An Efficient Agrobacterium-Mediated Genetic Transformation System for Gene Editing in Strawberry (Fragaria × ananassa)
Abstract
:1. Introduction
2. Results
2.1. Effects of Plant Hormones on Callus Induction from Different Benihope Explants
2.2. Callus Browning and PVPP
2.3. Genotyping CRISPR/Cas9 Gene-Edited Plants
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Explants Preparation
4.3. Vector Construction and Agrobacterium-Mediated Transformation
4.4. Tissue Culture
4.5. DNA Extraction, PCR Genotyping, and Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.Z.; Wei, Y. Agrobacterium-mediated transformation of FaCBL1 gene into strawberry. Jiangsu Agric. Sci. 2017, 45, 39–42. [Google Scholar]
- Li, J.F.; Norville, J.E.; Aach, J.; McCormack, M.; Zhang, D.; Bush, J.; Church, G.M.; Sheen, J. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 2013, 31, 688–691. [Google Scholar] [CrossRef]
- Nekrasov, V.; Staskawicz, B.; Weigel, D.; Jones, J.D.; Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013, 31, 691–693. [Google Scholar] [CrossRef]
- Sun, Y.; Jiao, G.; Liu, Z.; Zhang, X.; Li, J.; Guo, X.; Du, W.; Du, J.; Francis, F.; Zhao, Y.; et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 2017, 8, 298. [Google Scholar] [CrossRef]
- Li, C.; Liu, C.; Qi, X.; Wu, Y.; Fei, X.; Mao, L.; Cheng, B.; Li, X.; Xie, C. RNA-guided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnol. J. 2017, 15, 1566–1576. [Google Scholar] [CrossRef]
- Kapusi, E.; Corcuera-Gómez, M.; Melnik, S.; Stoger, E. Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front. Plant Sci. 2017, 8, 540. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Wang, B.; Li, H.; Zhang, J.; Ma, Y.; Dai, H.; Wang, Y.; Zhang, Z. CRISPR/Cas9 targeted knockout FvPHO2 can increase phosphorus content and improve fruit quality of woodland strawberry. Sci. Hortic. 2023, 317, 112078. [Google Scholar] [CrossRef]
- Xing, S.; Chen, K.; Zhu, H.; Zhang, R.; Zhang, H.; Li, B.; Gao, C. Fine-tuning sugar content in strawberry. Genome Biol. 2020, 21, 230. [Google Scholar] [CrossRef]
- Sánchez-Gómez, C.; Posé, D.; Martín-Pizarro, C. Genome Editing by CRISPR/Cas9 in Polyploids. In Polyploidy: Methods and Protocols; Springer: New York, NY, USA, 2023; pp. 459–473. [Google Scholar]
- Husaini, A.M.; Srivastava, D.K. Plant regeneration and agrobacterium-mediated gene transfer studies in strawberry tissues (Fragaria × ananassa Duch.). Asian J. Microbiol. Biotechnol. Environ. Sci. 2006, 8, 671. [Google Scholar]
- Husaini, A.M. Pre-and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Rep. 2010, 29, 97–110. [Google Scholar] [CrossRef]
- Nehra, N.S.; Stushnoff, C.; Kartha, K.K. Direct shoot regeneration from strawberry leaf disks. J. Am. Soc. Hortic. Sci. 1989, 114, 1014–1018. [Google Scholar] [CrossRef]
- Passey, A.; Barrett, K.; James, D. Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria × ananassa Duch.) using a range of explant types. Plant Cell Rep. 2003, 21, 397–401. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, S.; Zhang, L.; Zhu, D.; Syed, A. Response of in vitro strawberry to silver nitrate (AgNO3). HortScience 2005, 40, 747–751. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, S.; Asghar, S.; Zhang, L.; Qin, Q.; Chen, K.; Xu, C. Regeneration mechanism of Toyonoka strawberry under different color plastic films. Plant Sci. 2005, 168, 1425–1431. [Google Scholar]
- Debnath, C.S. Zeatin overcomes thidiazuron-induced inhibition of shoot elongation and promotes rooting in strawberry culture in vitro. J. Hortic. Sci. Biotechnol. 2006, 81, 349–354. [Google Scholar] [CrossRef]
- Husaini, A.M.; Abdin, M.Z. Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria × ananassa Duch. In Vitro Cell. Dev. Biol. Plant 2007, 43, 576–584. [Google Scholar] [CrossRef]
- Foucault, C.; Letouze, R. In vitro: Régénération de plants de fraisier a partir de fragments de pétioles et de bourgeons floraux. Biol. Plant 1987, 29, 409–414. [Google Scholar] [CrossRef]
- Isac, V.; Popescu, A.N.; Coman, M. Studies on plant regeneration from tissue-derived callus in Fragaria× ananassa Duch. In Progress in Temperate Fruit Breeding: Proceedings of the Eucarpia Fruit Breeding Section Meeting, Wädenswil/Einsiedeln, Switzerland, 30 August–3 September 1993; Springer: Dordrecht, The Netherlands, 1993; pp. 395–398. [Google Scholar]
- Damiano, C.; Monticelli, S.; Frattarelli, A.; Nicolini, S.; Corazza, L. Somaclonal variability and in vitro regeneration of strawberry. In Proceedings of the III International Symposium on In Vitro Culture and Horticultural Breeding, Jerusalem, Israel, 16–21 June 1996; Volume 447, pp. 87–94. [Google Scholar]
- Popescu, A.N.; Isac, V.S.; Coman, M.S.; Radulescu, M.S. Somaclonal variation in plants regenerated by organogenesis from callus culture of strawberry (Fragaria × ananassa). In Proceedings of the III International Strawberry Symposium, Veldhoven, The Netherlands, 29 April–4 May 1996; Volume 439, pp. 89–96. [Google Scholar]
- Infante, R.; Mazzara, M.; Rosati, P. Growth estimation of in vitro cultured callus and plant regeneration from leaf disk and petiole callus of musk strawberry (Fragaria moschata Duch.) subcultured for 18 months. J. Jpn. Soc. Hortic. Sci. 1998, 67, 39–43. [Google Scholar] [CrossRef]
- James, D.J.; Passey, A.J.; Barbara, D.J. Agrobacterium-mediated transformation of the cultivated strawberry (Fragaria × anannassa duch.) using disarmed binary vectors. Plant Sci. 1990, 69, 79–94. [Google Scholar] [CrossRef]
- Alsheikh, M.; Suso, H.P.; Robson, M.; Battey, N.; Wetten, A. Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-sensitive Fragaria vesca and F. v. semperflorens. Plant Cell Rep. 2002, 20, 1173–1180. [Google Scholar] [CrossRef]
- Mathews, H.; Wagoner, W.; Kellogg, J.; Bestwick, R. Genetic transformation of strawberry: Stable integration of a gene to control biosynthesis of ethylene. In Vitro Cell. Dev. Biol. Plant 1995, 31, 36–43. [Google Scholar] [CrossRef]
- Liu, Z.R.; Sanford, J.C. Plant regeneration by organogenesis from strawberry leaf and runner tissue. HortScience 1988, 23, 1057–1059. [Google Scholar] [CrossRef]
- Rugini, E.; Orlando, R. High efficiency shoot regeneration from calluses of strawberry (Fragaria × ananassa Duch.) stipules of in vitro shoot cultures. J. Hortic. Sci. 1992, 67, 577–582. [Google Scholar] [CrossRef]
- Owen, H.R.; Miller, A.R. Haploid plant regeneration from anther cultures of three north american cultivars of strawberry (Fragaria × ananassa Duch.). Plant Cell Rep. 1996, 15, 905–909. [Google Scholar] [CrossRef]
- Wang, D.; Wergin, W.P.; Zimmerman, R.H. Somatic embryogenesis and plant regeneration from immature embryos of strawberry. HortScience 1984, 19, 71–72. [Google Scholar] [CrossRef]
- Debnath, S.C. Strawberry sepal: Another explant for thidiazuron-induced adventitious shoot regeneration. In Vitro Cell. Dev. Biol. Plant 2005, 41, 671–676. [Google Scholar] [CrossRef]
- Nyman, M.; Wallin, A. Plant regeneration from strawberry (Fragaria × ananassa) mesophyll protoplasts. J. Plant Physiol. 1988, 133, 375–377. [Google Scholar] [CrossRef]
- Graham, J.; McNicol, R.J.; Greig, K. Towards genetic based insect resistance in strawberry using the cowpea trypsin inhibitor gene. Ann. Appl. Biol. 1995, 127, 163–173. [Google Scholar] [CrossRef]
- Lis, E.K. Strawberry plants regeneration by organogenesis from peduncle and stolon segments. In Proceedings of the II International Strawberry Symposium, Beltsville, MD, USA, 13–18 September 1992; Volume 348, pp. 435–438. [Google Scholar]
- Folta, K.M.; Dhingra, A.; Howard, L.; Stewart, P.J.; Chandler, C.K. Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation. Planta 2006, 224, 1058–1067. [Google Scholar] [CrossRef]
- Kaushal, K.; Nath, A.K.; Sharma, D.R. Establishment of callus cultures and plant regeneration in strawberry (Fragaria × ananassa Duch.) cv. Chandler. Indian J. Plant Physiol. 2006, 11, 136. [Google Scholar]
- Biswas, M.K.; Islam, R.; Hossain, M. Somatic embryogenesis in strawberry (Fragaria sp.) through callus culture. Plant Cell Tissue Organ. Cult. 2007, 90, 49–54. [Google Scholar] [CrossRef]
- Manosh, K.B.; Uthpal, K.R.; Rafiul, I.; Monzur, H. Callus culture from leaf blade, nodal, and runner segments of three strawberry (Fragaria sp.) clones. Turk. J. Biol. 2010, 34, 75–80. [Google Scholar]
- Xia, J.; Zhao, M.; Meng, X. Study on stem-tip tissue culture and rapid propagation techniques of strawberry “Ningyu”. Acta Agric. Jiangxi 2014, 26, 16–21. [Google Scholar]
- Chen, H.; Gao, L.; Lu, H.; Chen, M.; Zhang, L. Studies of stem tip culture of strawberry virus-free tissue culture technology. Beijing Agric. 2011, 3, 18–20. [Google Scholar]
- Wang, Y.; Chen, B.; Zhang, Z.; Gao, Z.; Qiao, Y. Study on tissue culture and rapid propagation technique of Fragaria nilgerrensis. Southwest China J. Agric. Sci. 2012, 25, 252–256. [Google Scholar]
- Dong, J. Tissue culture of stem tip and rapid propagation of Fragaria × ananassa Duch. ‘Benihoppe’. North. Hortic. 2013, 24, 106–108. [Google Scholar]
- Zhang, H. Study on simplify the process of tissue culture and rapid propagation of strawberry virus-free seedling and reduce production cost. J. Hebei Agric. Sci. 2013, 17, 68–71. [Google Scholar]
- Zhai, T.; Liu, C.; Yuan, Y.; Qu, H.; Shen, J.; Liu, Q. Rapid propagation system of meristem culture for strawberry. J. Anhui Agric. Univ. 2015, 42, 545–548. [Google Scholar]
- Wang, F.; Gao, Z.H.; Qiao, Y.S.; Mi, L.; Li, J.F.; Zhang, Z.; Lin, Z.L.; Gu, X.B. RDREB1BI gene expression driven by the stress-induced promoter RD29A enhances tolerance to cold stress in benihope strawberry. ISHS Acta Hortic. 2014, 1049, 975–988. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Barceló, M.; El-Mansouri, I.; Mercado, J.A.; Quesada, M.A.; Pliego Alfaro, F. Regeneration and transformation via Agrobacterium tumefaciens of the strawberry cultivar Chandler. Plant Cell Tissue Organ. Cult. 1998, 54, 29–36. [Google Scholar] [CrossRef]
- Husaini, A.M.; Srivastava, D.K. Efficient Plant Regeneration from Leaf and Petiole Explants of Strawberry (Fragariu × unanossa Duch.). Phytomorphol. Phytomorphol. Int. J. Plant Sci. 2011, 61, 55–62. [Google Scholar]
- He, X.Y.; Bi, H.L.; Xue, R.G.; Tao, B.; He, Q.J. Study on tissue culture and rapid propagation technique of Fragaria ananassa Totem. Southwest China J. Agric. Sci. 2013, 26, 701–704. [Google Scholar]
- Singh, A.K.; Pandey, S.N. Genotypic variation among strawberry cultivars for shoot organogenesis. In Proceedings of the VII International Symposium on Temperate Zone Fruits in the Tropics and Subtropics 662, Nauni, Solan, India, 14–18 October 2003; pp. 277–280. [Google Scholar]
- Sanikhani, M.; Frello, S.; Serek, M. TDZ induces shoot regeneration in various Kalanchoe blossfeldiana Poelln. cultivars in the absence of auxin. Plant Cell Tissue Organ. Cult. 2006, 85, 75–82. [Google Scholar] [CrossRef]
- Pai, S.R.; Desai, N.S. Effect of TDZ on various plant cultures. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Springer: Singapore, 2018; pp. 439–454. [Google Scholar]
- Cappelletti, R.; Sabbadini, S.; Mezzetti, B. The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Sci. Hortic. 2016, 207, 117–124. [Google Scholar] [CrossRef]
- Verma, S.K.; Das, A.K.; Cingoz, G.S.; Uslu, E.; Gurel, E. Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species. Biotechnol. Rep. 2016, 10, 66–74. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, N.; Sheng, A.; Ma, G.; Wu, G. Direct and callus-mediated regeneration of Curcuma soloensis Valeton (Zingiberaceae) and ex vitro performance of regenerated plants. Sci. Hortic. 2011, 130, 899–905. [Google Scholar] [CrossRef]
- Landi, L.; Mezzetti, B. TDZ, auxin and genotype effects on leaf organogenesis in Fragaria. Plant Cell Rep. 2006, 25, 281–288. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Q.; Davis, R.E. Transgene expression in strawberries driven by a heterologous phloem-specific promoter. Plant Cell Rep. 2004, 23, 224–230. [Google Scholar] [CrossRef]
- Schaart, J.; Salentijn, E.; Krens, F. Tissue-specific expression of the β-glucuronidase reporter gene in transgenic strawberry (Fragaria × ananassa) plants. Plant Cell Rep. 2002, 21, 313–319. [Google Scholar] [CrossRef]
- Flores, R.; Oliveira, M.D.F.; Camargo, J.T.; Andrade, L.; Peters, J.A.; Fortes, G.D.L. In vitro callogenesis and organogenesis in two strawberry cultivars. Agropecu. Clima Temperado 1998, 1, 155–161. [Google Scholar]
- Hammoudeh, H.Y.; Suwwan, M.A.; Abu-Qaoud, H.A.; Shibli, R.A. Micropropagation and regeneration of “Honeoye” strawberry. Dirasat Agric. Sci. 1998, 25, 170–178. [Google Scholar]
- Sutter, E.G.; Ahmadi, H.; Labavitch, J.M. Direct regeneration of strawberry (Fragaria × ananassa duch.) from leaf disks. In Proceedings of the III International Symposium on In Vitro Culture and Horticultural Breeding 447, Jerusalem, Israel, 16–21 June 1996; pp. 243–246. [Google Scholar]
- Nyman, M.; Wallin, A. Improved culture technique for strawberry (Fragaria × ananassa Duch.) protoplasts and the determination of DNA content in protoplast derived plants. Plant Cell Tissue Organ. Cult. 1992, 30, 127–133. [Google Scholar] [CrossRef]
- Debnath, S.C. Developing a scale-up system for the in vitro multiplication of thidiazuron-induced strawberry shoots using a bioreactor. Can. J. Plant Sci. 2008, 88, 737–746. [Google Scholar] [CrossRef]
- Debnath, S.C. Characteristics of strawberry plants propagated by in vitro bioreactor culture and ex vitro propagation method. Eng. Life Sci. 2009, 9, 239–246. [Google Scholar] [CrossRef]
- Song, X.L.; Zhang, X.; Dong, Q.H.; Guo, B. The Establishment of the Recipient Systems of Genetic Transformation from ‘Benihoppe’ Strawberry (Fragaria × ananassa Duch.). In Proceedings of the VII International Strawberry Symposium 1049, Beijing, China, 18–22 February 2012; pp. 377–381. [Google Scholar]
- Lindfors, A.; Kuusela, H.; Hohtola, A.; Kupila-Ahvenniemi, S. Molecular correlates of tissue browning and deterioration in Scots pine calli. Biol. Plant 1990, 32, 171–180. [Google Scholar] [CrossRef]
- Marks, T.R.; Simpson, S.E. Reduced phenolic oxidation at culture initiation in vitro following the exposure of field-grown stockplants to darkness or low levels of irradiance. J. Hortic. Sci. 1990, 65, 103–111. [Google Scholar] [CrossRef]
- Revathi, S.; Pillai, M.A. In vitro callus induction in rice (Oryza sativa L.). Res. Plant Biol. 2011, 1, 13–15. [Google Scholar]
- Sen, M.K.; Nasrin, S.; Rahman, S.; Jamal, A.H.M. In vitro callus induction and plantlet regeneration of Achyranthes aspera L.; a high value medicinal plant. Asian Pac. J. Trop. Biomed. 2014, 4, 40–46. [Google Scholar] [CrossRef]
- Khan, A.; Shah, A.H.; Ali, N. In-vitro propagation and phytochemical profiling of a highly medicinal and endemic plant species of the Himalayan region (Saussurea costus). Sci. Rep. 2021, 11, 23575. [Google Scholar] [CrossRef]
- Murashige, T. Clonal crops through tissue culture. In Plant Tissue Culture and Its Bio-Technological Application: Proceedings of the First International Congress on Medicinal Plant Research, Section B, Munich, Germany, 6–10 September 1976; Springer: Berlin/Heidelberg, Germany, 1977; pp. 392–403. [Google Scholar]
- Madany, G.; Parham, H. Meristem culture and in vitro direct shooting of two strawberry cultivars. In Proceedings of the 5th National Biotechnology Congress of Iran, Tehran, Iran, 24–26 November 2007; pp. 24–26. [Google Scholar]
- Ahmad, I.; Hussain, T.; Ashraf, I.; Nafees, M.; Maryam, R.M.; Iqbal, M. Lethal effects of secondary metabolites on plant tissue culture. Am. Eurasian J. Agric. 2013, 13, 539–547. [Google Scholar]
- Tang, W.; Harris, L.C.; Outhavong, V.; Newton, R.J. Antioxidants enhance in vitro plant regeneration by inhibiting the accumulation of peroxidase in Virginia pine (Pinus virginiana Mill.). Plant Cell Rep. 2004, 22, 871–877. [Google Scholar] [CrossRef]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef]
- Engler, C.; Youles, M.; Gruetzner, R.; Ehnert, T.M.; Werner, S.; Jones, J.D.; Patron, N.J.; Marillonnet, S. A golden gate modular cloning toolbox for plants. ACS Synth. Biol. 2014, 3, 839–843. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Q.; Zhu, Q.; Liu, W.; Chen, Y.; Qiu, R.; Wang, B.; Yang, Z.; Li, H.; Lin, Y.; et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 2015, 8, 1274–1284. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Liu, Q.; Wang, C.; Jiao, X.; Zhang, H.; Song, L.; Li, Y.; Gao, C.; Wang, K. Hi-TOM: A platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci. China Life Sci. 2019, 62, 1–7. [Google Scholar] [CrossRef]
Plant Growth Regulator (mg/L) | Callus Induction (%) a | ||||
---|---|---|---|---|---|
6-BA | NAA | TDZ | 2,4-D | IBA | |
0.5 | 0.5 | 44.3 ± 2.5 | |||
0.5 | 0.75 | 52.6 ± 2.1 | |||
0.5 | 1 | 90.0 ± 5.0 | |||
0.5 | 1.5 | 81.0 ± 6.0 | |||
0.5 | 0.1 | 66.6 ± 2.9 | |||
0.5 | 0.25 | 87.3 ± 2.5 | |||
0.5 | 0.5 | 31.8 ± 4.6 | |||
0.5 | 0.1 | 22.6 ± 2.5 | |||
0.5 | 0.25 | 5.3 ± 1.5 | |||
1 | 0.1 | 16.0 ± 2.0 |
Plant Growth Regulator Concentration (mg/L) | Callus Induction from Different Explants (%) a | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
6-BA | NAA | TDZ | 2,4-D | KT | Leaf Strips | Blended Leaf | Petiole | Blended Runner | Runner Tip Meristematic Tissue | Crown | Seed |
0.5 | 0.5 | 44.3 ± 2.5 | 36.0 ± 2.0 | 38.6 ± 1.5 | 0 | 0 | 0 | 0 | |||
0.5 | 0.75 | 52.6 ± 2.5 | 44.0 ± 3.1 | 45.6 ± 2.1 | 0 | 0 | 0 | 0 | |||
0.5 | 1 | 90.0 ± 5.0 | 82.5 ± 4.6 | 88.3 ± 4.5 | 25.0 ± 2.0 | 31.3 ± 3.0 | 40.0 ± 2.5 | 0 | |||
0.5 | 1.5 | 81.0 ± 6.0 | 60.0 ± 5.0 | 66.3 ± 3.2 | 40.0 ± 3.0 | 44.6 ± 2.5 | 58.3 ± 5.5 | 0 | |||
0.5 | 0.1 | 66.6 ± 2.9 | 56.6 ± 7.1 | 49.0 ± 5.6 | 59.8 ± 0.3 | 65.0 ± 5.0 | 55.0 ± 4.7 | 0 | |||
0.5 | 0.25 | 87.3 ± 2.5 | 79.3 ± 6.1 | 64.0 ± 2.6 | 86.0 ± 7.9 | 72.3 ± 2.5 | 87.3 ± 3.5 | 0 | |||
0.5 | 0.5 | 31.8 ± 4.6 | 20.3 ± 2.1 | 25.3 ± 2.9 | 41.6 ± 3.8 | 47.0 ± 2.6 | 45.2 ± 4.8 | 0 | |||
1 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 49.0 ± 2.6 | |||
2 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 65.1 ± 4.2 | |||
3 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 34.3 ± 2.1 |
Plant Growth Regulators (mg/L) | Shoot Elongation Rate (%) a | |||
---|---|---|---|---|
GA3 | 6-BA | IBA | Segments of Leaf Explant | Runner Tip Meristematic Tissue Explant |
3 | 0 | 0 | ||
2 | 0 | 0 | ||
1 | 0 | 0 | ||
1 | 0.2 | 0 | 0 | |
0.5 | 0.2 | 0 | 0 | |
0.25 | 0.2 | 50.0 ± 1.2 | 23.0 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akter, F.; Wu, S.; Islam, M.S.; Kyaw, H.; Yang, J.; Li, M.; Fu, Y.; Wu, J. An Efficient Agrobacterium-Mediated Genetic Transformation System for Gene Editing in Strawberry (Fragaria × ananassa). Plants 2024, 13, 563. https://doi.org/10.3390/plants13050563
Akter F, Wu S, Islam MS, Kyaw H, Yang J, Li M, Fu Y, Wu J. An Efficient Agrobacterium-Mediated Genetic Transformation System for Gene Editing in Strawberry (Fragaria × ananassa). Plants. 2024; 13(5):563. https://doi.org/10.3390/plants13050563
Chicago/Turabian StyleAkter, Fatema, Suting Wu, Md Shariful Islam, Htin Kyaw, Jinwen Yang, Mingyue Li, Yuxin Fu, and Jinxia Wu. 2024. "An Efficient Agrobacterium-Mediated Genetic Transformation System for Gene Editing in Strawberry (Fragaria × ananassa)" Plants 13, no. 5: 563. https://doi.org/10.3390/plants13050563
APA StyleAkter, F., Wu, S., Islam, M. S., Kyaw, H., Yang, J., Li, M., Fu, Y., & Wu, J. (2024). An Efficient Agrobacterium-Mediated Genetic Transformation System for Gene Editing in Strawberry (Fragaria × ananassa). Plants, 13(5), 563. https://doi.org/10.3390/plants13050563