Spatial Variation in Responses of Plant Spring Phenology to Climate Warming in Grasslands of Inner Mongolia: Drivers and Application
Abstract
:1. Introduction
2. Results
2.1. Spatial Pattern of Temporal Trends in SOS and Average Winter–Spring Air Temperature
2.2. Spatial Pattern of the Correlation between SOS and Average WST
2.3. Effects of Precipitation and Soil Factors on the SOS–WST Correlation
2.4. Spatial Patterns of SCD, SNC and SOC in Inner Mongolia Grassland
2.5. The Interactive Effects of Grassland Type, WST, SCD, SNC, and SOC on SOS
2.6. Models for Predicting SOS in Sampled Pastoral Areas
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Research Design
4.3. Data Acquisition
4.3.1. Grassland Types
4.3.2. SOS Data
4.3.3. Average WST Data
4.3.4. Precipitation and Soil Data
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Penn, J.L.; Deutsch, C. Avoiding Ocean mass extinction from climate warming. Science 2022, 376, 524–526. [Google Scholar] [CrossRef]
- Ettinger, A.K.; Chamberlain, C.J.; Morales-Castilla, I.; Buonaiuto, D.M.; Flynn, D.F.B.; Savas, T.; Samaha, J.A.; Wolkovich, E.M. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Change 2020, 10, 1137–1142. [Google Scholar] [CrossRef]
- Kharouba, H.M.; Ehrlén, J.; Gelman, A.; Bolmgren, K.; Allen, J.M.; Travers, S.E.; Wolkovich, E.M. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl. Acad. Sci. USA 2018, 115, 5211–5216. [Google Scholar] [CrossRef] [PubMed]
- Assmann, J.J.; Myers Smith, I.H.; Phillimore, A.B.; Bjorkman, A.D.; Ennos, R.E.; Prevéy, J.S.; Henry, G.H.R.; Schmidt, N.M.; Hollister, R.D. Local snow melt and temperature—But not regional sea ice—Explain variation in spring phenology in coastal Arctic tundra. Glob. Change Biol. 2019, 25, 2258–2274. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Cong, N.; Cao, R. Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982–2008. Int. J. Climatol. 2015, 35, 3707–3712. [Google Scholar] [CrossRef]
- Chen, L.; Huang, J.; Ma, Q.; Hanninen, H.; Rossi, S.; Piao, S.; Bergeron, Y. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Glob. Change Biol. 2018, 24, 3969–3975. [Google Scholar] [CrossRef]
- Clausen, K.K.; Clausen, P. Earlier Arctic springs cause phenological mismatch in long-distance migrants. Oecologia 2013, 173, 1101–1112. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hollinger, D.Y.; Dail, D.B.; Lee, J.T.; Munger, J.W.; O’Keefe, J. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree. Physiol. 2009, 29, 321–331. [Google Scholar] [CrossRef]
- Girardin, M.P.; Hogg, E.H.; Bernier, P.Y.; Kurz, W.A.; Guo, X.J.; Cyr, G. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob. Change Biol. 2016, 22, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Franks, S.J.; Weber, J.J.; Aitken, S.N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 2014, 7, 123–139. [Google Scholar] [CrossRef]
- Pastore, M.A.; Classen, A.T.; D’Amato, A.W.; Foster, J.R.; Adair, E.C. Cold-air pools as microrefugia for ecosystem functions in the face of climate change. Ecology 2022, 103, e3717. [Google Scholar] [CrossRef]
- Mekonnen, Z.A.; Riley, W.J.; Berner, L.T.; Bouskill, N.J.; Torn, M.S.; Iwahana, G.; Breen, A.L.; Myers-Smith, I.H.; Criado, M.G.; Liu, Y.; et al. Arctic tundra shrubification: A review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 2021, 16, 053001. [Google Scholar] [CrossRef]
- Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [Google Scholar] [CrossRef]
- Moon, M.; Seyednasrollah, B.; Richardson, A.D.; Friedl, M.A. Using time series of MODIS land surface phenology to model temperature and photoperiod controls on spring greenup in North American deciduous forests. Remote Sens. Environ. 2021, 260, 112466. [Google Scholar] [CrossRef]
- Montgomery, R.A.; Rice, K.E.; Stefanski, A.; Rich, R.L.; Reich, P.B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proc. Natl. Acad. Sci. USA 2020, 117, 10397–10405. [Google Scholar] [CrossRef] [PubMed]
- Cong, N.; Wang, T.; Nan, H.; Ma, Y.; Wang, X.; Myneni, R.B.; Piao, S. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: A multimethod analysis. Glob. Change Biol. 2013, 19, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Wu, C.; Li, C.; Zhang, X.; Liu, Z.; Ye, H.; Luo, S.; Liu, X.; Hu, Y.; Fang, B. Spring green-up phenology products derived from MODIS NDVI and EVI: Intercomparison, interpretation and validation using National Phenology Network and AmeriFlux observations. Ecol. Ind. 2017, 77, 323–336. [Google Scholar] [CrossRef]
- Doležal, J.; Altman, J.; Jandová, V.; Chytrý, M.; Conti, L.; Méndez-Castro, F.E.; Klimešová, J.; Zelený, D.; Ottaviani, G. Climate warming and extended droughts drive establishment and growth dynamics in temperate grassland plants. Agric. For. Meteorol. 2022, 313, 108762. [Google Scholar] [CrossRef]
- Yu, F.; Price, K.P.; Ellis, J.; Shi, P. Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sens Environ. 2003, 87, 42–54. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, Y.H.; Shi, X.; Lock, T.R.; Kallenbach, R.L.; Yuan, Z. Soil moisture determines the effects of climate warming on spring phenology in grasslands. Agric. For. Meteoro. 2022, 323, 109039. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, G.; Wang, Y.; Han, X.; Wang, Y. Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem. Ecol. Res. 2007, 22, 784–791. [Google Scholar] [CrossRef]
- Shen, M.; Wang, S.; Jiang, N.; Sun, J.; Cao, R.; Ling, X. Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 633–651. [Google Scholar] [CrossRef]
- Xie, J.; Kneubühler, M.; Garonna, I.; Notarnicola, C.; De Gregorio, L.; De Jong, R.; Chimani, B.; Schaepman, M.E. Altitude-dependent influence of snow cover on alpine land surface phenology. J. Geophys. Res. Biogeosci. 2017, 122, 1107–1122. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.; Wang, J.; Sun, P.; Liu, W.; Hartley, D.S. Effects of seasonal snow on the growing season of temperate vegetation in China. Glob. Change Biol. 2013, 19, 2182–2195. [Google Scholar] [CrossRef]
- Potopová, V.; Boroneanţ, C.; Možný, M.; Soukup, J. Driving role of snow cover on soil moisture and drought development during the growing season in the Czech Republic. Int. J. Climatol. 2016, 36, 3741–3758. [Google Scholar] [CrossRef]
- Lim, H.S.; Kim, H.C.; Kim, O.S.; Jung, H.; Lee, J.; Hong, S.G. Statistical understanding for snow cover effects on near-surface ground temperature at the margin of maritime Antarctica, King George Island. Geoderma 2022, 410, 115661. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Fang, J.; Wang, X. Change in winter snow depth and its impacts on vegetation in China. Glob. Chang. Biol. 2010, 16, 3004–3013. [Google Scholar] [CrossRef]
- Grippa, M.; Kergoat, L.; Le Toan, T.; Mognard, N.M.; Delbart, N.; L’Hermitte, J.; Vicente-Serrano, S.M. The impact of snow depth and snowmelt on the vegetation variability over central Siberia. Geophys. Res. Lett. 2005, 32, L21412. [Google Scholar] [CrossRef]
- Likulunga, L.; Clausing, S.; Krüger, J.; Lang, F.; Polle, A. Fine root biomass of European beech trees in different soil layers show different responses to season, climate, and soil nutrients. Front. For. Glob. Change 2022, 5, 955327. [Google Scholar] [CrossRef]
- Leeper, R.D.; Matthews, J.L.; Cesarini, M.S.; Bell, J.E. Evaluation of Air and Soil Temperatures for Determining the Onset of Growing Season. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006171. [Google Scholar] [CrossRef]
- Chen, X.; Liang, S.; Cao, Y.; He, T.; Wang, D. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci. Rep. 2015, 5, 16820. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Xiao, P.; Zhang, K.; Wu, S. Elevation-dependent response of snow phenology to climate change from a remote sensing perspective: A case survey in the central Tianshan mountains from 2000 to 2019. Int. J. Climatol. 2021, 42, 1706–1722. [Google Scholar] [CrossRef]
- Malmros, J.K.; Mernild, S.H.; Wilson, R.; Tagesson, T.; Fensholt, R. Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016). Remote Sens. Environ. 2018, 209, 240–252. [Google Scholar] [CrossRef]
- Qiao, D.; Wang, N. Relationship between winter snow cover dynamics, climate and spring grassland vegetation phenology in Inner Mongolia, China. Int. J. Geo-Inf. 2019, 8, 42. [Google Scholar] [CrossRef]
- Allchin, M.I.; Déry, S.J. A spatio-temporal analysis of trends in Northern Hemisphere snow-dominated area and duration, 1971–2014. Ann. Glaciol. 2017, 75, 21–35. [Google Scholar] [CrossRef]
- Asam, S.; Callegari, M.; Matiu, M.; Fiore, G.; De Gregorio, L.; Jacob, A.; Zebisch, M.; Notarnicola, C. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the alps—An earth observation-based analysis. Remote Sens. 2018, 10, 1757. [Google Scholar] [CrossRef]
- Tan, X.; Wu, Z.; Mu, X.; Gao, P.; Zhao, G.; Sun, W.; Gu, C. Spatiotemporal changes in snow cover over China during 1960–2013. Atmos Res. 2019, 218, 183–194. [Google Scholar] [CrossRef]
- Tian, J.; Yuan, Y.; Zhou, P.; Wang, L.; Chen, Z.; Chen, Q. Spatial Distribution of Soil Organic Carbon and Total Nitrogen in a Micro-Catchment of Northeast China and Their Influencing Factors. Sustainability 2023, 15, 6355. [Google Scholar] [CrossRef]
- Du, J.; He, Z.; Piatek, K.B.; Chen, L.; Lin, P.; Zhu, X. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 2019, 269–270, 71–77. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, G.; Chen, Z.; Hu, Z.; Jiao, C.; Yang, M.; Fu, Z.; Zhang, W.; Han, L.; Fan, M.; et al. Patterns and controls of vegetation productivity and precipitation-use efficiency across Eurasian grasslands. Sci. Total. Environ. 2020, 741, 140204. [Google Scholar] [CrossRef] [PubMed]
- Xun, W.; Yan, R.R.; Ren, Y.; Jin, D.; Xiong, W.; Zhang, G.; Cui, Z.; Xin, X.; Zhang, R. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. Microbiome 2018, 6, 170. [Google Scholar] [CrossRef]
- Zhang, G.; Kang, Y.; Han, G.; Sakurai, K. Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Glob. Change Biol. 2011, 17, 377–389. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Y. Observed earlier start of the growing season from middle to high latitudes across the Northern Hemisphere snow-covered landmass for the period 2001–2014. Environ. Res. Lett. 2020, 15, 034042. [Google Scholar] [CrossRef]
- Wu, R.; Zhao, J.; Zhang, H.; Guo, X. Preseason drought controls on patterns of spring phenology in grasslands of the Mongolian Plateau. Sci Total Environ. 2022, 838, 156018. [Google Scholar] [CrossRef]
- Jiang, K.; Bao, G.; Wu, L.T.Y.; Zhang, W.; Jiang, L.; Liu, C. Variations in spring phenology of different vegetation types in the Mongolian Plateau and its responses to climate change during 2001–2017. Chin. J. Ecol. 2019, 38, 2490–2499. [Google Scholar] [CrossRef]
- Sa, C.; Meng, F.; Luo, M.; Li, C.; Wang, M.; ADIYA, S.; Bao, Y. Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau. J. Arid Land. 2021, 13, 332–349. [Google Scholar] [CrossRef]
- Geng, L.; Ma, M.; Wang, X.; Yu, W.; Jia, S.; Wang, H. Comparison of eight techniques for reconstructing multi satellite time-series NDVI data sets in the Heihe River Basin, China. Remote Sens. 2014, 6, 2024–2049. [Google Scholar] [CrossRef]
- Bao, G.; Qin, Z.; Bao, Y.; Zhou, Y.; Li, W.; Sanjjav, A. NDVI-Based long-term vegetation dynamics and its response to climatic change in the Mongolian Plateau. Remote Sens. 2014, 6, 8337–8358. [Google Scholar] [CrossRef]
- Pei, T.; Ji, Z.; Chen, Y.; Wu, H.; Hou, Q.; Qin, G.; Xie, B. The Sensitivity of Vegetation Phenology to Extreme Climate Indices in the Loess Plateau, China. Sustainability 2021, 13, 7623. [Google Scholar] [CrossRef]
- Li, C.; Wang, R.; Cui, X.; Wu, F.; Yan, Y.; Peng, Q.; Qian, Z.; Xu, Y. Responses of vegetation spring phenology to climatic factors in Xinjiang, China. Ecol. Ind. 2021, 124, 107286. [Google Scholar] [CrossRef]
- Miao, L.; Jiang, C.; Xue, B.; Liu, Q.; He, B.; Nath, R.; Cui, X. Vegetation dynamics and factor analysis in arid and semi-arid inner Mongolia. Environ Earth Sci. 2014, 73, 2343–2352. [Google Scholar] [CrossRef]
- Gu, W.J.; Zhou, G.; Li, X.; Zhou, M.; Zhou, L.; Ji, Y.; Zhou, H. Photosynthetically ecophysiological mechanism of Stipa krylovii phenology in response to climatic warming and precipitation alteration. Acta Ecol. Sin. 2022, 42, 8322–8330. [Google Scholar]
- Choi, E.; Yong, S.; Park, D.; Park, K.; Kim, D.; Jin, E.; Choi, M. Germination and Growth Characteristics of Quercus myrsinifolia Blume Seedlings According to Seed Coat Removal, Type of Potting Soil and Irrigation Cycle. Forests 2022, 13, 938. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, X.; Li, X.; Zhang, Y.; Geng, X.; Hao, F.; Zhang, X.; Hanninen, H.; Guo, Y.; De Boeck, H.J. Decreasing control of precipitation on grassland spring phenology in temperate China. Glob. Ecol. Biogeogr. 2021, 30, 490–499. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 2020, 158, 76–82. [Google Scholar] [CrossRef]
- Liu, M.; Linna, C.; Ma, S.; Ma, Q.; Guo, J.; Wang, F.; Wang, L. Effects of Biochar With Inorganic and Organic Fertilizers on Agronomic Traits and Nutrient Absorption of Soybean and Fertility and Microbes in Purple Soil. Front. Plant Sci. 2022, 13, 871021. [Google Scholar] [CrossRef] [PubMed]
- Power, S.A.; Green, E.R.; Barker, C.G.; Bell, J.N.B.; Ashmore, M.R. Ecosystem recovery: Heathland response to a reduction in nitrogen deposition. Glob. Change Biol. 2006, 12, 1241–1252. [Google Scholar] [CrossRef]
- Yang, R.; Huang, L.; Liu, F. Evaluation and mapping soil organic carbon in seasonally frozen ground on the Tibetan Plateau. Catena 2024, 235, 107631. [Google Scholar] [CrossRef]
- Bao, Q.; Yu, L.; An, H. Dimension of eco-philosophy: The ecological meaning of the Mongolian nomadic culture. J. Inner Mong. Univ. (Philos. Soc. Sci.) 2014, 46, 5–11. [Google Scholar] [CrossRef]
- Zhang, Q.; Cui, F.; Dai, L.; Feng, B.; Lu, Y.; Tang, H. Pastoralists’perception of and adaptation strategies for climate change: Associations with observed climate variability. Nat. Hazards. 2019, 96, 1387–1412. [Google Scholar] [CrossRef]
- Bao, G.; Jin, H.; Tong, S.; Chen, J.; Huang, X.; Bao, Y.; Shao, C.; Mandakh, U.; Chopping, M.; Du, L. Autumn phenology and its covariation with climate, spring phenology and annual peak growth on the Mongolian Platea. Agric. For. Meteorol. 2021, 108312, 298–299. [Google Scholar] [CrossRef]
- Han, J.; Mol, A.P.; Lu, Y.; Zhang, L. Onshore wind power development in China: Challenges behind a successful story. Energ. Policy 2009, 37, 2941–2951. [Google Scholar] [CrossRef]
- Li, Q.; Xu, L.; Pan, X.; Zhang, L.; Li, C.; Yang, N.; Qi, J. Modeling phenological responses of Inner Mongolia grassland species to regional climate change. Environ. Res. Lett. 2016, 11, 015002. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Lu, N.; Guo, K.; Liang, C.; Wei, Y.; Noormets, A.; Ma, K.; Han, X. Predicting plant diversity based on remote sensing products in the semi-arid region of Inner Mongolia. Remote Sens Environ. 2008, 112, 2018–2032. [Google Scholar] [CrossRef]
- Kang, L.; Han, X.; Zhang, Z.; Sun, O. Grassland ecosystems in China: Review of current knowledge and research advancement. Philos. Trans. R. Soc. 2007, 362, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y. MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland. Solid Earth 2015, 6, 1185–1194. [Google Scholar] [CrossRef]
- Testa, S.; Soudani, K.; Boschetti, L.; Borgogno Mondino, E. MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 132–144. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, J.; Li, X.; Cheng, G.; Ma, M.; Zhu, G.; Altaf, A.M.; Andrew, B.T.; Jassal, R.S. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 2019, 10, 2389. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, P.; Eklundh, L. Seasonality extraction and noise removal by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Misra, G.; Buras, A.; Menzel, A. Effects of different methods on the comparison between land surface and ground phenology—A methodological case study from South-Western Germany. Remote Sens. 2016, 8, 753. [Google Scholar] [CrossRef]
- Kiany, M.S.K.; Masoodian, S.A.; Balling, R.; Svoma, B.M. Spatial and temporal variations of snow cover in the Karoon River Basin, Iran, 2003–2015. Water 2017, 9, 965. [Google Scholar] [CrossRef]
- Paudel, K.P.; Andersen, P. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sens. Environ. 2011, 115, 1234–1246. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, G.; Yao, T.; Xie, H.; Zhang, H.; Ke, C.; Yao, R. Developing daily cloud-free snow composite products from MODIS Terra–Aqua and IMS for the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2171–2180. [Google Scholar] [CrossRef]
- Han, L.; Tsunekawa, A.; Tsubo, M.; He, C.; Shen, M. Spatial variations in snow cover and seasonally frozen ground over northern China and Mongolia, 1988–2010. Glob. Planet Change 2014, 116, 139–148. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Grömping, U. Variable importance in regression models. Wiley Interdiscip. Rev. Comput. Stat. 2015, 7, 137–152. [Google Scholar] [CrossRef]
- Fayram, A.H. Relative importance of two correlated variables on aquatic macroinvertebrate communities in a Colorado Front Range river: Selenium and urbanization. Environ. Monit. Assess. 2022, 194, 781. [Google Scholar] [CrossRef]
- Leroux, L.; Bégué, A.; Lo Seen, D.; Jolivot, A.; Kayitakire, F. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sens. Environ. 2017, 191, 38–54. [Google Scholar] [CrossRef]
- Li, Q.; Dong, L.; Deng, P.; Zhu, X.; Liu, Y. Spatial evolution and driving factors for the people’s livelihood development level in China, 2010-2021. Acta Geogr. Sin. 2023, 78, 3037–3057. [Google Scholar]
- Gholizadeh, A.; Khodadadi, M.; Sharifi-Zagheh, A. Modeling the final fruit yield of coriander (Coriandrum sativum L.) using multiple linear regression and artificial neural network models. Arch. Agron. Soil Sci. 2022, 68, 1398–1412. [Google Scholar] [CrossRef]
Response Variable | Explanatory Variables | AIC | F | p |
---|---|---|---|---|
Grassland type × WST × SCD | 2473.1 | 83.4 | <0.001 | |
Grassland type × WST | 2541.3 | 78.7 | <0.001 | |
WST × SCD | 2556.4 | 24.9 | <0.05 | |
SOS | Grassland type × WST × SNC | 2582.1 | 68.3 | <0.001 |
WST | 2594.2 | 18.4 | <0.05 | |
WST × SNC | 2611.4 | 15.7 | <0.05 | |
Grassland type × WST × SOC | 2621.7 | 47.4 | <0.001 |
Grassland Types | Models | R2 | p | VIF | RMSE | MAE |
---|---|---|---|---|---|---|
SOS = −11.884WST + 18.528 | 0.313 | <0.001 | 4.877 | 3.734 | ||
Meadow grasslands | SOS = −0.399SCD + 135.983 | 0.425 | <0.001 | 4.347 | 3.518 | |
SOS = −6.778WST − 0.305SCD + 79.873 | 0.506 | <0.001 | 1.305 | 3.676 | 2.921 | |
SOS = −26.378WST − 53.866 | 0.491 | <0.001 | 8.792 | 6.635 | ||
Typical grasslands | SOS = −0.420SCD + 155.220 | 0.355 | <0.001 | 10.860 | 8.548 | |
SOS = −21.046WST − 0.279SCD + 5.146 | 0.628 | <0.001 | 1.146 | 8.274 | 6.351 | |
SOS = −17.133WST + 17.848 | 0.422 | <0.001 | 4.368 | 3.507 | ||
Desert grasslands | SOS = −0.282SCD + 126.849 | 0.295 | <0.001 | 4.648 | 3.750 | |
SOS = −13.647WST − 0.178SCD + 47.640 | 0.529 | <0.001 | 1.171 | 3.812 | 3.188 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Fang, M.; Zhang, S. Spatial Variation in Responses of Plant Spring Phenology to Climate Warming in Grasslands of Inner Mongolia: Drivers and Application. Plants 2024, 13, 520. https://doi.org/10.3390/plants13040520
Lu G, Fang M, Zhang S. Spatial Variation in Responses of Plant Spring Phenology to Climate Warming in Grasslands of Inner Mongolia: Drivers and Application. Plants. 2024; 13(4):520. https://doi.org/10.3390/plants13040520
Chicago/Turabian StyleLu, Guang, Mengchao Fang, and Shuping Zhang. 2024. "Spatial Variation in Responses of Plant Spring Phenology to Climate Warming in Grasslands of Inner Mongolia: Drivers and Application" Plants 13, no. 4: 520. https://doi.org/10.3390/plants13040520
APA StyleLu, G., Fang, M., & Zhang, S. (2024). Spatial Variation in Responses of Plant Spring Phenology to Climate Warming in Grasslands of Inner Mongolia: Drivers and Application. Plants, 13(4), 520. https://doi.org/10.3390/plants13040520