] [CrossRef]
- Mackenzie, D.J.; Mclean, M.A.; Mukerji, S.; Green, M. Improved RNA Extraction from Woody Plants for the Detection of Viral Pathogens by Reverse Transcription-Polymerase Chain Reaction. Plant Dis. 1997, 81, 222. [Google Scholar] [CrossRef]
- Capote, N.; Bertolini, E.; Martínez, M.C.; Olmos, A.; Gorris, M.T.; Cambra, M. Spot Real-Time RT-PCR: A Method for Direct Detection of Plum Pox Virus Avoiding RNA Extraction. Acta Hortic. 2008, 781, 215–219. [Google Scholar] [CrossRef]
- Capote, N.; Bertolini, E.; Olmos, A.; Vidal, E.; Martínez, M.C.; Cambra, M. Direct Sample Preparation Methods for the Detection of Plum Pox Virus by Real-Time RT-PCR. Int. Microbiol. 2009, 12, 1–6. [Google Scholar] [CrossRef]
- European and Mediterranean Plant Protection Organization. EPPO PM 7/98 (5) Specific Requirements for Laboratories Preparing Accreditation for a Plant Pest Diagnostic Activity. EPPO Bull. 2021, 51, 468–498. [Google Scholar] [CrossRef]
- Di Nicola-Negri, E.; Tavazza, M.; Salandri, L.; Ilardi, V. Silencing of Plum Pox Virus 5′UTR/P1 Sequence Confers Resistance to a Wide Range of PPV Strains. Plant Cell Rep. 2010, 29, 1435–1444. [Google Scholar] [CrossRef]
- Lievens, A.; Jacchia, S.; Kagkli, D.; Savini, C.; Querci, M. Measuring Digital PCR Quality: Performance Parameters and Their Optimization. PLoS ONE 2016, 11, e0153317. [Google Scholar] [CrossRef]
- Rački, N.; Dreo, T.; Gutierrez-Aguirre, I.; Blejec, A.; Ravnikar, M. Reverse Transcriptase Droplet Digital PCR Shows High Resilience to PCR Inhibitors from Plant, Soil and Water Samples. Plant Methods 2014, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, L.; Wang, J.; Sun, X.; Han, Q.; Zhou, C.; Xu, X.; Wang, J. Quantification of Hepatitis E Virus in Raw Pork Livers Using Droplet Digital RT-PCR. Food Microbiol. 2023, 109, 104114. [Google Scholar] [CrossRef] [PubMed]
- Bio-Rad Droplet Digital PCR Applications Guide. Bulletin 6407. 2018. Available online: https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6407.pdf (accessed on 18 November 2024).
- European and Mediterranean Plant Protection Organization (EPPO). EPPO PM 4/30 (1) Certification Scheme for Almond, Apricot, Peach and Plum. Schemes for the Production of Healthy Plants for Planting Certification. EPPO Bull. 2001, 31, 435–529. [Google Scholar] [CrossRef]
- Falzone, L.; Musso, N.; Gattuso, G.; Bongiorno, D.; Palermo, C.I.; Scalia, G.; Libra, M.; Stefani, S. Sensitivity Assessment of Droplet Digital PCR for SARS-CoV-2 Detection. Int. J. Mol. Med. 2020, 46, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.N.; Guise, C.M.; Crossley, S.J. Plum Pox Virus Detection in Dormant Plum Trees by PCR and ELISA. Plant Pathol. 1999, 48, 240–244. [Google Scholar] [CrossRef]
- Szabó, L.K.; Desiderio, F.; Kirilla, Z.; Hegedűs, A.; Várallyay, É.; Preininger, É. A Mini-Review on In vitro Methods for Virus Elimination from Prunus sp. Fruit Trees. Plant Cell Tissue Organ Cult. 2024, 156, 42. [Google Scholar] [CrossRef]
- Monticelli, S.; Di Nicola-Negri, E.; Gentile, A.; Damiano, C.; Ilardi, V. Production and In vitro Assessment of Transgenic Plums for Resistance to Plum Pox Virus: A Feasible, Environmental Risk-Free, Cost-Effective Approach. Ann. Appl. Biol. 2012, 161, 293–301. [Google Scholar] [CrossRef]
- García-Almodóvar, R.C.; Clemente-Moreno, M.J.; Díaz-Vivancos, P.; Petri, C.; Rubio, M.; Padilla, I.M.G.; Ilardi, V.; Burgos, L. Greenhouse Evaluation Confirms In vitro Sharka Resistance of Genetically Engineered H-UTR/P1 Plum Plants. Plant Cell Tissue Organ Cult. 2015, 120, 791–796. [Google Scholar] [CrossRef]
- Damiano, C.; Monticelli, S.; Frattarelli, A. La Micropropagazione Dell’albicocco: Recenti Progressi e Ricerche Su Nuovi Terreni Di Coltura per Un Efficiente Protocollo Di Propagazione. Italus Hort. 2009, 16, 113–115. [Google Scholar]
- Afgan, E.; Nekrutenko, A.; Grüning, B.A.; Blankenberg, D.; Goecks, J.; Schatz, M.C.; Ostrovsky, A.E.; Mahmoud, A.; Lonie, A.J.; Syme, A.; et al. The Galaxy Platform for Accessible, Reproducible and Collaborative Biomedical Analyses: 2022 Update. Nucleic Acids Res. 2022, 50, W345–W351. [Google Scholar] [CrossRef]
- Madeira, F.; Park, Y.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI Search and Sequence Analysis Tools APIs in 2019. Nucleic Acid Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef]
Viral/Viroid Isolates | |||
---|---|---|---|
Species | Strain/Isolate | Code | Original Host |
Plum pox virus | M | CREA-DC-PPV6 | Prunus persica |
Plum pox virus | D | CREA-DC-PPV7 | Prunus salicina |
Plum pox virus | D | CREA-DC-PPV8 | Prunus domestica |
Plum pox virus | D | CREA-DC-PPV9 | Prunus domestica |
Plum pox virus | D | CREA-DC-PPV10 | Prunus domestica |
Plum pox virus | D | CREA-DC-PPV11 | Prunus salicina |
Plum pox virus | M | CREA-DC-PPV ISPAVE-11 | Prunus persica |
Plum pox virus | D | CREA-DC-PPV ISPAVE-17 | Prunus armeniaca |
Plum pox virus | M | CREA-DC-PPV ISPAVE-44 | Prunus persica |
Plum pox virus | Rec | CREA-DC-PPV Rec BR | Prunus armeniaca |
Plum pox virus | C/SwC | CREA-DC-PPV SwC | Prunus avium |
Plum pox virus | EA | CREA-DC-PPV EA | Prunus armeniaca |
Apple mosaic virus (ApMV) | 114 | CREA-DC 0807 | Prunus persica |
Apple mosaic virus (ApMV) | Bior | Bior-ApMV | Humulus lupulus |
Apple chlorotic leafspot virus (ACLSV) | ISF | CREA-DC 07 | Prunus persica |
Prune dwarf virus (PDV) | 12 | CAV 12 | Prunus persica |
Prunus necrotic ring spot virus (PNRSV) | E | CAV 2022 | Prunus persica |
Prunus necrotic ring spot virus (PNRSV) | 1/12 | Bior-PNRSV | Prunus domestica |
Apple stem pitting/ apple stem grooving virus (ASPV/ASGV) | M135 | 21VIR/22 | Malus domestica |
Peach latent viroid (PLMVd) | C15 | CAV 1021 | Prunus persica |
Hop stunt viroid (HSVd) | CDC1 | CREA-DC HSVd 1 | Citrus spp. |
Extraction Method | Isolate | RNA Dilution | RT-qPCR Cq ± SD | PPV RNA Copy Number ± SD (in 1 µL RNA Sample) | |
---|---|---|---|---|---|
RT-qPCR | RT-ddPCR | ||||
TRNA | CREA-DC-PPV Rec BR | 10−5 | 31.3 ± 0.0 | 74.2 ± 1.8 | 64 ± 0.3 |
10−6 | Negative a | - | 10.5 ± 0.2 | ||
10−7 | Negative | - | 0 c | ||
CREA-DC-PPV6 | 10−5 | 31.5 ± 0.2 | 45.4 ± 7.9 | 43 ± 0.8 | |
10−6 | Negative | - | 4.4 ± 0.2 | ||
10−7 | Negative | - | 0 c | ||
CREA-DC-PPV10 | 10−5 | 31.9 ± 0.2 | 38.8 ± 4.8 | 32.5 ± 1.3 | |
10−6 | Negative b | - | 3.8 ± 0.0 | ||
10−7 | Negative | - | 0 | ||
Crude extract | CREA-DC-PPV Rec BR | 10−3 | 33.8 ± 0.7 | 5.4 ± 3 | 5 ± 0.1 |
10−4 | Negative a | - | 0 | ||
CREA-DC-PPV6 | 10−3 | 35.2 ± 1.1 | 6.0 ± 3.7 | 5.9 ± 0.2 | |
10−4 | Negative b | - | 0 | ||
CREA-DC-PPV10 | 10−2 | 32.4 ± 0.4 | 15.5 ± 4.4 | 16.0 ± 0.0 | |
10−3 | 36.4 ± 0.9 | 1.0 ± 0.5 | 0 c | ||
10−4 | Negative | - | 0 |
Matrixes Spiked with PPV-D | RT-qPCR Cq ± SD | RT-ddPCR RNA Copy Number/µL ± SD (in 1 µL RNA Sample) |
---|---|---|
H2O | 17.8 ± 0.2 | 2415 ± 2.1 |
Peach (P. persica) | 17.9 ± 0.2 | 2400 ± 5.7 |
Apricot (P. armeniaca) | 17.8 ± 0.2 | 2515 ± 7.8 |
Plum (P. domestica) | 17.6 ± 0.1 | 2355 ± 2.1 |
Japanese plum (P. salicina) | 17.6 ± 0.1 | 2590 ± 9.9 |
Sweet cherry (P. avium) | 17.5 ± 0.1 | 2545 ± 0.7 |
Myrobalan plum (P. cerasifera) | 17.4 ± 0.1 | 2605 ± 3.5 |
Almond (P. amygdalus dulcis) | 17.3 ± 0.1 | 2540 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertinelli, G.; Tizzani, L.; Luigi, M.; Monticelli, S.; Ilardi, V. Development and Validation of One-Step Reverse Transcription-Droplet Digital PCR for Plum Pox Virus Detection and Quantification from Plant Purified RNA and Crude Extract. Plants 2024, 13, 3276. https://doi.org/10.3390/plants13233276
Bertinelli G, Tizzani L, Luigi M, Monticelli S, Ilardi V. Development and Validation of One-Step Reverse Transcription-Droplet Digital PCR for Plum Pox Virus Detection and Quantification from Plant Purified RNA and Crude Extract. Plants. 2024; 13(23):3276. https://doi.org/10.3390/plants13233276
Chicago/Turabian StyleBertinelli, Giorgia, Lorenza Tizzani, Marta Luigi, Simona Monticelli, and Vincenza Ilardi. 2024. "Development and Validation of One-Step Reverse Transcription-Droplet Digital PCR for Plum Pox Virus Detection and Quantification from Plant Purified RNA and Crude Extract" Plants 13, no. 23: 3276. https://doi.org/10.3390/plants13233276
APA StyleBertinelli, G., Tizzani, L., Luigi, M., Monticelli, S., & Ilardi, V. (2024). Development and Validation of One-Step Reverse Transcription-Droplet Digital PCR for Plum Pox Virus Detection and Quantification from Plant Purified RNA and Crude Extract. Plants, 13(23), 3276. https://doi.org/10.3390/plants13233276