Unlocking Nature’s Secrets: Molecular Insights into Postharvest Pathogens Impacting Moroccan Apples and Innovations in the Assessment of Storage Conditions
Abstract
:1. Introduction
2. Results
2.1. Storage Conditions for Apples in Storage Warehouses
2.2. Morphological Identification of Pathogens Causing Fungal Diseases in Postharvest Apples
2.3. Molecular Identification and Phylogenetic Analysis
2.4. Symptoms of Different Pathogens Isolated from Apples during Storage
2.5. Pathogenicity of the Isolates
2.6. Prevalence of Fungal Pathogens Affecting Postharvest Apples
3. Discussion
4. Materials and Methods
4.1. Study Area and Sampling
4.2. Isolation and Purification of Pathogens
4.3. Pathogenicity Test
4.4. Morphological Identification
4.5. DNA Extraction, PCR Amplification, and Molecular Identification
4.6. Assessment of the Prevalence of Fungal Pathogens Affecting Postharvest Apples
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Appel Production Statistic in Morocco. 2023. Available online: http://www.fao.org/faostat/fr/#home (accessed on 5 May 2023).
- Evolution des Superficies et de la Production des Rosacées Fruitières: Ministre de l’agriculture, de la Pêche Maritime, du Développement Rurale et des Eaux et Forêts. 2019. Available online: https://www.agriculture.gov.ma/fr/ (accessed on 20 November 2023).
- Barkai-Golan, R. Postharvest Diseases of Fruits and Vegetables: Development and Control; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Afif, A.K. Apple storage in ultra-low oxygen cold store. Int. J. Agric. Res. Innov. Technol. 2019, 9, 18–22. [Google Scholar] [CrossRef]
- Attrassi, K.; Selmaoui, K.; Touhami, A.O.; Badoc, A.; Douira, A. Biologie et physiologie des principaux agents fongiques de la pourriture des pommes en conservation et lutte chimique par l’azoxystrobine. Bull. Soc. Pharm. Bordeaux 2005, 144, 47–62. [Google Scholar]
- Abdullah, Q.; Mahmoud, A.; Al-harethi, A. Isolation and identification of fungal post-harvest rot of some fruits in Yemen. PSM Microbiol. 2016, 1, 36–44. [Google Scholar]
- Sottocornola, G.; Baric, S.; Stella, F.; Zanker, M. Development of a Knowledge-Based Expert System for Diagnosing Post-Harvest Diseases of Apple. Agriculture 2023, 13, 177. [Google Scholar] [CrossRef]
- Bondoux, P. Maladies de Conservation des Fruits à Pépins: Pommes et Poires; Quae: Versailles, Paris, 1992. [Google Scholar]
- Valiuskaite, A.; Kvikliene, N.; Kviklys, D.; Lanauskas, J. Post-harvest fruit rot incidence depending on apple maturity. Agron. Res. 2006, 4, 427–431. [Google Scholar]
- Yu, L.; Qiao, N.; Zhao, J.; Zhang, H.; Tian, F.; Zhai, Q.; Chen, W. Postharvest control of Penicillium expansum in fruits: A review. Food Biosci. 2020, 36, 100633. [Google Scholar] [CrossRef]
- Rharmitt, S.; Hafidi, M.; Hajjaj, H.; Scordino, F.; Giosa, D.; Giuffrè, L.; Barreca, D.; Criseo, G.; Romeo, O. Molecular characterization of patulin producing and non-producing Penicillium species in apples from Morocco. Int. J. Food Microbiol. 2016, 217, 137–140. [Google Scholar] [CrossRef]
- Moinina, A.; Lahlali, R.; Boulif, M. Important pests, diseases and weather conditions affecting apple production: Current state and perspectives. Rev. Mar. Sci. Agron. Vét. 2019, 7, 71–87. [Google Scholar]
- Xiao, C.L.; Kim, Y.K. Postharvest Fruit Rots in Apples Caused by Botrytis cinerea, Phacidiopycnis washingtonensis, and Sphaeropsis pyriputrescens. Plant Health Prog. 2008, 9, 34. [Google Scholar] [CrossRef]
- Testempasis, S.; Tanou, G.; Minas, I.; Samiotaki, M.; Molassiotis, A.; Karaoglanidis, G. Unraveling Interactions of the Necrotrophic Fungal Species Botrytis cinerea with 1-Methylcyclopropene or Ozone-Treated Apple Fruit Using Proteomic Analysis. Front. Plant Sci. 2021, 12, 644255. [Google Scholar] [CrossRef]
- Jones, A.L.; Aldwinkle, H.S. Compendium of Apple and Pear Diseases; The American Phytopathological Society: St. Paul, MN, USA, 1990; p. 100. [Google Scholar]
- Sutton, T.B.; Aldwinckle, H.S.; Agnello, A.M.; Walgenbach, J.F. Compendium of apple and pear diseases and pests. Am. Phytopath. Soc. 2014, 215–218. [Google Scholar]
- Konstantinou, S.; Karaoglanidis, G.S.; Bardas, G.A.; Minas, B.I.S.; Doukas, E.; Markoglou, A.N. Postharvest Fruit Rots of Apple in Greece: Pathogen Incidence and Relationships Between Fruit Quality Parameters, Cultivar Susceptibility, and Patulin Production. Plant Dis. 2011, 95, 666–672. [Google Scholar] [CrossRef]
- Angelini, R.M.D.M.; Landi, L.; Raguseo, C.; Pollastro, S.; Faretra, F.; Romanazzi, G. Tracking of Diversity and Evolution in the Brown Rot Fungi Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. Front. Microbiol. 2022, 13, 854852. [Google Scholar] [CrossRef]
- Pellegrino, C.; Gullino, M.L.; Garibaldi, A.; Spadaro, D. First Report of Brown Rot of Stone Fruit Caused by Monilinia fructicola in Italy. Plant Dis. 2009, 93, 668. [Google Scholar] [CrossRef] [PubMed]
- Hartman, J.R. Peach fruit diseases. In Plant Pathology Fact Sheet; University of Kentucky, College of Agriculture: Lexington, KY, USA, 2007. [Google Scholar]
- Naqvi, S. Diseases of Fruits and Vegetables; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Cameldi, I.; Pirondi, A.; Neri, F.; Collina, M.; Mari, M. First Report of Apple Bull’s Eye Rot Caused by Neofabraea malicorticis in Italy. Plant Dis. 2016, 100, 2532. [Google Scholar] [CrossRef]
- Soto-Alvear, S.; Lolas, M.; Rosales, I.M.; Chávez, E.R.; Latorre, B.A. Characterization of the bull’s eye rot of apple in Chile. Plant Dis. 2013, 97, 485–490. [Google Scholar] [CrossRef]
- Cameldi, I.; Neri, F.; Menghini, M.; Pirondi, A.; Nanni, I.M.; Collina, M.; Mari, M. Characterization of Neofabraea vagabunda isolates causing apple bull’s eye rot in Italy (Emilia-Romagna region). Plant Pathol. 2017, 66, 1432–1444. [Google Scholar] [CrossRef]
- Michalecka, M.; Bryk, H.; Poniatowska, A.; Puławska, J. Identification of Neofabraea species causing bull’s eye rot of apple in Poland and their direct detection in apple fruit using multiplex PCR. Plant Pathol. 2016, 65, 643–654. [Google Scholar] [CrossRef]
- Pešicová, K.; Kolařík, M.; Hortová, B.; Novotný, D. Diversity and identification of Neofabraea species causing bull’s eye rot in the Czech Republic. Eur. J. Plant Pathol. 2017, 147, 683–693. [Google Scholar] [CrossRef]
- Snowdon, A.L. A Colour Atlas of Post-Harvest Diseases and Disorders of Fruits and Vegetables. Volume 1: General Introduction and Fruits; Wolfe Scientific Ltd.: Prescott, AZ, USA, 1990. [Google Scholar]
- Amiri, A.; Bompeix, G. Diversity and population dynamics of Penicillium spp. on apples in pre-and postharvest environments: Consequences for decay development. Plant Pathol. 2005, 54, 74–81. [Google Scholar] [CrossRef]
- Carmona-Hernandez, S.; Reyes-Pérez, J.J.; Chiquito-Contreras, R.G.; Rincon-Enriquez, G.; Cerdan-Cabrera, C.R.; Hernandez-Montiel, L.G. Biocontrol of Postharvest Fruit Fungal Diseases by Bacterial Antagonists: A Review. Agronomy 2019, 9, 121. [Google Scholar] [CrossRef]
- Bhaskare, R.; Shinde, D.K.; M. Tech. Project Management. Development of Cold Supply Chain for a Controlled Atmosphere Cold Store for Storage of Apple. Int. J. Eng. Sci. Comput. 2017, 7, 14207. [Google Scholar]
- Vaysse, P.L.P. Pomme-Poire: De la Récolte au Conditionnement: Outils Pratiques; Centre Technique Interprofessionnel des Fruits et Légumes: Paris, France, 2004. [Google Scholar]
- Chauhan, D.; Hati, S.; Priyadarshini, R.; Sen, S. Transcriptome analysis predicts mode of action of benzimidazole molecules against Staphylococcus aureus UAMS-1. Drug Dev. Res. 2019, 80, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Michailides, T.J. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop. Prot. 2005, 24, 853–863. [Google Scholar] [CrossRef]
- Birr, T.; Hasler, M.; Verreet, J.-A.; Klink, H. Temporal Changes in Sensitivity of Zymoseptoria tritici Field Populations to Different Fungicidal Modes of Action. Agriculture 2021, 11, 269. [Google Scholar] [CrossRef]
- Muellender, M.M.; Mahlein, A.-K.; Stammler, G.; Varrelmann, M. Evidence for the association of target-site resistance in cyp51 with reduced DMI sensitivity in European Cercospora beticola field isolates. Pest Manag. Sci. 2021, 77, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, G.; Jones, A.L. The 14α-demethylasse (CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology 2001, 91, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Malandrakis, A.A.; Markoglou, A.N.; Konstantinou, S.; Doukas, E.G.; Kalampokis, J.F.; Karaoglanidis, G.S. Molecular characterization, fitness and mycotoxin production of benzimidazole-resistant isolates of Penicillium expansum. Int. J. Food Microbiol. 2013, 162, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Sholberg, P.; Harlton, C.; Haag, P.; Lévesque, C.; O’gorman, D.; Seifert, K. Benzimidazole and diphenylamine sensitivity and identity of Penicillium spp. that cause postharvest blue mold of apples using β-tubulin gene sequences. Postharvest Biol. Technol. 2005, 36, 41–49. [Google Scholar] [CrossRef]
- Jurick, W.M.; Macarisin, O.; Gaskins, V.L.; Janisiewicz, W.J.; Peter, K.A.; Cox, K.D. Baseline Sensitivity of Penicillium spp. to Difenoconazole. Plant Dis. 2019, 103, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Tarabay, P.A.; Chahine-Tsouvalakis, H.; Tawk, S.T.; Nemer, N.; Habib, W. Reduction of food losses in Lebanese apple through good harvesting and postharvest practices. Ann. Agric. Sci. 2018, 63, 207–213. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Gams, W. Phialophora and some similar morphologically little-differentiated anamorphs of divergent ascomycetes. Stud. Mycol. 2000, 187–200. [Google Scholar]
- Hamid, M.I.; Hussain, M.; Ghazanfar, M.U.; Raza, M.; Liu, X.Z. Trichothecium roseum Causes Fruit Rot of Tomato, Orange, and Apple in Pakistan. Plant Dis. 2014, 98, 1271. [Google Scholar] [CrossRef]
- Vico, I.; Duduk, N.; Vasic, M.; Nikolic, M. Identification of Penicillium expansum causing postharvest blue mold decay of apple fruit. Pestic. Fitomed. 2014, 29, 257–266. [Google Scholar] [CrossRef]
- Wenneker, M.; Pham, K.T.K.; Lemmers, M.E.C.; de Boer, F.A.; van der Lans, A.M.; van Leeuwen, P.J.; Hollinger, T.C.; Thomma, B. First report of Fusarium avenaceum causing wet core rot of ‘Elstar’apples in the Netherlands. Plant Dis. 2016, 100, 1501. [Google Scholar] [CrossRef]
- Elfar, K.; Zoffoli, J.P.; Latorre, B.A. Identification and Characterization of Alternaria Species Associated with Moldy Core of Apple in Chile. Plant Dis. 2018, 102, 2158–2169. [Google Scholar] [CrossRef] [PubMed]
- Ferrada, E.; Biche, J.; Lolas, M.; Lobos, G.; Díaz, G. Identification and characterization of isolates of Botrytis obtained from blossom blight and fruits with calyx-end rot in apples in Chile. Acta Hortic. 2021, 1325, 85–90. [Google Scholar] [CrossRef]
- Carneiro, G.A.; Walcher, M.; Baric, S. Cadophora luteo-olivacea isolated from apple (Malus domestica) fruit with post-harvest side rot symptoms in northern Italy. Eur. J. Plant Pathol. 2022, 162, 247–255. [Google Scholar] [CrossRef]
- Wenneker, M.; Köhl, J. Postharvest decay of apples and pears in the Netherlands. Acta Hortic. 2014, 1053, 107–112. [Google Scholar] [CrossRef]
- Głos, H.; Bryk, H.; Michalecka, M.; Puławska, J. The Recent Occurrence of Biotic Postharvest Diseases of Apples in Poland. Agronomy 2022, 12, 399. [Google Scholar] [CrossRef]
- Dai, P.; Jiang, Y.; Liang, X.; Gleason, M.L.; Zhang, R.; Sun, G. Trichothecium roseum Enters ‘Fuji’ Apple Cores Through Stylar Fissures. Plant Dis. 2020, 104, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, D.; Torres, R.; Errampalli, D.; Everett, K.; Ramos, L.; Mari, M. Pome fruits. In Postharvest Pathology of Fresh Horticultural Produce; CRC Press: Boca Raton, FL, USA, 2019; pp. 55–110. [Google Scholar]
- Pianzzola, M.J.; Moscatelli, M.; Vero, S.; Stošić, S.; Ristić, D.; Gašić, K.; Starović, M.; Grbić, M.L.; Vukojević, J.; Živković, S.; et al. Characterization of Penicillium Isolates Associated with Blue Mold on Apple in Uruguay. Plant Dis. 2004, 88, 23–28. [Google Scholar] [CrossRef]
- Abdelhai, M.H.; Tahir, H.E.; Zhang, Q.; Yang, Q.; Ahima, J.; Zhang, X.; Zhang, H. Effects of the combination of Baobab (Adansonia digitata L.) and Sporidiobolus pararoseus Y16 on blue mold of apples caused by Penicillium expansum. Biol. Control. 2019, 134, 87–94. [Google Scholar] [CrossRef]
- van der Walt, L.; Spotts, R.A.; Visagie, C.M.; Jacobs, K.; Smit, F.J.; McLeod, A. Penicillium Species Associated with Preharvest Wet Core Rot in South Africa and Their Pathogenicity on Apple. Plant Dis. 2010, 94, 666–675. [Google Scholar] [CrossRef]
- Tannous, J.; Kumar, D.; Sela, N.; Sionov, E.; Prusky, D.; Keller, N.P. Fungal attack and host defence pathways unveiled in near-avirulent interactions of Penicillium expansum creA mutants on apples. Mol. Plant Pathol. 2018, 19, 2635–2650. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, X.; Zhang, X.; Zhao, L.; Yang, Q.; Boateng, N.A.S.; Ahima, J.; Liu, J.; Zhang, H. Comparative transcriptomic analysis of the interaction between Penicillium expansum and apple fruit (Malus pumila Mill.) during early stages of infection. Microorganisms 2019, 7, 495. [Google Scholar] [CrossRef]
- Prusky, D.; McEvoy, J.L.; Saftner, R.; Conway, W.S.; Jones, R. Relationship between host acidification and virulence of Penicillium spp. on apple and citrus fruit. Phytopathology 2004, 94, 44–51. [Google Scholar] [CrossRef]
- Alkan, N.; Espeso, E.A.; Prusky, D. Virulence Regulation of Phytopathogenic Fungi by pH. Antioxid. Redox Signal. 2013, 19, 1012–1025. [Google Scholar] [CrossRef]
- Snini, S.P.; Tannous, J.; Heuillard, P.; Bailly, S.; Lippi, Y.; Zehraoui, E.; Barreau, C.; Oswald, I.P.; Puel, O. Patulin is a cultivar-dependent aggressiveness factor favouring the colonization of apples by P. enicillium expansum. Mol. Plant Pathol. 2016, 17, 920–930. [Google Scholar] [CrossRef]
- Touhami, N.; Soukup, S.T.; Schmidt-Heydt, M.; Kulling, S.E.; Geisen, R. Citrinin as an accessory establishment factor of P. expansum for the colonization of apples. Int. J. Food Microbiol. 2018, 266, 224–233. [Google Scholar] [CrossRef]
- Wenneker, M.; Thomma, B.P.H.J. Latent postharvest pathogens of pome fruit and their management: From single measures to a systems intervention approach. Eur. J. Plant Pathol. 2020, 156, 663–681. [Google Scholar] [CrossRef]
- Xiao, C.L.; Boal, R.J. Preharvest Application of a Boscalid and Pyraclostrobin Mixture to Control Postharvest Gray Mold and Blue Mold in Apples. Plant Dis. 2009, 93, 185–189. [Google Scholar] [CrossRef]
- Jijakli, M. Pomme: Maladies de conservation. La lutte biologique au moyen de deux souches de levures. Arboric. Fruit. 2000, 539, 19–23. [Google Scholar]
- Sholberg, P.; Haag, P. Incidence of postharvest pathogens of stored apples in British Columbia. Can. J. Plant Pathol. 1996, 18, 81–85. [Google Scholar] [CrossRef]
- Jijakli, M.H.; Lepoivre, P. State of the art and challenges of post-harvest disease management in apples. Fruit Veg. Dis. 2004, 59–94. [Google Scholar]
- Khadiri, M.; Boubaker, H.; Askarne, L.; Ezrari, S.; Radouane, N.; Farhaoui, A.; El Hamss, H.; Tahiri, A.; Barka, E.A.; Lahlali, R. Bacillus cereus B8W8 an effective bacterial antagonist against major postharvest fungal pathogens of fruit. Postharvest Biol. Technol. 2023, 200, 112315. [Google Scholar] [CrossRef]
- Samson, R.A.; Hoekstra, E.S.; Van Oorschot, C.A.N. Introduction to Food-Borne Fungi; Centraalbureau voor Schimmelcultures: Baarn, The Netherlands, 1981. [Google Scholar]
- Pitt, J.I. A laboratory guide to common Penicillium species. CSI Res. Org. Div. Food Process 1988. [Google Scholar]
- Botton, B.; Breton, A.; Fèvre, M. Moisissures Utiles et Nuisibles: Importance Industrielle; Masson: Paris, France, 1990. [Google Scholar]
- Marcinkowska, J. Oznaczanie Rodzajów Grzybów Ważnych w Patologii Roślin; Fundacja “Rozwój SGGW”: Warszawa, Poland, 2003. [Google Scholar]
- Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of Penicillium subgenus Penicillium: A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud. Mycol. 2004, 2004, 1–173. [Google Scholar]
- Calvo, J.; Calvente, V.; de Orellano, M.E.; Benuzzi, D.; de Tosetti, M.I.S. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int. J. Food Microbiol. 2007, 113, 251–257. [Google Scholar] [CrossRef]
- Yli-Mattila, T.; Hussien, T.; Gavrilova, O.; Gagkaeva, T. Morphological and Molecular Variation Between Fusarium avenaceum, Fusarium arthrosporioides and Fusarium anguioides Strains. Pathogens 2018, 7, 94. [Google Scholar] [CrossRef]
- Díaz, G.A.; Lolas, M.; Ferrada, E.E.; Latorre, B.A.; Zoffoli, J.P. First Report of Cadophora malorum Associated with Cordon Dieback in Kiwi Plants in Chile. Plant Dis. 2016, 100, 1776. [Google Scholar] [CrossRef]
- Doyle, J.J. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Ezrari, S.; Lahlali, R.; Radouane, N.; Tahiri, A.; Asfers, A.; Boughalleb-M’hamdi, N.; Amiri, S.; Lazraq, A. Characterization of Fusarium species causing dry root rot disease of citrus trees in Morocco. J. Plant Dis. Prot. 2021, 128, 431–447. [Google Scholar] [CrossRef]
- Sadrati, N.; Zerroug, A.; Demirel, R.; Harzallah, D. Anti-multidrug-resistant Staphylococcus aureus and anti-dermatophyte activities of secondary metabolites of the endophytic fungus Penicillium brevicompactum ANT13 associated with the Algerian endemic plant Abies numidica. Arch. Microbiol. 2023, 205, 1–13. [Google Scholar] [CrossRef]
- Armitage, A.D.; Cockerton, H.M.; Sreenivasaprasad, S.; Woodhall, J.; Lane, C.R.; Harrison, R.J.; Clarkson, J.P. Genomics Evolutionary History and Diagnostics of the Alternaria alternata Species Group Including Apple and Asian Pear Pathotypes. Front. Microbiol. 2020, 10, 3124. [Google Scholar] [CrossRef]
Conidia Length (μm) | Conidia Width (μm) | |||||||
---|---|---|---|---|---|---|---|---|
Species | Isolate | Min | Max | Mean ± SD | Min | Max | Mean ± SD | Ratio (Length/Width) |
P. expansum | Aby4 | 3.14 | 3.9 | 3.42 ± 0.2 d | 2.56 | 3.53 | 3.03 ± 0.27 bc | 1.13 |
B. cinerea | PR1 | 5.84 | 9.13 | 6.88 ± 0.75 c | 4 | 5.84 | 4.52 ± 0.43 b | 1.52 |
A. alternata | Ag4 | 16.73 | 38.88 | 26.46 ± 5.51 b | 6.4 | 13 | 9.22 ± 1.47 a | 2.87 |
T. roseum | AI3 | 17.36 | 24.36 | 20.69 ± 2.24 b | 7.25 | 10.92 | 9.21 ± 0.94 a | 2.25 |
F. avenaceum | AML28 | 40.61 | 64.51 | 47.87 ± 5.81 a | 5.93 | 7.84 | 6.96 ± 0.59 ab | 6.88 |
C. malorum | PRL1 | 4.18 | 9.07 | 6.46 ± 1.57 c | 1.62 | 3.71 | 2.97 ± 0.62 c | 2.17 |
N. vagabunda | MY2 | 11.78 | 30.36 | 17.05 ± 4.5 bc | 2.09 | 3.89 | 3.51 ± 0.53 bc | 4.86 |
Isolate Code | Species | Sampling Year | Origin | GPS Coordinates | Accession Number | Query Cover | Similarity Percentage |
---|---|---|---|---|---|---|---|
PRL1 | Cadophora malorum | 2022 | El Hajeb | N 33°47′43,5336″ W 5°29′41,226″ | OR426632 | 99% | 100% (MF326620) |
AML28 | Fusarium avenaceum | 2022 | El Hajeb | N 33°48′28,6812″ W 5°22′35,2884″ | OR426633 | 99% | 100% (ON573396) |
MY2 | Neofabraea vagabunda | 2022 | Meknes | N 33°59′ 36,8088″ W 5°12′2,4948″ | OR426631 | 99% | 100% (MK174720) |
Aby4 | Penicillium expansum | 2021 | Midelt | N 32°45′2,2896″ W 5°1′45,1776″ | OR426630 | 99% | 100% (MF303721) |
PR1 | Botrytis cinerea | 2021 | El Hajeb | N 33°47′43,5336″ W 5°29′41,226″ | OQ691642 | 100% | 100% (MN088689) |
Ag4 | Alternaria alternata | 2021 | Sefrou | N 33°49′46,5456″ W 4°59′7,5876″ | OQ691639 | 99% | 100% (MW509980) |
AI3 | Trichothecium roseum | 2020 | Meknes | N 33°53′44,61″ W 5°29′6,8028″ | ON680682 | 99% | 100% (MT093263) |
Region | CC | ST (°C) | RH (%) | CCT | CCD | AC | PHT | BT | BD | SD (Months) | FSBS | RY |
Fez−Sefrou | JA | 0–1 | 90–95 | CA (O2: 2–3%, CO2: 1.5–3%) | Bleach | GD | Pelt 44 | Plastic | Bleach | 10 | Yes | 2021 |
AO | 1.1–2.5 | 81–89 | Normal | Detergent + Pelt44 | GD | None | Wood and Plastic | Detergent + Pelt44 | 6 | No | 2021 | |
CH | 1.1–2.5 | 81–89 | Normal | Bleach + Pelt44 | GD | None | Wood and Plastic | Bleach + Pelt44 | 7 | No | 2021 | |
Ag | 2.6–4 | 70–80 | Normal | Detergent | GD | None | Wood and Plastic | Detergent | 6 | No | 2021 | |
CB | 1.1–2.5 | 81–89 | Normal | Detergent | GD | None | Wood and Plastic | Detergent | 6 | No | 2021 | |
Meknes−Elhajeb | IT | 1.1–2.5 | 90–95 | Normal | Pelt44 + Fumigation | GD | Pelt 44 | Wood and Plastic | Bleach + Soda | 9 | Yes | 2022 |
BNS | 2.6–4 | 81–89 | Normal | Detergent | GD | None | Wood and Plastic | Detergent | 6 | No | 2022 | |
FMB | 1.1–2.5 | 81–89 | Normal | None | GD | None | Wood | None | 6 | No | 2022 | |
TK | 1.1–2.5 | 81–89 | Normal | Bleach | GD | None | Wood and Plastic | Bleach | 7 | No | 2022 | |
Bs | 0–1 | 90–95 | Normal | Detergent + Pelt44 | GD | Pelt 44 | Plastic | Detergent + Pelt44 | 9 | Yes | 2022 | |
V | 0–1 | 90–95 | Normal | Pelt44 | GD | Pelt 44 + Bavistin | Plastic | Pelt 44 | 10 | Yes | 2022 | |
Tg | 1.1–2.5 | 81–89 | Normal | Bleach | GD | None | Plastic | Bleach | 8 | No | 2022 | |
DN | 1.1–2.5 | 81–89 | Normal | Detergent | GD | None | Wood and Plastic | Detergent | 6 | No | 2022 | |
FHF | 1.1–2.5 | 81–89 | Normal | Detergent | GD | None | Wood and Plastic | Detergent | 8 | No | 2022 | |
GR | 0–1 | 90–95 | Normal | Pelt44 | GD | Pelt 44 | Plastic | Pelt44 | 9 | No | 2022 | |
AML | 0–1 | 90–95 | Normal | Detergent | GD | Pelt 44 | Plastic | Pelt44 | 10 | Yes | 2022 | |
PR | 1.1–2.5 | 81–89 | Normal | Pelt44 | GD/StD/Fuji | None | Plastic | Detergent | 7 | No | 2022 | |
MH1 | 1.1–2.5 | 90–95 | CA (O2: 2–3%, CO2: 2–3%) | Bleach | GD | Score | Plastic | Bleach | 9 | No | 2022 | |
MH2 | 0–1 | 90–95 | Normal | Detergent + Pelt44 | GD | Pelt 44 + Bavistin | Plastic | Detergent + Pelt44 | 6 | No | 2022 | |
SF | 1.1–2.5 | 81–89 | Normal | Bleach + VIROCID | Anna | Pelt 44 | Wood and Plastic | Bleach + VIROCID | 6 | No | 2022 | |
Azrou−Ifran | M | 1.1–2.5 | 81–89 | Normal | Pelt44 | GD | None | Wood and Plastic | Detergent | 6 | No | 2020 |
T | 1.1–2.5 | 81–89 | Normal | Pelt44 | GD | None | Wood and Plastic | Pelt44 | 6 | Yes | 2020 | |
MA | 1.1–2.5 | 81–89 | Normal | None | GD | None | Wood | None | 6 | No | 2020 | |
FI1 | 1.1–2.5 | 81–89 | Normal | Detergent | SD | Pelt 44 | Wood and Plastic | None | 6 | Yes | 2020 | |
FI2 | 1.1–2.5 | 81–89 | Normal | Detergent | SD | Pelt 44 | Wood and Plastic | None | 6 | Yes | 2020 | |
FI3 | 1.1–2.5 | 70–80 | Normal | Bleach | GD | Pelt 44 | Wood and Plastic | Bleach | 6 | Yes | 2020 | |
S | 0–1 | 90–95 | Normal | Bleach | GD | Score | Wood and Plastic | Pelt44 + Vapor + Copper | 10 | Yes | 2020 | |
Zaida−Midelt | ASL | 1.1–2.5 | 81–89 | Normal | Detergent | GD | Pelt 44 | Wood and Plastic | Detergent | 8 | No | 2021 |
Ml | 1.1–2.5 | 81–89 | Normal | Detergent | GD | None | Wood and Plastic | None | 7 | No | 2021 | |
AH | 1.1–2.5 | 81–89 | Normal | Detergent | GD | None | Wood and Plastic | Detergent | 7 | No | 2021 | |
DA | 1.1–2.5 | 81–89 | Normal | Pelt44 | GD | None | Wood and Plastic | Detergent | 6 | No | 2021 | |
Aby | 0–1 | 90–95 | Normal | Fumigation | GD | Pelt 44 | Wood and Plastic | Fumigation | 9 | No | 2021 | |
Tl | 0–1 | 90–95 | Normal | Bleach | GD | Score | Plastic | Bleach | 10 | No | 2021 | |
BK | 1.1–2.5 | 81–89 | CA (O2: 2–3%, CO2: 2–3%) | Bleach | GD | Pelt 44 | Plastic | Bleach | 9 | No | 2021 | |
HM | 1.1–2.5 | 81–89 | Normal | Detergent | GD | None | Plastic | Detergent | 6 | No | 2021 | |
TM | 1.1–2.5 | 81–89 | Normal | Detergent | GD | None | Plastic | None | 8 | Yes | 2021 | |
FM1 | 1.1–2.5 | 90–95 | Normal | Detergent | GD | Score | Plastic | Bleach | 8 | Yes | 2021 | |
FM2 | 0–1 | 90–95 | Normal | Bleach | GD/StD/Fuji | Pelt 44 | Plastic | Bleach | 9 | Yes | 2021 | |
FM3 | 0–1 | 81–89 | Normal | Detergent | GD/StD/Fuji | Pelt 44 | Plastic | Detergent | 6 | Yes | 2021 | |
FM4 | 0–1 | 81–89 | Normal | Detergent + Pelt44 | GD | None | Plastic | Detergent | 6 | Yes | 2021 | |
FM5 | 0–1 | 81–89 | Normal | Bleach | GD | Pelt 44 | Wood and Plastic | Bleach | 8 | Yes | 2021 | |
FM6 | 1.1–2.5 | 90–95 | Normal | Detergent + Pelt44 | GD | Pelt 44 | Wood and Plastic | Detergent + Pelt44 | 7 | Yes | 2021 | |
FM7 | 0–1 | 90–95 | Normal | Detergent + Pelt44 | GD | None | Plastic | None | 8 | No | 2021 | |
FM8 | 0–1 | 90–95 | Normal | Detergent | GD | None | Plastic | Detergent + Pelt44 | 8 | Yes | 2021 | |
FM9 | 0–1 | 81–89 | Normal | Detergent | GD/StD/Fuji | Pelt 44 | Plastic | Bleach | 7 | No | 2021 | |
BD | 0–1 | 90–95 | Normal | Pelt44 | StD | Score | Plastic | Soda | 9 | No | 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadiri, M.; Boubaker, H.; Laasli, S.-E.; Farhaoui, A.; Ezrari, S.; Radouane, N.; Radi, M.; Askarne, L.; Barka, E.A.; Lahlali, R. Unlocking Nature’s Secrets: Molecular Insights into Postharvest Pathogens Impacting Moroccan Apples and Innovations in the Assessment of Storage Conditions. Plants 2024, 13, 553. https://doi.org/10.3390/plants13040553
Khadiri M, Boubaker H, Laasli S-E, Farhaoui A, Ezrari S, Radouane N, Radi M, Askarne L, Barka EA, Lahlali R. Unlocking Nature’s Secrets: Molecular Insights into Postharvest Pathogens Impacting Moroccan Apples and Innovations in the Assessment of Storage Conditions. Plants. 2024; 13(4):553. https://doi.org/10.3390/plants13040553
Chicago/Turabian StyleKhadiri, Mohammed, Hassan Boubaker, Salah-Eddine Laasli, Abdelaaziz Farhaoui, Said Ezrari, Nabil Radouane, Mohammed Radi, Latifa Askarne, Essaid Ait Barka, and Rachid Lahlali. 2024. "Unlocking Nature’s Secrets: Molecular Insights into Postharvest Pathogens Impacting Moroccan Apples and Innovations in the Assessment of Storage Conditions" Plants 13, no. 4: 553. https://doi.org/10.3390/plants13040553
APA StyleKhadiri, M., Boubaker, H., Laasli, S. -E., Farhaoui, A., Ezrari, S., Radouane, N., Radi, M., Askarne, L., Barka, E. A., & Lahlali, R. (2024). Unlocking Nature’s Secrets: Molecular Insights into Postharvest Pathogens Impacting Moroccan Apples and Innovations in the Assessment of Storage Conditions. Plants, 13(4), 553. https://doi.org/10.3390/plants13040553