Overexpression of cry1c* Enhances Resistance against to Soybean Pod Borer (Leguminivora glycinivorella) in Soybean
Abstract
:1. Introduction
2. Results
2.1. Development of cry1C* Transformed Soybean
2.2. Confirmation of Genetic Stability in Transgenic Soybean Lines
2.3. Analysis of cry1C* mRNA Expression Levels
2.4. Field Simulation for Evaluating Resistance to SPB
2.5. In-Planta Feeding Bioassays against Lepidopteran Larvae
2.6. Effect of cry1C* Overexpression on Soybean Yield and Seed Quality
2.7. Determination of Transgene Copy Number and Insertion Sites
2.8. Successful Expression of cry1C* Protein in Transgenic Soybeans
3. Discussion
4. Materials and Methods
4.1. Generation of cry1c*-Overexpressing Transgenic Plants
4.2. Molecular Screening of Transgenic Soybean Lines
4.3. Expression Analysis of cry1c* mRNA across Developmental Stages and Tissues
4.4. Field Simulation for Evaluating Transgenic Plant Resistance to SPB
4.5. In Planta Feeding Bioassay
4.6. Copy Number and Insertion Site Estimation of the Transgenic Line KC1
4.7. Assessment of cry1c* Expression Using Western Blot
4.8. Assessment of cry1c* Expression Using ELISA
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The Global Burden of Pathogens and Pests on Major Food Crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Vang, L.V.; Ishitani, M.; Komai, F.; Yamamoto, M.; Ando, T. Sex Pheromone of the Soybean Pod Borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae): Identification and Field Evaluation. Appl. Entomol. Zool. 2006, 41, 507–513. [Google Scholar] [CrossRef]
- Stinner, R.E.; Bradley, J.R.; Van Duyn, J.W. Sampling Heliothis spp. on Soybean. In Sampling Methods in Soybean Entomology; Kogan, M., Herzog, D.C., Eds.; Springer New York: New York, NY, USA, 1980; pp. 407–421. [Google Scholar]
- Walker, D.R.; All, J.N.; McPherson, R.M.; Boerma, H.R.; Parrott, W.A. Field Evaluation of Soybean Engineered with a Synthetic Cry1ac Transgene for Resistance to Corn Earworm, Soybean Looper, Velvetbean Caterpillar (Lepidoptera: Noctuidae), and Lesser Cornstalk Borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 2000, 93, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, M. Evaluation of Itk Components against Major Insect Pests of Soybean (Glycine max (L.) Merrill). Master’s Thesis, The University of Agricultural Sciences, Dharwad, India, 2008. [Google Scholar]
- Rogers, D.J.; Brier, H.B. Pest-Damage Relationships for Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on Vegetative Soybean. Crop Prot. 2010, 29, 39–46. [Google Scholar] [CrossRef]
- Michel, A.P.; Mittapalli, O.; Mian, M.R.; Sudaric, A. Evolution of soybean aphid biotypes: Understanding and managing virulence to host-plant resistance. In Soybean-Molecular Aspects of Breeding; Sudaric, A., Ed.; InTech: New York, NY, USA, 2011; pp. 355–372. [Google Scholar]
- Guillebeau, L.P.; Hinkle, N.; Roberts, P. Summary of Losses from Insect Damage and Cost of Control in Georgia. Available online: https://esploro.libs.uga.edu/esploro/outputs/9949316473402959 (accessed on 15 July 2008).
- Musser, F.; Catchot, A.; Lorenz, G.; Stewart, S. 2009 Soybean Insect Losses for Mississippi, Tennessee and Arkansas. Midsouth Entomol. 2010, 3, 48–54. [Google Scholar]
- Tu, Y.-G.; Wu, K.-M.; Xue, F.-S.; Lu, Y.-H. Laboratory Evaluation of Flight Activity of the Common Cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci. 2010, 17, 53–59. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, J.; Han, Y.; Teng, W.; Sun, G.; Li, W. Identification of Qtl Underlying the Resistance of Soybean to Pod Borer, Leguminivora glycinivorella (Mats.) Obraztsov, and Correlations with Plant, Pod and Seed Traits. Euphytica 2008, 164, 275–282. [Google Scholar] [CrossRef]
- Zhao, G.; Jiang, Z.; Li, D.; Han, Y.; Hu, H.; Wu, L.; Wang, Y.; Gao, Y.; Teng, W.; Li, Y.; et al. Molecular Loci Associated with Seed Isoflavone Content May Underlie Resistance to Soybean Pod Borer (Leguminivora glycinivorella). Plant Breed. 2015, 134, 78–84. [Google Scholar] [CrossRef]
- Meng, F.; Li, Y.; Zang, Z.; Li, N.; Ran, R.; Cao, Y.; Li, T.; Zhou, Q.; Li, W. Expression of the Double-Stranded RNA of the Soybean Pod Borer Leguminivora glycinivorella (Lepidoptera: Tortricidae) Ribosomal Protein P0 Gene Enhances the Resistance of Transgenic Soybean Plants. Pest Manag. Sci. 2017, 73, 2447–2455. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, D.; Ma, J.; Fu, Y.P.; Qu, J.; Wang, P.W. Genetic Analysis of the Major Gene Plus Polygene Model in Soybean Resistance to Leguminivora glycinivorella. Genet. Mol. Res. 2014, 13, 4983–4989. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Ni, H.; Wang, G.; Liu, X.; Cao, Y.; Li, W.; Meng, F. Transgenic Soybean Plants Expressing Spb18S dsRNA Exhibit Enhanced Resistance to the Soybean Pod Borer Leguminivora glycinivorella (Lepidoptera: Olethreutidae). Arch. Insect Biochem. Physiol. 2018, 98, e21461. [Google Scholar] [CrossRef]
- Palumbi, S.R. Humans as the World’s Greatest Evolutionary Force. Science 2001, 293, 1786–1790. [Google Scholar] [CrossRef]
- Araújo, L.H.A.; Braga Sobrinho, R.; Queiroz, M.F.D. Aspectos Biológicos De Adultos De Um Parasitóide Do Bicudo Do Algodoeiro. Sci. Agric. 1999, 56, 765–768. [Google Scholar] [CrossRef]
- Fernandes, W.; Carvalho, S.; Habib, M. Between-Season Attraction of Cotton Boll Weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae) Adults by Its Aggregation Pheromone. Sci. Agric. 2001, 58, 229–234. [Google Scholar] [CrossRef]
- Jouzani, G.S.; Valijanian, E.; Sharafi, R. Bacillus thuringiensis: A Successful Insecticide with New Environmental Features and Tidings. Appl. Microbiol. Biotechnol. 2017, 101, 2691–2711. [Google Scholar] [CrossRef]
- Lecadet, M.M. Bacillus thuringiensis toxins—the proteinaceous crystal. Bacterial Protein Toxins 2013, 3, 437–471. [Google Scholar]
- Blackburn, M.B.; Martin, P.A.; Kuhar, D.; Farrar, R.R., Jr.; Gundersen-Rindal, D.E. Phylogenetic Distribution of Phenotypic Traits in Bacillus thuringiensis Determined by Multilocus Sequence Analysis. PLoS ONE 2013, 8, e66061. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Liu, X.-Y.; Miceli, C.; Zhang, Q.; Wang, P.-W. Soybean Plants Expressing the Bacillus thuringiensis Cry8-Like Gene Show Resistance to Holotrichia parallela. BMC Biotechnol. 2019, 19, 66. [Google Scholar] [CrossRef]
- Brookes, G.; Barfoot, P. Environmental Impacts of Genetically Modified (GM) Crop Use 1996–2013: Impacts on Pesticide Use and Carbon Emissions. GM Crops Food 2015, 6, 103–133. [Google Scholar] [CrossRef]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of Action of Bacillus thuringiensis Cry and Cyt Toxins and Their Potential for Insect Control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef]
- Bravo, A.; Soberón, M.; Gill, S. Bacillus thuringiensis: Mechanisms and use. In Encyclopedia of Microbiology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 307–332. [Google Scholar]
- Kumar, P.; Kamle, M.; Borah, R.; Mahato, D.K.; Sharma, B. Bacillus thuringiensis as Microbial Biopesticide: Uses and Application for Sustainable Agriculture. Egypt. J. Biol. Pest Control 2021, 31, 95. [Google Scholar] [CrossRef]
- Ribeiro, T.P.; Basso, M.F.; Carvalho, M.H.D.; Macedo, L.L.P.D.; Silva, D.M.L.D.; Lourenço-Tessutti, I.T.; Oliveira-Neto, O.B.D.; Campos-Pinto, E.R.d.; Lucena, W.A.; Silva, M.C.M.d.; et al. Stability and Tissue-Specific Cry10aa Overexpression Improves Cotton Resistance to the Cotton Boll Weevil. Biotechnol. Res. Innov. 2019, 3, 27–41. [Google Scholar] [CrossRef]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis Insecticidal Three-Domain Cry Toxins: Mode of Action, Insect Resistance and Consequences for Crop Protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.Y.; Choi, J.Y.; Li, M.S.; Jin, B.R.; Je, Y.H. Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control. J. Microbiol. Biotechnol. 2007, 17, 547–559. [Google Scholar] [PubMed]
- Datta, K.; Vasquez, A.; Tu, J.; Torrizo, L.; Alam, M.F.; Oliva, N.; Abrigo, E.; Khush, G.S.; Datta, S.K. Constitutive and Tissue-Specific Differential Expression of the Cryia(B) Gene in Transgenic Rice Plants Conferring Resistance to Rice Insect Pest. Theor. Appl. Genet. 1998, 97, 20–30. [Google Scholar] [CrossRef]
- Yu, H.; Li, Y.; Li, X.; Romeis, J.; Wu, K. Expression of Cry1ac in Transgenic Bt Soybean Lines and Their Efficiency in Controlling Lepidopteran Pests. Pest Manag. Sci. 2013, 69, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, E.P.; Aguda, R.M.; Curtiss, A.; Dean, D.H.; Cohen, M.B. Bacillus thuringiensis Delta-Endotoxin Binding to Brush Border Membrane Vesicles of Rice Stem Borers. Arch. Insect Biochem. Physiol. 2004, 55, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Meng, X.; Guo, H.; Cheng, Q.; Jing, Y.; Chen, M.; Liu, G.; Wang, B.; Wang, Y.; Li, J.; et al. Targeting a Gene Regulatory Element Enhances Rice Grain Yield by Decoupling Panicle Number and Size. Nat. Biotechnol. 2022, 40, 1403–1411. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Afari-Sefa, V.; Heng, C.H.; Dung, P.T.M.; Praneetvatakul, S.; Srinivasan, R. Safe and Sustainable Crop Protection in Southeast Asia: Status, Challenges and Policy Options. Environ. Sci. Policy 2015, 54, 357–366. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of Pesticide Pollution at the Global Scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting Agriculturally Driven Global Environmental Change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global Assessment of Agricultural System Redesign for Sustainable Intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Ye, R.; Huang, H.; Yang, Z.; Chen, T.; Liu, L.; Li, X.; Chen, H.; Lin, Y. Development of Insect-Resistant Transgenic Rice with cry1c*-Free Endosperm. Pest Manag. Sci. 2009, 65, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
Name of Lines | T1 | T2 | T3 |
---|---|---|---|
WT | 11.65% ± 2.21% c | 14.51% ± 1.65% c | 13.27% ± 1.92% c |
KC1 | 0.31% ± 0.02% a | 1.72% ± 0.45% a | 0.54% ± 0.09% a |
KC3 | 3.69% ± 0.71% b | 4.52% ± 0.78% b | 2.71% ± 0.53% b |
KC8 | 2.94% ± 0.94% b | 3.87% ± 0.92% b | 4.18% ± 0.64% b |
Name of Line | Plant Height | Branch Number | Pod Number | Seed Number | 100 Seed Weight (g) | Protein Content (%) | Oil Content (%) |
---|---|---|---|---|---|---|---|
WT | 70.5 ± 8.8 a | 5.7 ± 1.8 a | 83 ± 14.2 a | 155.4 ± 27.6 a | 11.2 ± 1.8 a | 41.1 ± 0.32 a | 22.1 ± 0.16 a |
KC-1 | 70.3 ± 13.1 a | 4.3 ± 1.2 a | 66 ± 18.7 a | 134.8 ± 29.8 a | 11.0 ± 3.4 a | 41.8 ± 0.15 a | 22.4 ± 0.09 a |
KC-3 | 73.6 ± 6.1 a | 4.1 ± 2.2 a | 77 ± 10.7 a | 126.1 ± 19.5 a | 12.4 ± 2.3 a | 40.1 ± 0.51 a | 22.8 ± 0.12 a |
KC-8 | 74.5 ± 5.4 a | 4.6 ± 1.9 a | 74 ± 19.8 a | 128.2 ± 15.9 a | 11.9 ± 2.9 a | 41.3 ± 0.31 a | 22.5 ± 0.25 a |
Developmental Stages | μg/g of Fresh Weight | |||||
---|---|---|---|---|---|---|
Root | Shoot | Leaf | Flower | Pod | Seed | |
V2 | 0.26 ± 0.15 a | 1.51 ± 0.03 b | 4.81 ± 0.43 c | - | - | - |
R3 | 0.26 ± 0.06 a | 6.05 ± 2.68 b | 3.15 ± 0.14 b | 0.26 ± 0.04 a | 18.4 ± 0.81 c | - |
R6 | 2.74 ± 0.18 a | 8.53 ± 0.67 b | 5.22 ± 0.39 b | - | - | 14.74 ± 0.67 c |
R8 | 0.67 ± 0.19 a | 0.67 ± 0.04 a | 12.26 ± 0.8 b | - | - | 12.43 ± 0.66 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Q.; Cao, Y.; Oo, T.H.; Zhang, C.; Yang, M.; Tang, Y.; Wang, M.; Zhang, W.; Zhang, L.; Zheng, Y.; et al. Overexpression of cry1c* Enhances Resistance against to Soybean Pod Borer (Leguminivora glycinivorella) in Soybean. Plants 2024, 13, 630. https://doi.org/10.3390/plants13050630
Fang Q, Cao Y, Oo TH, Zhang C, Yang M, Tang Y, Wang M, Zhang W, Zhang L, Zheng Y, et al. Overexpression of cry1c* Enhances Resistance against to Soybean Pod Borer (Leguminivora glycinivorella) in Soybean. Plants. 2024; 13(5):630. https://doi.org/10.3390/plants13050630
Chicago/Turabian StyleFang, Qingxi, Yingxue Cao, Thinzar Hla Oo, Chuang Zhang, Mingyu Yang, Yuecheng Tang, Meizi Wang, Wu Zhang, Ling Zhang, Yuhong Zheng, and et al. 2024. "Overexpression of cry1c* Enhances Resistance against to Soybean Pod Borer (Leguminivora glycinivorella) in Soybean" Plants 13, no. 5: 630. https://doi.org/10.3390/plants13050630
APA StyleFang, Q., Cao, Y., Oo, T. H., Zhang, C., Yang, M., Tang, Y., Wang, M., Zhang, W., Zhang, L., Zheng, Y., Li, W., & Meng, F. (2024). Overexpression of cry1c* Enhances Resistance against to Soybean Pod Borer (Leguminivora glycinivorella) in Soybean. Plants, 13(5), 630. https://doi.org/10.3390/plants13050630