Phenolic, Nutritional and Sensory Characteristics of Bakery Foods Formulated with Grape Pomace
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content and Antiradical Capacity
2.2. Characterization of Phenolic Compounds Composition
2.2.1. Anthocyanins
2.2.2. Non-Anthocyanins
2.3. Nutritional Properties
3. Materials and Methods
3.1. Chemicals and Ingredients
3.2. Grape Pomace Powder Preparation
3.3. Foods Preparation
3.3.1. Muffins
3.3.2. Biscuits
3.3.3. Cereal Bars
3.4. Phenolic Compounds Extraction
3.5. Total Phenolic Content (TPC)
3.6. Antiradical Capacity (AC)
3.7. Non-Anthocyanins Phenolic Compounds
3.8. Anthocyanins
3.9. Nutritional Parameters
3.10. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bustamante, M.A.; Moral, R.; Paredes, C.; Pérez-Espinosa, A.; Moreno-Caselles, J.; Pérez-Murcia, M.D. Agrochemical Characterisation of the Solid By-Products and Residues from the Winery and Distillery Industry. Waste Manag. 2008, 28, 372–380. [Google Scholar] [CrossRef]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F. Physico-Chemical, Sensory and Volatile Profiles of Biscuits Enriched with Grape Marc Extract. Food Res. Int. 2014, 65, 385–393. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lores, M.; Insam, H.; Domínguez, J. Strategies for Recycling and Valorization of Grape Marc. Crit. Rev. Biotechnol. 2019, 39, 437–450. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M. Functional Components of Grape Pomace: Their Composition, Biological Properties and Potential Applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Antoniolli, A.; Fontana, A.R.; Piccoli, P.; Bottini, R. Characterization of Polyphenols and Evaluation of Antioxidant Capacity in Grape Pomace of the cv. Malbec. Food Chem. 2015, 178, 172–178. [Google Scholar] [CrossRef]
- Rodriguez Lanzi, C.; Perdicaro, D.J.; Antoniolli, A.; Fontana, A.R.; Miatello, R.M.; Bottini, R.; Vazquez Prieto, M.A. Grape Pomace and Grape Pomace Extract Improve Insulin Signaling in High-Fat-Fructose Fed Rat-Induced Metabolic Syndrome. Food Funct. 2016, 7, 1544–1553. [Google Scholar] [CrossRef]
- Padilla, F.C.; Rincón, A.M.; Bou-Rached, L. Contenido de Polifenoles y Actividad Antioxidante de Varias Semillas y Nueces. Arch. Latinoam. Nutr. 2008, 58, 303–308. [Google Scholar] [PubMed]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical Composition of Dietary Fiber and Polyphenols of Five Different Varieties of Wine Grape Pomace Skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Gül, H.; Acun, S.; Şen, H.; Nayir, N.; Türk, S. Antioxidant Activity, Total Phenolics and Some Chemical Properties of Öküzgözü and Narince Grape Pomace and Grape Seed Flour. J. Food Agric. Environ. 2013, 11, 28–34. [Google Scholar]
- Llobera, A.; Cañellas, J. Dietary Fibre Content and Antioxidant Activity of Manto Negro Red Grape (Vitis vinifera): Pomace and Stem. Food Chem. 2007, 101, 659–666. [Google Scholar] [CrossRef]
- O’Connell, J.E.; Fox, P.F. Significance and Applications of Phenolic Compounds in the Production and Quality of Milk and Dairy Products: A Review. Int. Dairy J. 2001, 11, 103–120. [Google Scholar] [CrossRef]
- Rajha, H.N.; Paule, A.; Aragonès, G.; Barbosa, M.; Caddeo, C.; Debs, E.; Dinkova, R.; Eckert, G.P.; Fontana, A.; Gebrayel, P.; et al. Recent Advances in Research on Polyphenols: Effects on Microbiota, Metabolism, and Health. Mol. Nutr. Food Res. 2022, 66, 2100670. [Google Scholar] [CrossRef]
- Mézes, M.; Erdélyi, M. Antioxidant Effect of the Fibre Content of Foods|Az Élelmiszerek Rosttartalmának Antioxidáns Hatása. Orvsci Hetil. 2018, 159, 709–712. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Rosselló, C.; Simal, S.; Garau, M.C.; López, F.; Femenia, A. Physico-Chemical Properties of Cell Wall Materials Obtained from Ten Grape Varieties and Their Byproducts: Grape Pomaces and Stems. LWT 2010, 43, 1580–1586. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of Grape Pomace: An Approach That Is Increasingly Reaching Its Maturity—A Review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Gazzola, D.; Vincenzi, S.; Gastaldon, L.; Tolin, S.; Pasini, G.; Curioni, A. The Proteins of the Grape (Vitis vinifera L.) Seed Endosperm: Fractionation and Identification of the Major Components. Food Chem. 2014, 155, 132–139. [Google Scholar] [CrossRef]
- Lachman, J.; Hejtmánková, A.; Hejtmánková, K.; Horníčková, T.; Pivec, V.; Skala, O.; Dědina, M.; Přibyl, J. Towards Complex Utilisation of Winemaking Residues: Characterisation of Grape Seeds by Total Phenols, Tocols and Essential Elements Content as a by-Product of Winemaking. Ind. Crops Prod. 2013, 49, 445–453. [Google Scholar] [CrossRef]
- Fiori, L.; Lavelli, V.; Duba, K.S.; Sri Harsha, P.S.C.; Mohamed, H.B.; Guella, G. Supercritical CO2 Extraction of Oil from Seeds of Six Grape Cultivars: Modeling of Mass Transfer Kinetics and Evaluation of Lipid Profiles and Tocol Contents. J. Supercri. Fluids 2014, 94, 71–80. [Google Scholar] [CrossRef]
- Šporin, M.; Avbelj, M.; Kovač, B.; Možina, S.S. Quality Characteristics of Wheat Flour Dough and Bread Containing Grape Pomace Flour. Food Sci. Technol. Int. 2018, 24, 251–263. [Google Scholar] [CrossRef]
- Bianchi, F.; Cervini, M.; Giuberti, G.; Rocchetti, G.; Lucini, L.; Simonato, B. Distilled Grape Pomace as a Functional Ingredient in Vegan Muffins: Effect on Physicochemical, Nutritional, Rheological and Sensory Aspects. Int. J. Food Sci. Technol. 2022, 57, 4847–4858. [Google Scholar] [CrossRef]
- Fernández-Fernández, A.M.; Dellacassa, E.; Nardin, T.; Larcher, R.; Ibañez, C.; Terán, D.; Gámbaro, A.; Medrano-Fernandez, A.; Del Castillo, M.D. Tannat Grape Skin: A Feasible Ingredient for the Formulation of Snacks with Potential for Reducing the Risk of Diabetes. Nutrients 2022, 14, 419. [Google Scholar] [CrossRef] [PubMed]
- Hayta, M.; Özuǧur, G.; Etgü, H.; Şeker, I.T. Effect of Grape (Vitis vinifera L.) Pomace on the Quality, Total Phenolic Content and Anti-Radical Activity of Bread. J. Food Process Preserv. 2014, 38, 980–986. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Stamatovska, V.; Dimov, I. Effect of Grape Pomace Powder Addition on Chemical, Nutritional and Technological Properties of Cakes. LWT 2020, 134, 109950. [Google Scholar] [CrossRef]
- Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G.; Simonato, B. Breadstick Fortification with Red Grape Pomace: Effect on Nutritional, Technological and Sensory Properties. J. Sci. Food Agric. 2022, 102, 2545–2552. [Google Scholar] [CrossRef]
- Walker, R.; Tseng, A.; Cavender, G.; Ross, A.; Zhao, Y. Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. J. Food Sci. 2014, 79, S1811–S1822. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Bajerska, J.; Zawirska-Wojtasiak, R.; Górecka, D. White Grape Pomace as a Source of Dietary Fibre and Polyphenols and Its Effect on Physical and Nutraceutical Characteristics of Wheat Biscuits. J. Sci. Food Agric. 2013, 93, 389–395. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, B.; Gul, K.; Wani, A.A.; Singh, P. Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2223–2230. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Substantiation of Health Claims Related to Various Food (s)/Food Constituent (s) and Protection of Cells from Premature Aging, Antioxidant Activity, Antioxidant Content and Antioxidant Properties, and Protection of DNA, Proteins and Lipids from Oxidative Damage Pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1489. [Google Scholar]
- U.S. Food and Drug Administration. Code of Federal Regulations (Annual Edition); Office of the Federal Register, National Archives and Records Administration: College Park, MD, USA, 2022.
- Ferreyra, S.; Bottini, R.; Fontana, A. Temperature and Light Conditions Affect Stability of Phenolic Compounds of Stored Grape Cane Extracts. Food Chem. 2023, 405, 134718. [Google Scholar] [CrossRef]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Pasqualone, A.; Caponio, F. Grape Pomace as Innovative Flour for the Formulation of Functional Muffins: How Particle Size Affects the Nutritional, Textural and Sensory Properties. Foods 2022, 11, 1799. [Google Scholar] [CrossRef] [PubMed]
- FAO. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; FAO: Geneva, Switzerland, 2019. [Google Scholar]
- FDA. Daily Value on the New Nutrition and Supplement Facts Labels; FDA: Silver Spring, MD, USA, 2023. [Google Scholar]
- European Parliament and Council. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Off. J. Eur. Union 2006, 49, 9–25. [Google Scholar]
- Dávila, L.A.; Escobar, M.C.; Garrido, M.; Carrasco, P.; López-Miranda, J.; Aparicio, D.; Céspedes, V.; González, R.; Chaparro, R.; Angarita, M.; et al. Comparison of Fiber Effect on Glycemic Index and Glycemic Load in Differents Types of Bread|Comparación Del Efecto de La Fibra: Sobre El Índice Glicémico y Carga Glicémica En Distintos Tipos de Pan. Arch. Venez. Farmacol. Ter. 2016, 35, 100–106. [Google Scholar]
- Granito, M.; Pérez, S.; Valero, Y. Quality of Cooking, Acceptability and Glycemic Index of Enriched Pasta with Legumes|Calidad de Cocción, Aceptabilidad e Índice Glicémico de Pasta Larga Enriquecida Con Leguminosas. Rev. Chil. Nutr. 2014, 41, 425–432. [Google Scholar] [CrossRef]
- Paulos, K.; Costa, J.M.S.; Portugal, P.V.; Spranger, M.I.; Sun, B.S.; Moreira, O.C.; Dentinho, M.T.P. Caracterización Química y Nutricional de Los Subproductos de La Vinificación Para Aplicacion En La Alimentación de Rumiantes. Soc. Esp. Ovinotec. Caprinotec. 2005, 48, 223–237. [Google Scholar]
- Prandi, B.; Faccini, A.; Lambertini, F.; Bencivenni, M.; Jorba, M.; Van Droogenbroek, B.; Bruggeman, G.; Schöber, J.; Petrusan, J.; Elst, K.; et al. Food Wastes from Agrifood Industry as Possible Sources of Proteins: A Detailed Molecular View on the Composition of the Nitrogen Fraction, Amino Acid Profile and Racemisation Degree of 39 Food Waste Streams. Food Chem. 2019, 286, 567–575. [Google Scholar] [CrossRef]
- Harbeoui, H.; Dakhlaoui, S.; Wannes, W.A.; Bourgou, S.; Hammami, M.; Akhtar Khan, N.; Saidani Tounsi, M. Does Unsaponifiable Fraction of Grape Seed Oil Attenuate Nitric Oxide Production, Oxidant and Cytotoxicity Activities. J. Food Biochem. 2019, 43, e12940. [Google Scholar] [CrossRef] [PubMed]
- Canett Romero, R.; Ledesma Osuna, A.I.; Robles Sánchez, R.M.; Morales Castro, R.; León-Martínez, L.; León-Gálvez, R. Characterization of Cookies Made with Deseeded Grape Pomace|Caracterización de Galletas Elaboradas Con Cascarilla de Orujo de Uva. Arch. Latinoam. Nutr. 2004, 54, 93–99. [Google Scholar]
- Ferreyra, S.; Bottini, R.; Fontana, A. Tandem Absorbance and Fluorescence Detection Following Liquid Chromatography for the Profiling of Multiclass Phenolic Compounds in Different Winemaking Products. Food Chem. 2021, 338, 128030. [Google Scholar] [CrossRef]
- Fontana, A.R.; Bottini, R. High-Throughput Method Based on Quick, Easy, Cheap, Effective, Rugged and Safe Followed by Liquid Chromatography-Multi-Wavelength Detection for the Quantification of Multiclass Polyphenols in Wines. J. Chromatogr. A 2014, 1342, 44–53. [Google Scholar] [CrossRef]
- Fontana, A.; Antoniolli, A.; D’Amario Fernández, M.A.; Bottini, R. Phenolics Profiling of Pomace Extracts from Different Grape Varieties Cultivated in Argentina. RSC Adv. 2017, 7, 29446–29457. [Google Scholar] [CrossRef]
- Official Methods of Analysis of the Association of Analytical Chemists International; AOAC: Gaithersburg, MD, USA, 2000.
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat, Versión 2018; Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2020.
Sample | GP Muffin | Control Muffin | GP Cereal Bar | Control Cereal Bar | GP Biscuit | Control Biscuit |
---|---|---|---|---|---|---|
TPC (mg GAE g−1 DW) | 3.28 ± 0.19 a | 0.39 ± 0.04 b | 6.27 ± 0.19 a | 2.58 ± 0.15 b | 6.35 ± 0.20 a | 0.94 ± 0.10 b |
AC (μmol TE g−1 DW) | 47.84 ± 1.55 a | 7.22 ± 0.03 b | 75.40 ± 6.77 a | 24.00 ± 0.49 b | 68.32 ± 4.86 a | 15.43 ± 0.45 b |
Anthocyanin | Muffin | Cereal Bar | Biscuit |
---|---|---|---|
Delphinidin 3-O-glucoside | 14.1 ± 0.3 b | 28.8 ± 0.9 a | 10.4 ± 2.9 b |
Cyanidin 3-O-glucoside | 8.2 ± 0.1 a | 6.3 ± 0.1 a | 4.9 ± 0.1 b |
Petunidin 3-O-glucoside | 20.2 ± 0.7 b | 36.9 ± 1.1 a | 9.8 ± 0.1 c |
Peonidin 3-O-glucoside | 10.3 ± 0.1 a | 13.8 ± 0.3 a | 5.5 ± 0.1 b |
Malvidin 3-O-glucoside | 160.2 ± 4.1 b | 224.9 ± 8.9 a | 69.7 ± 1.6 c |
Total glycosylated | 212.9 | 310.7 | 100.5 |
Delfinidin 3-O-acetylglucoside | 8.9 ± 0.1 a | 11 ± 0.2 a | 7.4 ± 0.2 c |
Peonidin 3-O-acetylglucoside | 60.4 ± 1.9 b | 80.8 ± 3.1 a | 45.2 ± 0.0 c |
Total acetylated | 69.3 | 91.8 | 52.6 |
Cyanidin 3-O-p-coumaroylglucoside | 13.8 ± 3.2 a | 16.5 ± 3.7 a | 7.8 ± 0.5 b |
Peonidin 3-O-p-coumaroylglucoside | 39.1 ± 1.3 b | 50.1 ± 1.7 a | 25.8 ± 0.2 c |
Malvidin 3-O-p-coumaroylglucoside | 558.1 ± 31.1 b | 695.8 ± 34.7 a | 361.5 ± 4.3 c |
Total coumaroylated | 611.1 | 762.3 | 395.1 |
Total anthocyanins | 893.2 | 1164.8 | 548.2 |
GP Muffin | Control Muffin | GP Cereal Bar | Control Cereal Bar | GP Biscuit | Control Biscuit | |
---|---|---|---|---|---|---|
Hydroxybenzoic acids | ||||||
Syringic acid | 55.4 ± 2.7 a | n.d. b | 45.5 ± 1.8 a | 4.4 ± 1.3 b | 107.8 ± 2.4 a | n.d. b |
Total | 55.4 | 45.5 | 4.4 | 107.8 | ||
Hydroxycinnamic acids | ||||||
Caffeic acid | 60.6 ± 3.03 a | n.d. b | 48.4 ± 1.8 a | 20.8 ± 2.0 b | 99.3 ± 3.5 a | 6.8 ± 0.8 b |
p-coumaric acid | 35.2 ± 1.7 a | n.d. b | 23.2 ± 1.1 a | n.d. b | 35.0 ± 1.5 a | n.d. b |
Ferulic acid | 3.8 ± 0.2 a | n.d. b | 6.5 ± 0.1 a | n.d. b | 10.0 ± 0.4 a | n.d. b |
Chlorogenic acid | 29.6 ± 1.5 a | n.d. b | 121.8 ± 0.1 a | n.d. b | n.d. | n.d. |
Total | 129.2 | 199.9 | 20.8 | 144.3 | 6.8 | |
Stilbenes | ||||||
trans-resveratrol | 2.7 ± 0.1 a | n.d. b | 2.0 ± 0.1 a | n.d. b | 4.5 ± 0.1 a | n.d. b |
Total | 2.7 | 2.0 | 4.5 | |||
Flavanols | ||||||
(+)-catechin | 44.8 ± 2.2 a | n.d. b | 60.1 ± 1.3 a | n.d. b | 51.6 ± 3.5 a | n.d. b |
Total | 44.8 | 60.1 | 51.6 | |||
Flavonols | ||||||
Quercetin-3-O-glucoside | 103.7 ± 5.2 b | 126.6 ± 6.3 a | 11.0 ± 1.7 b | 44.3 ± 8.2 a | 194.8 ± 1.7 b | 285.0 ± 5.3 a |
Quercetin | n.d. | n.d. | 4.7 ± 0.8 a | 4.0 ± 0.2 a | 3.9 ± 0.2 a | n.d. b |
Myricetin | 4.2 ± 0.2 a | n.d. b | 7.6 ± 0.2 b | 5.4 ± 0.2 a | 8.0 ± 1.1 a | n.d. b |
Rutin | 62.8 ± 3.1 | 4.1 ± 0.2 | 51.1 ± 1.2 | 3.4 ± 0.3 | 80.5 ± 0.5 | n.d. |
Total | 170.7 | 130.7 | 74.4 | 57.1 | 287.2 | 285.0 |
Other compounds | ||||||
OH-tyrosol | 8.6 ± 0.4 a | n.d. b | 6.9 ± 0.6 a | n.d. b | 13.3 ± 1.2 a | n.d. b |
Total | 8.6 | 6.9 | 13.3 | |||
Total PCs | 664.8 | 293.5 | 442.0 | 186.7 | 771.0 | 350.0 |
Sample | GP Muffin | Control Muffin | GP Cereal Bar | Control Cereal Bar | GP Biscuit | Control Biscuit |
---|---|---|---|---|---|---|
Moisture | 21.51 ± 0.32 b | 20.25 ± 0.17 a | 20.54 ± 0.51 a | 14.31 ± 0.81 b | 6.13 ± 0.28 a | 3.55 ± 0.01 b |
Proteins | 7.33 ± 0.12 a | 6.6 ± 1.15 a | 4.67 ± 0.29 a | 4.13 ± 0.32 a | 11.27 ± 0.72 a | 11.3 ± 0.69 a |
Lipids | 20.33 ± 0.47 a | 21.33 ± 0.64 a | 1.17 ± 0.25 a | 0.70 ± 0.14 b | 14.20 ± 0.30 a | 12.40 ± 0.62 b |
Fiber | 1.9 ± 0.17 a | 0.32 ± 0.09 b | 3.31 ± 0.43 a | 0.49 ± 0.08 b | 5.83 ± 1.59 a | 0.90 ± 0.26 b |
Carbohydrates | 47.7 ± 0.35 b | 50.89 ± 0.92 a | 69.48 ± 0.97 b | 80.18 ± 1.49 a | 60.65 ± 0.43 b | 70.64 ± 1.40 a |
Ash | 1.22 ± 0.05 a | 0.68 ± 0.15 b | 0.84 ± 0.06 a | 0.40 ± 0.02 b | 1.91 ± 0.27 a | 1.21 ± 0.18 b |
Muffin (% w/w) | Cereal Bars (% w/w) | Biscuit (% w/w) |
---|---|---|
Flour: 24 | Honey: 63 | Flour: 25 |
Egg: 27 | Oats: 17.5 | Egg: 46 |
Sugar: 27 | Cornflakes: 10.5 | Sugar: 23 |
Butter: 21 | Rice flakes: 9 | Sunflower Oil: 5 |
Vanilla: 0.5 | Vanilla: 0.5 | |
Baking Powder: 0.5 | Baking Powder: 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniolli, A.; Becerra, L.; Piccoli, P.; Fontana, A. Phenolic, Nutritional and Sensory Characteristics of Bakery Foods Formulated with Grape Pomace. Plants 2024, 13, 590. https://doi.org/10.3390/plants13050590
Antoniolli A, Becerra L, Piccoli P, Fontana A. Phenolic, Nutritional and Sensory Characteristics of Bakery Foods Formulated with Grape Pomace. Plants. 2024; 13(5):590. https://doi.org/10.3390/plants13050590
Chicago/Turabian StyleAntoniolli, Andrea, Lucía Becerra, Patricia Piccoli, and Ariel Fontana. 2024. "Phenolic, Nutritional and Sensory Characteristics of Bakery Foods Formulated with Grape Pomace" Plants 13, no. 5: 590. https://doi.org/10.3390/plants13050590
APA StyleAntoniolli, A., Becerra, L., Piccoli, P., & Fontana, A. (2024). Phenolic, Nutritional and Sensory Characteristics of Bakery Foods Formulated with Grape Pomace. Plants, 13(5), 590. https://doi.org/10.3390/plants13050590