Morphological Variation and Spatial Metabolic Variations in Rhodiola sachalinensis A.Bor. in Different Natural Distribution Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments and Equipment
2.3. Sample Preparation and GS-MS Analysis
2.4. Data Processing
3. Results
3.1. Analysis of Morphological Characteristics of R. sachalinensis
3.2. PCA
3.3. Analysis of OPLS-DA Model
Identification of Differential Metabolites
3.4. KEGG Metabolic Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, S.X.; Zu, Y.G.; Wu, M. High yield production of salidroside in the suspension culture of Rhodiola sachalinensis. J. Biotechnol. 2003, 106, 33–43. [Google Scholar] [CrossRef] [PubMed]
- György, Z.; Tolonen, A.; Pakonen, M.; Neubauer, P.; Hohtola, A. Enhancing the production of cinnamyl glycosides in compact callus aggregate cultures of Rhodiola rosea by biotransformation of cinnamyl alcohol. Plant Sci. 2004, 166, 229–236. [Google Scholar] [CrossRef]
- Li, T.; Xu, G.; Wu, L.; Sun, C. Pharmacological studies on the sedative and hypnotic effect of salidroside from the Chinese medicinal plant Rhodiola sachalinensis. Phytomedicine 2007, 14, 601–604. [Google Scholar] [CrossRef]
- Zhou, G.; Guan, Y.; Chen, H.; Ye, J. Simultaneous determination of pharmacologically active ingredients in Rhodiola by capillary chromatography with electrochemical detection. J. Chromatogr. A 2007, 1142, 236–239. [Google Scholar] [CrossRef]
- Kwon, M.J.; Lee, J.W.; Kim, K.S.; Chen, H.; Cui, C.B.; Lee, G.W.; Cho, Y.H. The Influence of Tyrosol-Enriched Rhodiola sachalinensis Extracts Bioconverted by the Mycelium of Bovista plumbe on Scopolamine-Induced Cognitive, Behavioral, and Physiological Responses in Mice. Molecules 2022, 27, 4455. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wu, Y.; Jiang, G.; Feng, L.; Wang, Z.; Yuan, G.; Tong, H. Structure, Function, Interactions. Sulfated polysaccharides from Rhodiola sachalinensis reduce D-gal-induced oxidative stress in NIH 3T3 cells. Int. J. Biol. Macromol. 2019, 140, 288–293. [Google Scholar]
- Yuan, Y.; Wu, X.; Hong, Y.; Zhang, X.; Wang, Z.; Yan, H. Salidroside ameliorates liver metabonomics in relation to modified gut-liver FXR signaling in furan-induced mice. Food Chem. Toxicol. 2020, 140, 111311. [Google Scholar] [CrossRef]
- Zhang, X.; Kuang, G.; Wan, J.; Jiang, R.; Ma, L.; Gong, X.; Liu, X. Salidroside protects mice against CCl4-induced acute liver injury via down-regulating CYP2E1 expression and inhibiting NLRP3 inflammasome activation. Int. Immunopharmacol. 2020, 85, 106662. [Google Scholar] [CrossRef]
- Solouki, M.; Mehdikhani, H.; Zeinali, H.; Emamjomeh, A.A. Study of genetic diversity in Chamomile (Matricaria chamomilla) based on morphological traits and molecular markers. Sci. Hortic. 2008, 117, 281–287. [Google Scholar] [CrossRef]
- Anders, K.; Barfod, A.S.; Asmussen, C.B.; Seberg, O. Investigation of Genetic and Morphological Variation in the Sago Palm (Metroxylon sagu; Arecaceae) in Papua New Guinea. Ann. Bot. 2004, 94, 109–117. [Google Scholar]
- Du, Y.P.; He, H.B.; Wang, Z.X.; Wei, C.; Li, S.; Jia, G.X. Investigation and evaluation of the genus Lilium resources native to China. Genet. Resour. Crop Evol. 2014, 61, 395–412. [Google Scholar] [CrossRef]
- Griffiths, W.J. Metabolomics, Metabonomics and Metabolite Profiling; Royal Society of Chemistry: London, UK, 2008. [Google Scholar]
- Cappello, T.; Maisano, M.; Figureauceri, A.; Fasulo, S. 1H NMR-based metabolomics investigation on the effects of petrochemical contamination in posterior adductor muscles of caged mussel Mytilus galloprovincialis. Ecotoxicol. Environ. Saf. 2017, 142, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Duan, W.; Ran, Z.; Chen, X.; Yu, H.; Fang, L.; Guo, L.; Zhou, J. Diversity and correlation analysis of endophytes and metabolites of Panax quinquefolius L. in various tissues. BMC Plant Biol. 2023, 23, 275. [Google Scholar]
- Hall, R.D.; Brouwer, I.D.; Fitzgerald, M.A. Plant metabolomics and its potential application for human nutrition. Physiol. Plant. 2007, 132, 162–175. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Bi, H.M.; Liu, C.J. Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Sep. Purif. Technol. 2007, 57, 277–282. [Google Scholar] [CrossRef]
- Choe, K.I.; Kwon, J.H.; Park, K.H.; Oh, M.H.; Kim, M.H.; Kim, H.H.; Cho, S.H.; Chung, E.K.; Ha, S.Y.; Lee, M.W. The Antioxidant and Anti-inflammatory Effects of Phenolic Compounds Isolated from the Root of Rhodiola sachalinensis A. BOR. Molecules 2012, 17, 11484–11494. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Chawla, R.; Sagar, R.; Prasad, J.; Singh, S.; Kumar, R.; Sharma, A.; Singh, S.; Sharma, R.K. Evaluation of radioprotective activities of Rhodiola imbricata Edgew—A high altitude plant. Mol. Cell. Biochem. 2005, 273, 209–223. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Wang, Y.; Abozeid, A.; Zu, Y.G.; Tang, Z.H. The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation. J. Pharm. Biomed. Anal. 2017, 135, 176–185. [Google Scholar] [CrossRef]
- Lommen, A. MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 2009, 81, 3079–3086. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Zhu, S.; Sun, M.; Zhou, X. Understanding the flavor signature of the rice grown in different regions of China via metabolite profiling. J. Sci. Food Agric. 2022, 102, 3010–3020. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.G.; Xu, X.P. Determination of rosavin and salidroside in rhizome of 4 different plants from Rhodiola L. West China J. Pharm. Sci. 2002, 17, 443–444. [Google Scholar]
- Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. A J. Chemom. Soc. 2010, 16, 119–128. [Google Scholar] [CrossRef]
- Afendi, F.M.; Altaf-Ul-Amin, M.; Kanaya, S. Permutation test in evaluating the significance of plants in pls-da model of jamu ingredients. In Proceedings of the Improving Food, Energy and Environment with Better Crops: 7th Asian Crop Science Association Conference, Bogor, Indonesia, 27–30 September 2011; Bogor Agricultural University: Bogor, Indonesia, 2011. [Google Scholar]
- Xu, B.; Peng, L.; Yang, H.; Pan, W.; Zhang, F. Genetic Diversity Analysis for Leaf Main Traits of Camellia azalea. Bull. Bot. Res. 2015, 35, 730–734. [Google Scholar]
- Feng, L.G.; Shao, D.W.; Sheng, L.X.; Zhao, L.Y.; Yu, X.Y. Study on investigation and morphological variation of wild rosa rugosa in China. J. Shandong Agric. Univ. 2009, 40, 484–488. [Google Scholar]
- Che, Y.-H.; Yang, X.-M.; Yang, Y.-P.; Li, X.-Q.; Qi, J.-H. Morphological Investigation of Secale cereale subsp. segetale Populations in Xinjiang. Hubei Agric. Sci. 2008, 8, 880–882. [Google Scholar]
- Liu, Y.; Chang, Q.Y.; Tang, Z.H.; Wu, K.X.; Abozeid, A.; Mu, L.Q. The Interrelationship between Latitudinal Differences and Metabolic Differences in the Natural Distribution Area of Tilia amurensis Rupr. Forests 2022, 13, 1507. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, K.; Yan, C.; Wu, M.; Wang, Y. Revealing the differences in phenolics in different parts of Taraxacum mongolicum using UPLC-MS/MS. Phytochem. Lett. 2023, 56, 13–18. [Google Scholar] [CrossRef]
- Yisimayili, Z.; Chao, Z. A review on phytochemicals, metabolic profiles and pharmacokinetics studies of the different parts (juice, seeds, peel, flowers, leaves and bark) of pomegranate (Punica granatum L.). Food Chem. 2022, 395, 133600. [Google Scholar] [CrossRef]
- Liu, F.; Li, M.; Cheng, S.; Liu, Y.; Wu, W. Investigation Analysis on the Morphologic Characters of Different Sexual Cultivated Rhodiola sachalinensis, A. Bor. Mol. Plant Breed. 2017, 15, 1522–1526. [Google Scholar]
- Qu, X.; Hu, S.; Li, T.; Zhang, J.; Wang, B.; Liu, C. Metabolomics Analysis Reveals the Differences Between Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. Front. Plant Sci. 2022, 13, 933849. [Google Scholar] [CrossRef]
- Shen, J.; Shen, M.; Wang, X.; Lu, Y. Effect of environmental factors on shoot emergence and vegetative growth of alligatorweed (Alternanthera philoxcroides). Weed Sci. 2005, 53, 471–478. [Google Scholar] [CrossRef]
- Arslanoglu, F.; Aytac, S.; Oner, E.K. Effect of genotype and environment interaction on oil and protein content of soybean (Glycine max (L.) Merrill) seed. Afr. J. Biotechnol. 2011, 10, 18409–18417. [Google Scholar] [CrossRef]
- Park, C.H.; Park, S.Y.; Park, Y.J.; Kim, J.K.; Park, S.U. Metabolite Profiling and Comparative Analysis of Secondary Metabolites in Chinese Cabbage, Radish, and Hybrid xBrassicoraphanus. J. Agric. Food Chem. 2020, 68, 13711–13719. [Google Scholar] [CrossRef]
- Tegeder, M. Transporters for amino acids in plant cells: Some functions and many unknowns. Curr. Opin. Plant Biol. 2012, 15, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Kazmaier, U. Amino Acids—Valuable Organocatalysts in Carbohydrate Synthesis. Angew. Chem. Int. Ed. 2005, 44, 2186–2188. [Google Scholar] [CrossRef] [PubMed]
- Osmond, D.L.; Wilson, R.F.; Raper, C.D. Fatty Acid Composition and Nitrate Uptake of Soybean Roots during Acclimation to Low Temperature. Plant Physiol. 1982, 70, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Guo, R.; Jiao, Y.; Jin, X.; Zhang, H.; Shi, L. Comparison of Salt Tolerance in Soja Based on Metabolomics of Seedling Roots. Front. Plant Sci. 2017, 8, 1101. [Google Scholar] [CrossRef]
- Cao, Y.W.L.G.M.; Xiang, C. Plant Sulfur Metabolism, Regulation, and Biological Functions. Chin. Bull. Bot. 2007, 24, 735–761. [Google Scholar]
Height | Stem Diameter | Leaf Length | Leaf Width | Length–Width Ratio of Leaf | |
---|---|---|---|---|---|
Mean (mm) | 201.20 | 2.33 | 25.05 | 7.49 | 3.38 |
Standard Deviation (mm) | 53.70 | 0.74 | 7.25 | 1.99 | 0.66 |
Minimum (mm) | 104.00 | 0.96 | 9.39 | 3.78 | 1.37 |
Maximum (mm) | 271.00 | 4.74 | 48.48 | 15.28 | 5.32 |
Kurtosis | −0.68 | 0.21 | 0.69 | 3.15 | 0.86 |
Skewness | 0.08 | 0.55 | 0.53 | 1.30 | −0.34 |
Coefficient of Variation (%) | 37.2% | 31.7% | 28.9% | 26.6% | 19.8% |
Asymp. Sig. (2-tailed) | 0.70 | 0.66 | 0.39 | 0.04 | 0.84 |
Height | Stem Diameter | Leaf Length | Leaf Width | Length–Width Ratio of Leaf | |
Mean (mm) | 226.6 | 2.9 | 25.7 | 8.5 | 3.02 |
Standard Deviation (mm) | 58.1 | 0.6 | 5.6 | 1.8 | 0.34 |
Minimum (mm) | 104 | 1.5 | 15.7 | 5.5 | 2.12 |
Maximum (mm) | 338 | 4.7 | 38.9 | 12.5 | 4.58 |
Kurtosis | −0.86 | −0.08 | −0.72 | −0.59 | 3.55 |
Skewness | −0.04 | 0.34 | 0.28 | 0.51 | 0.89 |
Coefficient of Variation (%) | 25.66% | 20.44% | 21.91% | 21.00% | 11.40% |
Asymp. Sig. (2-tailed) | 0.18 | 0.00 | 0.06 | 0.06 | 0.20 |
Trait | Pingding Mountain, Dahailin | Fenghuang Mountain Wuchang | |
Height (mm) | Mean | 201.20 ± 53.70 b | 226.6 ± 58.1 a |
Coefficient of variation (%) | 37.2% | 25.66% | |
Asymp. Sig. (2-tailed) | 0.70 | 0.18 | |
Stem diameter (mm) | Mean | 2.33 ± 0.74 a | 2.9 ± 0.6 b |
Coefficient of variation (%) | 31.70% | 20.44% | |
Asymp. Sig. (2-tailed) | 0.66 | 0.00 | |
Leaf length (mm) | Mean | 25.05 ± 7.25 c | 25.7 ± 5.6 b |
Coefficient of variation (%) | 28.90% | 21.91% | |
Asymp. Sig. (2-tailed) | 0.39 | 0.06 | |
Leaf width (mm) | Mean | 7.49 ± 1.99 a | 8.5 ± 1.8 b |
Coefficient of variation (%) | 26.60% | 21.00% | |
Asymp. Sig. (2-tailed) | 0.04 | 0.06 | |
Length–width ratio of leaf | Mean | 3.38 ± 0.66 a | 3.02 ± 0.34 a |
Coefficient of variation (%) | 19.80% | 11.40% | |
Asymp. Sig. (2-tailed) | 0.84 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Q.; Liu, X.; Li, Y.; Zhao, W.; Tang, Z.; Liu, Y.; Mu, L. Morphological Variation and Spatial Metabolic Variations in Rhodiola sachalinensis A.Bor. in Different Natural Distribution Areas. Plants 2024, 13, 467. https://doi.org/10.3390/plants13040467
Chang Q, Liu X, Li Y, Zhao W, Tang Z, Liu Y, Mu L. Morphological Variation and Spatial Metabolic Variations in Rhodiola sachalinensis A.Bor. in Different Natural Distribution Areas. Plants. 2024; 13(4):467. https://doi.org/10.3390/plants13040467
Chicago/Turabian StyleChang, Qiuyang, Xu Liu, Yi Li, Wen Zhao, Zhonghua Tang, Yang Liu, and Liqiang Mu. 2024. "Morphological Variation and Spatial Metabolic Variations in Rhodiola sachalinensis A.Bor. in Different Natural Distribution Areas" Plants 13, no. 4: 467. https://doi.org/10.3390/plants13040467
APA StyleChang, Q., Liu, X., Li, Y., Zhao, W., Tang, Z., Liu, Y., & Mu, L. (2024). Morphological Variation and Spatial Metabolic Variations in Rhodiola sachalinensis A.Bor. in Different Natural Distribution Areas. Plants, 13(4), 467. https://doi.org/10.3390/plants13040467