Developing Iron and Iodine Enrichment in Tomato Fruits to Meet Human Nutritional Needs
Abstract
:1. Introduction
2. The Importance of I and Fe for Human and Animal Nutrition and Health Status
3. Tomato Fruit Is an Ideal Crop for I and Fe Biofortification
4. Iodine and Iron in Plant–Soil System
5. Iodine and Iron Biofortification Strategies
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bailey, R.L.; West, K.P.J.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metabol. 2015, 66, 22–33. [Google Scholar] [CrossRef] [PubMed]
- WHO. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition. Available online: http://www.fao.org/3/i9553en/i9553en.pdf (accessed on 4 February 2022).
- FAO. The State of Food Insecurity in the World 2014; FAO: Rome, Italy, 2014. [Google Scholar]
- Gibson, R.S.; Hotz, C. Dietary diversification/modification strategies to enhance micronutrient content and bioavailability of diets in developing countries. Br. J. Nutr. 2001, 85, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Karumbunathan, V.; Zimmermann, M.B. Global iodine status in 2011 and trends over the past decade. J. Nutr. 2012, 142, 744–750. [Google Scholar] [CrossRef]
- Andersson, M.; Takkouche, B.; Egli, I.; Allen, H.E.; Benoist, B. Current global iodine status and progress over the last decade towards the elimination of iodine deficiency. Bull. World Health Organ. 2005, 83, 518–525. [Google Scholar]
- Jefferds, M.E.D.; Mei, Z.; Addo, Y.; Hamner, H.C.; Perrine, C.G.; Flores-Ayala, R.; Pfeiffer, C.M.; Sharma, A.J. Iron deficiency in the United States: Limitations in guidelines, data, and monitoring of disparities. Am. J. Public Health 2022, 112, S826–S835. [Google Scholar] [CrossRef]
- World Health Organization. Global Iodine Status in 2020; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/iodine-deficiency (accessed on 25 November 2023).
- WHO. The Global Prevalence of Anaemia in 2011; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/anaemia (accessed on 30 March 2022).
- Ugwu, N.I.; Uneke, C.J. Iron deficiency anemia in pregnancy in Nigeria—A systematic review. Niger. J. Clin. Pract. 2020, 23, 889–896. [Google Scholar] [CrossRef]
- WHO. Micronutrient Deficiencies: Iron Deficiency Anaemia. Available online: https://www.who.int/news-room/fact-sheets/detail/iron-deficiency-anaemia (accessed on 25 November 2023).
- Lozoff, B.; Georgieff, M.K. Iron deficiency and brain development. Semin. Pediatr. Neurol. 2006, 13, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ahmed, S.; Malik, N. Iron deficiency among pregnant women in Pakistan: Prevalence and implications for maternal and fetal health. J. Health Res. 2023, 10, 45–56. [Google Scholar]
- Akhtar, S.; Anjum, F.M.; Anjum, M.A. Micronutrient fortification of wheat flour: Recent development and strategies. Food. Res. Int. 2011, 44, 652–659. [Google Scholar] [CrossRef]
- Pfeiffer, W.H.; Trethowan, R.M.; Ammar, K.; Sayre, K.D. Increasing yield potential and yield stability in durum wheat. In Durum Wheat Breeding: Current Approaches and Future Strategies; Royo, C., Nachit, M.M., DiFonzo, N., Araus, J.L., Pfeiffer, W.H., Slafer, G.A., Eds.; Food Products Press: New York, NY, USA, 2005; pp. 534–544. [Google Scholar]
- Allen, L.; Benoist, B.D.; Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients; World Health Organization and Food and Agricultural Organization of the United Nations: Geneva, Switzerland, 2006; Available online: https://www.who.int/publications/i/item/9241591238 (accessed on 30 April 2023).
- Cakmak, I.; Pfeiffer, W.H.; McClafferty, B. Biofortification of durum wheat with iodine and iron. Cereal Chem. 2010, 87, 10–20. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Bouis, H.E.; Welch, R.M. Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the Global South. Crop Sci. 2010, 50, 20–32. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Huang, Y.Z.; Hu, Y.; Liu, Y.X. Iodine uptake by spinach (Spinacia oleracea). Environ. Int. 2003, 29, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Frossard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrell, R. Potential for increasing the content and bioavailability of Fe, Zn, and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Gómez-Galera, S.; Rojas, E.; Sudhakar, D.; Zhu, C.; Pelacho, A.M.; Capell, T.; Christou, P. Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res. 2010, 19, 165–180. [Google Scholar] [CrossRef]
- Fuge, R.; Johnson, C.C. Iodine and human health, the role of environmental geochemistry and diet, a review. Appl. Geochem. 2015, 63, 282–302. [Google Scholar] [CrossRef]
- Winger, R.J.; Konig, J.; House, D.A. Technological issues associated with iodine fortification of foods. Trends Food Sci. Technol. 2008, 19, 94–101. [Google Scholar] [CrossRef]
- Kiferle, C.; Gonzali, S.; Holwerda, H.T.; Ibaceta, R.R.; Perata, P. Tomato fruits: A good target for iodine biofortification. Front. Plant Sci. 2013, 4, 205. [Google Scholar] [CrossRef]
- Zimmermann, M.B. Iodine deficiency and excess in children: Worldwide. Endocr. Dev. 2009, 26, 113–128. [Google Scholar] [CrossRef]
- Pearce, E.N.; Andersson, M.; Zimmermann, M.B. Global iodine nutrition: Where do we stand in 2013? Thyroid 2013, 23, 523–528. [Google Scholar] [CrossRef]
- Lazarus, J.H. The importance of iodine in public health. Environ. Geochem. Health 2015, 37, 1181–1185. [Google Scholar] [CrossRef]
- WHO. Nutrition for Health and Development: Turning the Tide of Malnutrition; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- WHO. Micronutrient Deficiencies, Fe Deficiency Anemia. 2011. Available online: https://www.who.int/nutrition/topics/ida/en/ (accessed on 10 January 2019).
- Murray-Kolb, L.E.; Beard, J.L. Fe deficiency and child and maternal health. Am. J. Clin. Nutr. 2009, 89, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.E.; Pfeiffer, W.H.; Beyer, P. Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 2008, 11, 166–170. [Google Scholar] [CrossRef]
- Otten, J.J.; Hellwig, J.P.; Meyers, L.D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- National Nutrition Survey (NNS). Ministry of Health, Government of Pakistan, Islamabad. 2011. Available online: http://www.nns.org.pk (accessed on 10 October 2024).
- Akhtar, S.; Ahmed, A.; Ahmad, A.; Ali, Z.; Riaz, M.; Ismail, T. Iron status of the Pakistani population: Current issues and strategies. Asia Pac. J. Clin. Nutr. 2013, 22, 340–347. [Google Scholar] [CrossRef]
- Trost, L.B.; Bergfeld, W.F.; Calogeras, E. The diagnosis and treatment of Fe deficiency and its potential relationship to hair loss. J. Am. Acad. Dermatol. 2006, 54, 824–844. [Google Scholar] [CrossRef]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; Onis, M.D.; Ezzati, M.; Mathers, C.; Rivera, J. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Canadian Nutrient File. 2010. Available online: http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/index-eng.php (accessed on 10 August 2023).
- FAO. FAOSTAT Database. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 November 2023).
- Franceschi, S.; Bidoli, E.; Vecchia, C.L.; Talamini, R.; D’Avanzo, B.; Negri, E. Tomatoes and risk of digestive-tract cancers. Int. J. Cancer 1994, 59, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, K.M. Production Status of Major Vegetable Crops in Pakistan, Their Problems and Suggestions. Available online: http://www.agricorner.com/production-status-of-major-vegetables-in-pakistan-their-problems-and-suggestions/ (accessed on 13 January 2014).
- Frusciante, L.; Carli, P.; Ercolano, M.R.; Pernice, R.; Matteo, A.D.; Fogliano, V.; Pellegrini, N. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 2007, 51, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Dan, Y.; Yan, H.; Munyikwa, T.; Dong, J.; Zhang, Y.; Armstrong, C.L. MicroTom—A high-throughput model transformation system for functional genomics. Plant Cell Rep. 2006, 25, 432–441. [Google Scholar] [CrossRef]
- Valverde, V.G.; González, I.N.; Alonso, J.G.; Periago, M.J. Antioxidant bioactive compounds in selected industrial processing and fresh consumption tomato cultivars. Food Bioprocess Technol. 2013, 6, 391–402. [Google Scholar] [CrossRef]
- Canene-Adams, K.; Lindshield, B.L.; Wang, S.; Jeffery, E.H.; Clinton, S.K.; Erdman, J.W. Combinations of tomato and broccoli enhance antitumor activity in Dunning R3327-H prostate adenocarcinomas. Cancer Res. 2007, 67, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Landini, M.; Gonzali, S.; Perata, P. Iodine biofortification in tomato. J. Plant Nutr. Soil Sci. 2011, 174, 480–486. [Google Scholar] [CrossRef]
- Premuzic, Z.; Bargiela, M.; Garcia, A.; Rendina, A.; Iorio, A. Calcium, iron, potassium, phosphorus, and vitamin C content of organic and hydroponic tomatoes. Hort. Sci. 1998, 33, 255–257. [Google Scholar] [CrossRef]
- Promuthai, C.; Glahn, R.P.; Cheng, Z.; Fukai, S.; Rerkasem, B.; Huang, I. The bioavailability of iron fortified in whole grain parboiled rice. Food Chem. 2009, 112, 982–986. [Google Scholar] [CrossRef]
- Lihua, L.; Cheng, X.; Ling, H.Q. Isolation and characterization of Fe (III)-chelate reductase gene LeFRO1 in tomato. Plant Mol. Biol. 2004, 54, 125–136. [Google Scholar] [CrossRef]
- Caffagni, A.; Arru, L.; Meriggi, P.; Milc, J.; Perata, P.; Pecchioni, N. Iodine Fortification Plant Screening Process and Accumulation in Tomato Fruits and Potato Tubers. Commun. Soil Sci. Plant Anal. 2011, 42, 706–718. [Google Scholar] [CrossRef]
- Buturi, C.V.; Coelho, S.R.M.; Cannata, C.; Basile, F.; Giuffrida, F.; Leonardi, C.; Mauro, R.P. Iron Biofortification of Greenhouse Cherry Tomatoes Grown in a Soilless System. Horticulturae 2022, 8, 858. [Google Scholar] [CrossRef]
- Shahzad, Z.; Rouached, H.; Rakha, A. Combating mineral malnutrition through Fe and I biofortification. Compr. Rev. Food Sci. Food Saf. 2014, 13, 329–346. [Google Scholar] [CrossRef]
- Ikram, N.A.; Ghaffar, A.; Khan, A.A.; Nawaz, F.; Hussain, A. Agronomic biofortification of tomatoes with iron enhances growth, yield and quality. N. Z. J. Crop Hortic. Sci. 2024. [Google Scholar] [CrossRef]
- Tonacchera, M.; Dimida, A.; Servi, M.D.; Frigeri, M.; Ferrarini, E.; Marco, G.D.; Grasso, L.; Agretti, P.; Piaggi, P.; Lombardi, F.A. Iodine fortification of vegetables improves human iodine nutrition: In vivo evidence for a new model of iodine prophylaxis. J. Clin. Endocrinol. Metab. 2013, 98, 694–697. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, R.; Vaidya, M. Genetic biofortification of tomato (Solanum lycopersicum L.) for enhancing iron content. Plant Biotechnol. J. 2020, 18, 1550–1562. [Google Scholar] [CrossRef]
- Medrano, M.; Martínez, J.L.P.; Morales, S.G.L.; Maldonado, A.J.R.; Mendoza, A.B. Use of iodine to biofortify and promote growth and stress tolerance in crops. Front. Plant Sci. 2016, 7, 145. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2012, 173, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U. Iodine as a beneficial but non-essential nutrient: Current perspectives and future directions. J. Plant Nutr. 2020, 43, 1867–1882. [Google Scholar]
- Medrano Macías, J.M.; Salazar, P.; Romero, F. Iodine in plant nutrition: Exploring its role as a beneficial element. Plant Sci. Rev. 2021, 12, 345–360. [Google Scholar]
- Nascimento, V.L.; Souza, B.C.O.Q.; Lopes, G.; Guilherme, L.R.G. On the Role of Iodine in Plants: A Commentary on Benefits of This Element. Front. Plant Sci. 2022, 13, 836835. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.X.; Yan, A.L.; Hong, C.L.; Qin, Y.C.; Pan, L.; Xie, L.L. Biogeochemical transfer and dynamics of iodine in a soil-plant system. Environ. Geochem. Health 2009, 31, 401–411. [Google Scholar] [CrossRef]
- Gupta, N.; Bajpai, M.; Majumdar, R.; Mishra, P. Response of iodine on antioxidant levels of Glycine max L. grown under Cd2+ stress. Adv. Biol. Res. 2015, 9, 40–48. [Google Scholar]
- Hong, C.; Weng, H.; Yan, A.; Islam, E. The fate of exogenous iodine in pot soil cultivated with vegetables. Environ. Geochem. Health 2009, 31, 99–108. [Google Scholar] [CrossRef]
- Liang, G. Iron uptake, signaling, and sensing in plants. Plant Commun. 2022, 3, 100349. [Google Scholar] [CrossRef]
- Curie, C.; Briat, J.F. Fe transport and signaling in plants. Annu. Rev. Plant Biol. 2003, 54, 183–206. [Google Scholar] [CrossRef]
- Briat, J.F.; Curie, C.; Gaymard, F. Iron utilization and metabolism in plants. Curr. Opin. Plant Biol. 2007, 10, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.F.; Manney, L.; DeWitt, N.D.; Yoo, M.H.; Sussman, M.R. The Arabidopsis thaliana plasma membrane H+-ATPase multigene family. Genomic sequence and expression of a third isoform. J. Biol. Chem. 1990, 265, 13601–13608. [Google Scholar] [CrossRef]
- Jeong, J.; Connolly, E.L. Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases. Plant Sci. 2009, 176, 709–714. [Google Scholar] [CrossRef]
- Martín-Barranco, A.; Thomine, S.; Vert, G.; Zelazny, E. A quick journey into the diversity of iron uptake strategies in photosynthetic organisms. Plant Signal. Behav. 2021, 16, e1975088. [Google Scholar] [CrossRef] [PubMed]
- Martín-Barranco, J.; Gómez-Cadenas, A.; Romero, L. Coumarins and their role in plant iron acquisition: Mechanisms and applications. J. Plant Physiol. 2021, 261, 153435. [Google Scholar]
- Briat, J.F.; Lobreaux, S. Iron transport and storage in plants. Trends Plant Sci. 1997, 2, 187–193. [Google Scholar] [CrossRef]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Hakki, E.E.; Gezgin, S. Role of molecular approaches in improving genetic variability of micronutrients and their utilization in breeding programs. In Wheat and Barley Grain Biofortification; Gupta, O.P., Pandey, V., Narwal, S., Sharma, P., Ram, S., Singh, G.P., Eds.; Woodhead Publishing: Duxford, UK, 2020; pp. 27–52. [Google Scholar] [CrossRef]
- Lyons, G.; Monasterio, I.O.; Stangoulis, J.; Graham, R. Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant Soil 2005, 269, 369–380. [Google Scholar] [CrossRef]
- James, C.; Krattiger, A.F. Global Review of the Field Testing and Commercialization of Transgenic Plants, 1986 to 1995: The First Decade of Crop Biotechnology; ISAAA: Ithaca, NY, USA, 1996. [Google Scholar]
- Ye, X.; Al-Babili, S.; Kloti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 2000, 287, 303–305. [Google Scholar] [CrossRef]
- Hefferon, K.L. Can biofortified crops help attain food security? Curr. Mol. Biol. Rep. 2016, 2, 180–185. [Google Scholar] [CrossRef]
- Daum, D.; Lawson, P.; Czauderna, R. Enrichment of Field Grown Butterhead Lettuce with iodine by Foliar Fertilization: Effect of Application Mode and Time. In Proceedings of the XVII International Plant Nutrition Colloquium, Istanbul, Turkey, 19–22 August 2013; pp. 946–947. [Google Scholar]
- Lawson, P.G.; Daum, D.; Czauderna, R.; Meuser, H.; Härtling, W.J. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci. 2015, 6, 450. [Google Scholar] [CrossRef] [PubMed]
- Smolen, S.; Skoczylas, L.; Ledwozyw, I.; Rakoczy, R.; Kopec, A.; Piatkowska, E.; Biezanowska, R.K.; Koronowicz, A.; Kapusta, J.D. Biofortification of carrot (Daucus carota L.) with iodine and selenium in a field experiment. Front. Plant Sci. 2016, 7, 730. [Google Scholar] [CrossRef]
- Dai, J.L.; Zhu, Y.G.; Zhang, M.; Huang, Y.Z. Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol. Trace Elem. Res. 2004, 101, 265–276. [Google Scholar] [CrossRef]
- Hong, C.L.; Weng, H.X.; Qin, Y.C.; Yan, A.L.; Xie, L.L. Transfer of iodine from soil to vegetables by applying exogenous iodine. Agron. Sustain. Dev. 2008, 28, 575–583. [Google Scholar] [CrossRef]
- Hurrell, R.F.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef]
- Bashir, K.; Takahashi, R.; Akhtar, S.; Ishimaru, Y.; Nakanishi, H. The role of enhancer-of-zeste homolog 5 in zinc and iron homeostasis in rice. J. Plant Physiol. 2013, 170, 854–861. [Google Scholar] [CrossRef]
- Khalid, S.; Asghar, H.N.; Akhtar, M.J.; Aslam, A.; Zahir, Z.A. Biofortification of Fe in chickpea by plant growth promoting rhizobacteria. Pak. J. Bot. 2015, 47, 1191–1194. [Google Scholar]
- Narwal, R.P.; Malik, R.S.; Dahiya, R.R. Addressing variations in the status of a few nutritionally important micronutrients in wheat crop. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Saleem, A.; Zulfiqar, A.; Saleem, M.Z.; Ali, B.; Saleem, M.H.; Ali, S.; Tufekci, E.D.; Tufekci, A.R.; Rahimi, M.; Mostafa, R.M. Alkaline and acidic soil constraints on iron accumulation by rice cultivars in relation to several physio-biochemical parameters. BMC Plant Biol. 2023, 23, 397. [Google Scholar] [CrossRef] [PubMed]
- Bugter, M.; Reichwein, A. pH stability of Fe-chelates in soilless culture. Acta Hortic. 2007, 742, 57–62. [Google Scholar] [CrossRef]
- Kranner, I.; Colville, L. Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environ. Exp. Bot. 2011, 72, 93–105. [Google Scholar] [CrossRef]
- Sundaria, N.; Singh, M.; Upreti, P.; Chauhan, R.P.; Jaiswal, J.P.; Kumar, A. Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. J. Plant Growth Regul. 2018, 37, 1182–1194. [Google Scholar] [CrossRef]
- Ikram, N.A.; Ghaffar, A.; Khan, A.A.; Nawaz, F.; Hussain, A. Foliar iodine application: A strategy for tomato biofortification and yield optimization. J. Plant Nutr. 2024, 47, 2407483. [Google Scholar] [CrossRef]
- World Health Organization. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers, 3rd, ed.; World Health Organization: Geneva, Switzerland, 2007; Available online: https://www.who.int/publications/i/item/9789241595827 (accessed on 30 November 2024).
Micronutrient | Deficiency Disorders | Deficiency Prevalence |
---|---|---|
I | I deficiency results in goiter problems, dwarfness, cognitive impairment, hypothyroidism, infant mortality, and birth defects. | 2 billion people worldwide. |
Fe | Iron deficiency results in intellectual disability, birth defects, infant mortality, anemic conditions, low birth weight, and restlessness. | 2 billion people worldwide. [16] |
Application Methods | Findings | Impacts on Quality Traits |
---|---|---|
Soil application of Fe | Fe enrichment up to 7.52 mg/100 g fresh weight | Improved total soluble solids and antioxidant capability [47] |
Root application with KIO3 | I enrichment up to 10 mg/kg fresh weight with minimal toxicity | Increased antioxidant ability, and secondary metabolites include flavonoids, phenolic acids, terpenoids, and alkaloids [25] |
Seed priming with Fe and I | Enhanced I and Fe accumulation in tomato seeds and fruits | Enhanced antioxidant capacity and soluble solids [50] |
Foliar application of I and Fe | Increased I and Fe content in tomatoes | Higher sugar content and antioxidant capacity [46] |
Root application of Fe | Improved Fe content in cherry tomatoes | Increased capacity for sugars, secondary metabolites, and antioxidants [51] |
Combined soil and foliar application | Effective increase in I and Fe content in tomatoes | Improved secondary metabolites, antioxidant ability, and sugars [52] |
Agronomic biofortification with FeSO4 | Significant increase in Fe content in tomatoes | Enhanced antioxidant capacity and improved total soluble solids [53] |
Exogenous application of I as KIO3 Genetic biofortification of tomatoes to enhance Fe accumulation | Successful enrichment of I in tomato fruits Successful enrichment of Fe in tomato fruits | Improved antioxidant capacity and secondary metabolites [54] Manipulation of Fe transporters (e.g., IRT1, FRO2) and storage proteins [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikram, N.A.; Abdalla, M.A.; Mühling, K.H. Developing Iron and Iodine Enrichment in Tomato Fruits to Meet Human Nutritional Needs. Plants 2024, 13, 3438. https://doi.org/10.3390/plants13233438
Ikram NA, Abdalla MA, Mühling KH. Developing Iron and Iodine Enrichment in Tomato Fruits to Meet Human Nutritional Needs. Plants. 2024; 13(23):3438. https://doi.org/10.3390/plants13233438
Chicago/Turabian StyleIkram, Nabeel Ahmad, Muna Ali Abdalla, and Karl H. Mühling. 2024. "Developing Iron and Iodine Enrichment in Tomato Fruits to Meet Human Nutritional Needs" Plants 13, no. 23: 3438. https://doi.org/10.3390/plants13233438
APA StyleIkram, N. A., Abdalla, M. A., & Mühling, K. H. (2024). Developing Iron and Iodine Enrichment in Tomato Fruits to Meet Human Nutritional Needs. Plants, 13(23), 3438. https://doi.org/10.3390/plants13233438