Plant-Produced Viral Nanoparticles as a Functionalized Catalytic Support for Metabolic Engineering
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Planta Production of TBSV-E-coil Nanoparticles, E-coil-PVX Nanoparticles, and K-coil-Lichenase
2.2. E-coil Plant VNPs Interact with K-coil-Lichenase In Vitro
2.3. Production of HBc VLPs in Plants
2.4. HBc VLPs Can Serve as a Hub for Multi-Member Enzymatic Cascades in Planta
Co-Expression in Planta of HBc-E-coil and AAE1-, OLS-, and OAC-K-coil
3. Materials and Methods
3.1. TBSV and PVX Construct Design
3.2. Production and Purification of TBSV and PVX Nanoparticles
3.3. GoldenBraid for HBc VLPs and Enzymes Production (K-coil Lichenase, Lichenase-GFP, AAE1-, OLS-, and OAC-K-coil)
3.4. Agroinfiltration Procedure
3.5. HBc VLPs Purification
3.6. Transmission Electron Microscopy
3.7. Sandwich-ELISA Assay
3.8. HPLC/MS Analysis of Metabolic Channeling Effect of Modified HBc VLPs Functioning as Metabolic Hubs for Biosynthetic Cannabinoid Pathway
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozber, N.; Watkins, J.L.; Facchini, P.J. Back to the Plant: Overcoming Roadblocks to the Microbial Production of Pharmaceutically Important Plant Natural Products. J. Ind. Microbiol. Biotechnol. Off. J. Soc. Ind. Microbiol. Biotechnol. 2020, 47, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Reiter, M.A.; d’Espaux, L.; Wong, J.; Denby, C.M.; Lechner, A.; Zhang, Y.; Grzybowski, A.T.; Harth, S.; Lin, W.; et al. Complete Biosynthesis of Cannabinoids and Their Unnatural Analogues in Yeast. Nature 2019, 567, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, P.; Smolke, C.D. Engineering a Microbial Biosynthesis Platform for De Novo Production of Tropane Alkaloids. Nat. Commun. 2019, 10, 3634. [Google Scholar] [CrossRef] [PubMed]
- Dahmani, I.; Qin, K.; Zhang, Y.; Fernie, A.R. The Formation and Function of Plant Metabolons. Plant J. 2023, 114, 1080–1092. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, K.; Rasmussen, A.V.; Morant, M.; Nielsen, A.H.; Bjarnholt, N.; Zagrobelny, M.; Bak, S.; Møller, B.L. Metabolon Formation and Metabolic Channeling in the Biosynthesis of Plant Natural Products. Curr. Opin. Plant Biol. 2005, 8, 280–291. [Google Scholar] [CrossRef]
- Lee, H.; DeLoache, W.C.; Dueber, J.E. Spatial Organization of Enzymes for Metabolic Engineering. Metab. Eng. 2012, 14, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-Z.; Zhang, Y.-H.; Ren, H.; Wang, Y.-L.; Jiang, W.; Fang, B.-S. Strategies and Perspectives of Assembling Multi-Enzyme Systems. Crit. Rev. Biotechnol. 2017, 37, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
- Vranish, J.N.; Ancona, M.G.; Walper, S.A.; Medintz, I.L. Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies. Langmuir 2017, 34, 2901–2925. [Google Scholar] [CrossRef]
- Kummer, M.J.; Lee, Y.S.; Yuan, M.; Alkotaini, B.; Zhao, J.; Blumenthal, E.; Minteer, S.D. Substrate Channeling by a Rationally Designed Fusion Protein in a Biocatalytic Cascade. JACS Au 2021, 1, 1187–1197. [Google Scholar] [CrossRef]
- Arul, S.S.; Balakrishnan, B.; Handanahal, S.S.; Venkataraman, S. Viral Nanoparticles: Current Advances in Design and Development. Biochimie 2023, 219, 33–50. [Google Scholar] [CrossRef]
- Wen, A.M.; Steinmetz, N.F. Design of Virus-Based Nanomaterials for Medicine, Biotechnology, and Energy. Chem. Soc. Rev. 2016, 45, 4074–4126. [Google Scholar] [CrossRef]
- Koudelka, K.J.; Pitek, A.S.; Manchester, M.; Steinmetz, N.F. Virus-Based Nanoparticles as Versatile Nanomachines. Annu. Rev. Virol. 2015, 2, 379–401. [Google Scholar] [CrossRef]
- Lico, C.; Schoubben, A.; Baschieri, S.; Blasi, P.; Santi, L. Nanoparticles in Biomedicine. Curr. Med. Chem. 2013, 20, 3471–3487. [Google Scholar] [CrossRef]
- Burkhard, P.; Stetefeld, J.; Strelkov, S.V. Coiled Coils: A Highly Versatile Protein Folding Motif. Trends Cell Biol. 2001, 11, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Woolfson, D.N.; Alber, T. Predicting Oligomerization States of Coiled Coils. Protein Sci. 1995, 4, 1596–1607. [Google Scholar] [CrossRef] [PubMed]
- Vinson, C.; Acharya, A.; Taparowsky, E.J. Deciphering B-ZIP Transcription Factor Interactions In Vitro and In Vivo. Biochim. Biophys. Acta (BBA)-Gene Struct. Expr. 2006, 1759, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.X.; Moulin, M.; Hashemolhosseini, S.; Kilian, K.; Wegner, M.; Müller, C.W. Structure of the GCM Domain–DNA Complex: A DNA-Binding Domain with a Novel Fold and Mode of Target Site Recognition. EMBO J. 2003, 22, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Tripet, B.; Yu, L.; Bautista, D.L.; Wong, W.Y.; Irvin, R.T.; Hodges, R.S. Engineering a de Novo-Designed Coiled-Coil Heterodimerization Domain for the Rapid Detection, Purification and Characterization of Recombinantly Expressed Peptides and Proteins. Protein Eng. Des. Sel. 1996, 9, 1029–1042. [Google Scholar] [CrossRef] [PubMed]
- Tripet, B.; Yu, L.; Bautista, D.L.; Wong, W.Y.; Irvin, R.T.; Hodges, R.S. Engineering a de Novo Designed Coiled-Coil Heterodimerization Domain for the Rapid Detection, Purification and Characterization of Recombinantly Expressed Peptides and Proteins. Protein Eng. 1997, 10, 299. [Google Scholar] [CrossRef] [PubMed]
- Lapenta, F.; Aupič, J.; Strmšek, Ž.; Jerala, R. Coiled Coil Protein Origami: From Modular Design Principles towards Biotechnological Applications. Chem. Soc. Rev. 2018, 47, 3530–3542. [Google Scholar] [CrossRef] [PubMed]
- Amiri, R.M.; Yur’eva, N.O.; Shimshilashvili, K.R.; Goldenkova-Pavlova, I.V.; Pchelkin, V.P.; Kuznitsova, E.I.; Tsydendambaev, V.D.; Trunova, T.I.; Los, D.A.; Jouzani, G.S. Expression of Acyl-lipid Δ12-desaturase Gene in Prokaryotic and Eukaryotic Cells and Its Effect on Cold Stress Tolerance of Potato. J. Integr. Plant Biol. 2010, 52, 289–297. [Google Scholar] [CrossRef]
- Schimming, S.; Schwarz, W.H.; Staudenbauer, W.L. Properties of a Thermoactive β-1, 3-1, 4-Glucanase (Lichenase) from Clostridium thermocellum Expressed in Escherichia coli. Biochem. Biophys. Res. Commun. 1991, 177, 447–452. [Google Scholar] [CrossRef]
- Gerasymenko, I.; Sheludko, Y.; Fräbel, S.; Staniek, A.; Warzecha, H. Combinatorial Biosynthesis of Small Molecules in Plants: Engineering Strategies and Tools. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 617, pp. 413–442. ISBN 0076-6879. [Google Scholar]
- Grasso, S.; Lico, C.; Imperatori, F.; Santi, L. A Plant Derived Multifunctional Tool for Nanobiotechnology Based on Tomato Bushy Stunt Virus. Transgenic Res. 2013, 22, 519–535. [Google Scholar] [CrossRef]
- Lico, C.; Benvenuto, E.; Baschieri, S. The Two-Faced Potato Virus X: From Plant Pathogen to Smart Nanoparticle. Front. Plant Sci. 2015, 6, 1009. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Santi, L.; LePore, K.; Kilbourne, J.; Arntzen, C.J.; Mason, H.S. Rapid, High-Level Production of Hepatitis B Core Antigen in Plant Leaf and Its Immunogenicity in Mice. Vaccine 2006, 24, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Pumpens, P.; Grens, E. HBV Core Particles as a Carrier for B Cell/T Cell Epitopes. Intervirology 2001, 44, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, F.; Nassal, M. Hepatitis B Virus Nucleocapsid Assembly: Primary Structure Requirements in the Core Protein. J. Virol. 1990, 64, 3319–3330. [Google Scholar] [CrossRef] [PubMed]
- Gülck, T.; Booth, J.; Carvalho, Â.; Khakimov, B.; Crocoll, C.; Motawia, M.; Møller, B.; Bohlmann, J.; Gallage, N. Synthetic Biology of Cannabinoids and Cannabinoid Glucosides in Nicotiana benthamiana and Saccharomyces cerevisiae. J. Nat. Prod. 2020, 83, 2877–2893. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, E.K.; Lumb, K.J.; Kim, P.S. Peptide ‘Velcro’: Design of a Heterodimeric Coiled Coil. Curr. Biol. 1993, 3, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Hill, B.J.; Xu, Y.; Sherwood, J.; Raddatz, A.D.; Kim, Y.; Bao, Y.; Duffy, C. A Coiled-Coil Strategy for the Directional Display of Multiple Proteins on the Surface of Iron Oxide Nanoparticles. RSC Adv. 2017, 7, 12133–12143. [Google Scholar] [CrossRef]
- Aronsson, C.; Dånmark, S.; Zhou, F.; Öberg, P.; Enander, K.; Su, H.; Aili, D. Self-Sorting Heterodimeric Coiled Coil Peptides with Defined and Tuneable Self-Assembly Properties. Sci. Rep. 2015, 5, 14063. [Google Scholar] [CrossRef]
- Harrison, S.C.; Olson, A.J.; Schutt, C.E.; Winkler, F.K.; Bricogne, G. Tomato Bushy Stunt Virus at 2.9 Å Resolution. Nature 1978, 276, 368–373. [Google Scholar] [CrossRef]
- Olson, A.; Bricogne, G.; Harrison, S. Structure of Tomato Bushy Stunt Virus IV: The Virus Particle at 2·9resolution. J. Mol. Biol. 1983, 171, 61–93. [Google Scholar] [CrossRef]
- Grinzato, A.; Kandiah, E.; Lico, C.; Betti, C.; Baschieri, S.; Zanotti, G. Atomic Structure of Potato Virus X, the Prototype of the Alphaflexiviridae Family. Nat. Chem. Biol. 2020, 16, 564–569. [Google Scholar] [CrossRef]
- Lico, C.; Capuano, F.; Renzone, G.; Donini, M.; Marusic, C.; Scaloni, A.; Benvenuto, E.; Baschieri, S. Peptide Display on Potato Virus X: Molecular Features of the Coat Protein-Fused Peptide Affecting Cell-to-Cell and Phloem Movement of Chimeric Virus Particles. J. Gen. Virol. 2006, 87, 3103–3112. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, M.L.; Luke, G.; Mehrotra, A.; Li, X.; Hughes, L.E.; Gani, D.; Ryan, M.D. Analysis of the Aphthovirus 2A/2B Polyprotein ‘Cleavage’Mechanism Indicates Not a Proteolytic Reaction, but a Novel Translational Effect: A Putative Ribosomal ‘Skip’. J. Gen. Virol. 2001, 82, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- de Felipe, P.; Hughes, L.E.; Ryan, M.D.; Brown, J.D. Co-Translational, Intraribosomal Cleavage of Polypeptides by the Foot-and-Mouth Disease Virus 2A Peptide. J. Biol. Chem. 2003, 278, 11441–11448. [Google Scholar] [CrossRef] [PubMed]
- Cruz, S.S.; Chapman, S.; Roberts, A.G.; Roberts, I.M.; Prior, D.; Oparka, K.J. Assembly and Movement of a Plant Virus Carrying a Green Fluorescent Protein Overcoat. Proc. Natl. Acad. Sci. USA 1996, 93, 6286–6290. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Wood, T.M.; Bhat, K.M. Methods for Measuring Cellulase Activities. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 160, pp. 87–112. ISBN 0076-6879. [Google Scholar]
- Mechtcheriakova, I.; Eldarov, M.; Nicholson, L.; Shanks, M.; Skryabin, K.; Lomonossoff, G. The Use of Viral Vectors to Produce Hepatitis B Virus Core Particles in Plants. J. Virol. Methods 2006, 131, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Pyrski, M.; Rugowska, A.; Wierzbiński, K.R.; Kasprzyk, A.; Bogusiewicz, M.; Bociąg, P.; Samardakiewicz, S.; Czyż, M.; Kurpisz, M.; Pniewski, T. HBcAg Produced in Transgenic Tobacco Triggers Th1 and Th2 Response When Intramuscularly Delivered. Vaccine 2017, 35, 5714–5721. [Google Scholar] [CrossRef]
- Zhou, S.; Standring, D.N. Hepatitis B Virus Capsid Particles Are Assembled from Core-Protein Dimer Precursors. Proc. Natl. Acad. Sci. USA 1992, 89, 10046–10050. [Google Scholar] [CrossRef]
- Newman, M.; Suk, F.-M.; Cajimat, M.; Chua, P.K.; Shih, C. Stability and Morphology Comparisons of Self-AssembledVirus-Like Particles from Wild-Type and Mutant Human Hepatitis B VirusCapsidProteins. J. Virol. 2003, 77, 12950–12960. [Google Scholar] [CrossRef]
- Gallina, A.; Bonelli, F.; Zentilin, L.; Rindi, G.; Muttini, M.; Milanesi, G. A Recombinant Hepatitis B Core Antigen Polypeptide with the Protamine-like Domain Deleted Self-Assembles into Capsid Particles but Fails to Bind Nucleic Acids. J. Virol. 1989, 63, 4645–4652. [Google Scholar] [CrossRef]
- Geißler, M.F. Metabolic Engineering of Cannabinoid Biosynthesis in Tobacco. Ph.D. Thesis, Technische Universität, Berlin, Germany, 2021. [Google Scholar]
- Marconi, G.; Albertini, E.; Barone, P.; De Marchis, F.; Lico, C.; Marusic, C.; Rutili, D.; Veronesi, F.; Porceddu, A. In Planta Production of Two Peptides of the Classical Swine Fever Virus (CSFV) E2 Glycoprotein Fused to the Coat Protein of Potato Virus X. BMC Biotechnol. 2006, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Lico, C.; Mancini, C.; Italiani, P.; Betti, C.; Boraschi, D.; Benvenuto, E.; Baschieri, S. Plant-Produced Potato Virus X Chimeric Particles Displaying an Influenza Virus-Derived Peptide Activate Specific CD8+ T Cells in Mice. Vaccine 2009, 27, 5069–5076. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.L.; Uhde-Holzem, K.; Fischer, R.; Commandeur, U.; Steinmetz, N.F. Genetic Engineering and Chemical Conjugation of Potato Virus X. In Virus Hybrids as Nanomaterials: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2014; pp. 3–21. [Google Scholar]
- Sarrion-Perdigones, A.; Falconi, E.E.; Zandalinas, S.I.; Juárez, P.; Fernández-del-Carmen, A.; Granell, A.; Orzaez, D. GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLoS ONE 2011, 6, e21622. [Google Scholar] [CrossRef] [PubMed]
- Sparkes, I.A.; Runions, J.; Kearns, A.; Hawes, C. Rapid, Transient Expression of Fluorescent Fusion Proteins in Tobacco Plants and Generation of Stably Transformed Plants. Nat. Protoc. 2006, 1, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Danielson, D.C.; Pezacki, J.P. Studying the RNA Silencing Pathway with the P19 Protein. FEBS Lett. 2013, 587, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, R.; Circelli, P.; Villani, M.E.; Buriani, G.; Nardi, L.; Coppola, V.; Bianco, L.; Benvenuto, E.; Donini, M.; Marusic, C. High-Level HIV-1 Nef Transient Expression in Nicotiana Benthamiana Using the P19 Gene Silencing Suppressor Protein of Artichoke Mottled Crinckle Virus. BMC Biotechnol. 2009, 9, 96. [Google Scholar] [CrossRef] [PubMed]
- Peyret, H. A Protocol for the Gentle Purification of Virus-like Particles Produced in Plants. J. Virol. Methods 2015, 225, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Santi, L.; Huang, Z.; Mason, H. Virus-like Particles Production in Green Plants. Methods 2006, 40, 66–76. [Google Scholar] [CrossRef] [PubMed]
Time (min) | Aqueous Phase (%) | Organic Phase (%) | |
---|---|---|---|
0–2 | 80 | 20 | gradient |
2–8 | 0 | 100 | isocratic |
8–16 | 0 | 100 | gradient |
1–32 | 80 | 20 | isocratic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sator, C.; Lico, C.; Pannucci, E.; Marchetti, L.; Baschieri, S.; Warzecha, H.; Santi, L. Plant-Produced Viral Nanoparticles as a Functionalized Catalytic Support for Metabolic Engineering. Plants 2024, 13, 503. https://doi.org/10.3390/plants13040503
Sator C, Lico C, Pannucci E, Marchetti L, Baschieri S, Warzecha H, Santi L. Plant-Produced Viral Nanoparticles as a Functionalized Catalytic Support for Metabolic Engineering. Plants. 2024; 13(4):503. https://doi.org/10.3390/plants13040503
Chicago/Turabian StyleSator, Christian, Chiara Lico, Elisa Pannucci, Luca Marchetti, Selene Baschieri, Heribert Warzecha, and Luca Santi. 2024. "Plant-Produced Viral Nanoparticles as a Functionalized Catalytic Support for Metabolic Engineering" Plants 13, no. 4: 503. https://doi.org/10.3390/plants13040503
APA StyleSator, C., Lico, C., Pannucci, E., Marchetti, L., Baschieri, S., Warzecha, H., & Santi, L. (2024). Plant-Produced Viral Nanoparticles as a Functionalized Catalytic Support for Metabolic Engineering. Plants, 13(4), 503. https://doi.org/10.3390/plants13040503