Flavonoids as Insecticides in Crop Protection—A Review of Current Research and Future Prospects
Abstract
:1. Introduction
2. Flavonoid Biosynthesis Pathway, Subclasses, and Distribution
3. Flavonoids as Botanical Insecticides
3.1. Feeding Disruptors
3.2. Detoxification System Disruptors
3.3. Growth, Development, and Reproduction Disruptors
3.4. Nervous System Disruptors
4. Challenges and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- García-Lara, S.; Saldivar, S.O.S. Insect Pests. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 432–436. ISBN 9780123849533. [Google Scholar]
- Manosathiyadevan, M.; Bhuvaneshwari, V.; Latha, R. Impact of Insects and Pests in Loss of Crop Production: A Review. In Sustainable Agriculture towards Food Security; Dhanarajan, A., Ed.; Springer: Singapore, 2017; pp. 57–67. ISBN 9789811066474. [Google Scholar]
- Struik, P.C.; Kuyper, T.W. Sustainable Intensification in Agriculture: The Richer Shade of Green. A Review. Agron. Sustain. Dev. 2017, 37, 39. [Google Scholar] [CrossRef]
- Narayan, S.; Liew, Z.; Bronstein, J.M.; Ritz, B. Occupational Pesticide Use and Parkinson’s Disease in the Parkinson Environment Gene (PEG) Study. Environ. Int. 2017, 107, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sánchez, E.D.; Ortiz, G.G.; Reyes-Uribe, E.; Torres-Jasso, J.H.; Salazar-Flores, J. Effect of Pesticides on Phosphorylation of Tau Protein, and Its Influence on Alzheimer’s Disease. World J. Clin. Cases 2023, 11, 5628–5642. [Google Scholar] [CrossRef] [PubMed]
- Kass, L.; Gomez, A.L.; Altamirano, G.A. Relationship between Agrochemical Compounds and Mammary Gland Development and Breast Cancer. Mol. Cell. Endocrinol. 2020, 508, 110789. [Google Scholar] [CrossRef] [PubMed]
- Khan, U.M.; Sameen, A.; Aadil, R.M.; Shahid, M.; Sezen, S.; Zarrabi, A.; Ozdemir, B.; Sevindik, M.; Kaplan, D.N.; Selamoglu, Z.; et al. Citrus Genus and Its Waste Utilization: A Review on Health-Promoting Activities and Industrial Application. Evid-Based Complement. Altern. Med. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Kim, B.; Park, E.Y.; Kim, J.; Park, E.; Oh, J.-K.; Lim, M.K. Occupational Exposure to Pesticides and Lung Cancer Risk: A Propensity Score Analyses. Cancer Res. Treat. 2022, 54, 130–139. [Google Scholar] [CrossRef]
- Matich, E.K.; Laryea, J.A.; Seely, K.A.; Stahr, S.; Su, L.J.; Hsu, P.-C. Association between Pesticide Exposure and Colorectal Cancer Risk and Incidence: A Systematic Review. Ecotoxicol. Environ. Saf. 2021, 219, 112327. [Google Scholar] [CrossRef]
- Pardo, L.A.; Beane Freeman, L.E.; Lerro, C.C.; Andreotti, G.; Hofmann, J.N.; Parks, C.G.; Sandler, D.P.; Lubin, J.H.; Blair, A.; Koutros, S. Pesticide Exposure and Risk of Aggressive Prostate Cancer among Private Pesticide Applicators. Environ. Health 2020, 19, 30. [Google Scholar] [CrossRef]
- Varghese, J.V.; Sebastian, E.M.; Iqbal, T.; Tom, A.A. Pesticide Applicators and Cancer: A Systematic Review. Rev. Environ. Health 2021, 36, 467–476. [Google Scholar] [CrossRef]
- Fucic, A.; Duca, R.C.; Galea, K.S.; Maric, T.; Garcia, K.; Bloom, M.S.; Andersen, H.R.; Vena, J.E. Reproductive Health Risks Associated with Occupational and Environmental Exposure to Pesticides. Int. J. Environ. Res. Public Health 2021, 18, 6576. [Google Scholar] [CrossRef]
- Tudi, M.; Li, H.; Li, H.; Wang, L.; Lyu, J.; Yang, L.; Tong, S.; Yu, Q.J.; Ruan, H.D.; Atabila, A.; et al. Exposure Routes and Health Risks Associated with Pesticide Application. Toxics 2022, 10, 335. [Google Scholar] [CrossRef] [PubMed]
- Venkidasamy, B.; Subramanian, U.; Samynathan, R.; Rajakumar, G.; Shariati, M.A.; Chung, I.-M.; Thiruvengadam, M. Organopesticides and Fertility: Where Does the Link Lead To? Environ. Sci. Pollut. Res. 2021, 28, 6289–6301. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of Botanical Insecticides for Sustainable Agriculture: Future Perspectives. Ecol. Indic. 2019, 105, 483–495. [Google Scholar] [CrossRef]
- Rasool, S.; Rasool, T.; Gani, K.M. A Review of Interactions of Pesticides within Various Interfaces of Intrinsic and Organic Residue Amended Soil Environment. Chem. Eng. J. Adv. 2022, 11, 100301. [Google Scholar] [CrossRef]
- Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-Onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. Pesticides in Drinking Water—A Review. Int. J. Environ. Res. Public Health 2021, 18, 468. [Google Scholar] [CrossRef]
- Gui, F.; Lan, T.; Zhao, Y.; Guo, W.; Dong, Y.; Fang, D.; Liu, H.; Li, H.; Wang, H.; Hao, R.; et al. Genomic and Transcriptomic Analysis Unveils Population Evolution and Development of Pesticide Resistance in Fall Armyworm Spodoptera frugiperda. Protein Cell 2022, 13, 513–531. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, D.; Zhang, Y.; Wu, Q.; Xie, W.; Guo, Z.; Wang, S. Frequencies and Mechanisms of Pesticide Resistance in Tetranychus urticae Field Populations in China. Insect Sci. 2022, 29, 827–839. [Google Scholar] [CrossRef]
- Li, B.A.; Li, B.M.; Bao, Z.; Li, Q.; Xing, M.; Li, B. Dichlorodiphenyltrichloroethane for Malaria and Agricultural Uses and Its Impacts on Human Health. Bull. Environ. Contam. Toxicol. 2023, 111, 45. [Google Scholar] [CrossRef]
- Nollet, L.M.L.; Rathore, H.S. (Eds.) Biopesticides Handbook, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015; ISBN 9780429190278. [Google Scholar]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable Crop and Weed Management in the Era of the EU Green Deal: A Survival Guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Tavares, W.R.; Barreto, M.D.C.; Seca, A.M.L. Aqueous and Ethanolic Plant Extracts as Bio-Insecticides—Establishing a Bridge between Raw Scientific Data and Practical Reality. Plants 2021, 10, 920. [Google Scholar] [CrossRef]
- Karak, P. Biological Activities of Flavonoids: An Overview. Int. J. Pharm. Sci. Res. 2019, 10, 1567–1574. [Google Scholar] [CrossRef]
- Mathesius, U. Flavonoid Functions in Plants and Their Interactions with Other Organisms. Plants 2018, 7, 30. [Google Scholar] [CrossRef]
- Baskar, V.; Venkatesh, R.; Ramalingman, S. Flavonoids (Antioxidants Systems) in Higher Plants and Their Response to Stresses. In Antioxidants and Antioxidant Enzymes in Higher Plants; Gulpta, D., Palma, J., Corpas, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 253–268. ISBN 9783319750880. [Google Scholar]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- Yonekura-Sakakibara, K.; Higashi, Y.; Nakabayashi, R. The Origin and Evolution of Plant Flavonoid Metabolism. Front. Plant Sci. 2019, 10, 943. [Google Scholar] [CrossRef] [PubMed]
- Schnarr, L.; Segatto, M.L.; Olsson, O.; Zuin, V.G.; Kümmerer, K. Flavonoids as Biopesticides—Systematic Assessment of Sources, Structures, Activities and Environmental Fate. Sci. Total Environ. 2022, 824, 153781. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, G.; Li, C.; Zhang, C.; Cui, L.; Ai, G.; Wang, X.; Zheng, F.; Zhang, D.; Larkin, R.M.; et al. NF-Y Plays Essential Roles in Flavonoid Biosynthesis by Modulating Histone Modifications in Tomato. New Phytol. 2021, 229, 3237–3252. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhang, X.; Gao, Z.; Hu, T.; Liu, Y. The Research Progress of Chalcone Isomerase (CHI) in Plants. Mol. Biotechnol. 2019, 61, 32–52. [Google Scholar] [CrossRef]
- Grotewold, E. The Genetics and Biochemistry of Floral Pigments. Annu. Rev. Plant Biol. 2006, 57, 761–780. [Google Scholar] [CrossRef]
- Veremeichik, G.N.; Grigorchuk, V.P.; Butovets, E.S.; Lukyanchuk, L.M.; Brodovskaya, E.V.; Bulgakov, D.V.; Bulgakov, V.P. Isoflavonoid Biosynthesis in Cultivated and Wild Soybeans Grown in the Field under Adverse Climate Conditions. Food Chem. 2021, 342, 128292. [Google Scholar] [CrossRef]
- Wang, L.; Lui, A.C.W.; Lam, P.Y.; Liu, G.; Godwin, I.D.; Lo, C. Transgenic Expression of Flavanone 3-Hydroxylase Redirects Flavonoid Biosynthesis and Alleviates Anthracnose Susceptibility in Sorghum. Plant Biotechnol. J. 2020, 18, 2170–2172. [Google Scholar] [CrossRef]
- Zuk, M.; Szperlik, J.; Hnitecka, A.; Szopa, J. Temporal Biosynthesis of Flavone Constituents in Flax Growth Stages. Plant Physiol. Biochem. 2019, 142, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Li, Y.; Zhou, T.; Sun, W.; Shan, X.; Gao, X.; Wang, L. Functional Differentiation of Duplicated Flavonoid 3-O-Glycosyltransferases in the Flavonol and Anthocyanin Biosynthesis of Freesia hybrida. Front. Plant Sci. 2019, 10, 1330. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Pei, X.; Zhang, H.; Li, X.; Zhang, X.; Zhao, M.; Chiang, V.L.; Sederoff, R.R.; Zhao, X. Myb-Mediated Regulation of Anthocyanin Biosynthesis. Int. J. Mol. Sci. 2021, 22, 3103. [Google Scholar] [CrossRef] [PubMed]
- Brugliera, F.; Tao, G.Q.; Tems, U.; Kalc, G.; Mouradova, E.; Price, K.; Stevenson, K.; Nakamura, N.; Stacey, I.; Katsumoto, Y.; et al. Violet/Blue Chrysanthemums-Metabolic Engineering of the Anthocyanin Biosynthetic Pathway Results in Novel Petal Colors. Plant Cell Physiol. 2013, 54, 1696–1710. [Google Scholar] [CrossRef] [PubMed]
- Lepiniec, L.; Debeaujon, I.; Routaboul, J.M.; Baudry, A.; Pourcel, L.; Nesi, N.; Caboche, M. Genetics and Biochemistry of Seed Flavonoids. Annu. Rev. Plant Biol. 2006, 57, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yang, J.; Xiao, C.; Mao, T.; Zhang, J.; Zhang, H. Differences in Flavonoid Pathway Metabolites and Transcripts Affect Yellow Petal Colouration in the Aquatic Plant Nelumbo nucifera. BMC Plant Biol. 2019, 19, 277. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ding, Y.; Qi, H.; Liu, T.; Yang, Q. Discovery of Natural Products as Multitarget Inhibitors of Insect Chitinolytic Enzymes through High-Throughput Screening. J. Agric. Food Chem. 2021, 69, 10830–10837. [Google Scholar] [CrossRef] [PubMed]
- Puri, S.; Singh, S.; Sohal, S.K. Inhibitory Effect of Chrysin on Growth, Development and Oviposition Behaviour of Melon Fruit Fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Phytoparasitica 2022, 50, 151–162. [Google Scholar] [CrossRef]
- Yuan, E.; Yan, H.; Gao, J.; Guo, H.; Ge, F.; Sun, Y. Increases in Genistein in Medicago sativa Confer Resistance against the Pisum Host Race of Acyrthosiphon pisum. Insects 2019, 10, 97. [Google Scholar] [CrossRef]
- Goławska, S.; Sprawka, I.; Łukasik, I.; Goławski, A. Are Naringenin and Quercetin Useful Chemicals in Pest-Management Strategies? J. Pest Sci. 2014, 87, 173–180. [Google Scholar] [CrossRef]
- Goławska, S.; Łukasik, I. Antifeedant Activity of Luteolin and Genistein against the Pea Aphid, Acyrthosiphon pisum. J. Pest Sci. 2012, 85, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Sarria, F.A.L.; Matos, A.P.; Volante, A.C.; Bernardo, A.R.; Sabbag Cunha, G.O.; Fernandes, J.B.; Rossi Forim, M.; Vieira, P.C.; da Silva, M.F.D.G.F. Insecticidal Activity of Copper (II) Complexes with Flavanone Derivatives. Nat. Prod. Res. 2022, 36, 1342–1345. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.H.; Zhang, S.; Qian, P.Y.; Wang, B.G. Antifeedant, Antibacterial, and Antilarval Compounds from the South China Sea Seagrass Enhalus acoroides. Bot. Mar. 2008, 51, 441–447. [Google Scholar] [CrossRef]
- Zhao, C.; Ma, C.; Luo, J.; Niu, L.; Hua, H.; Zhang, S.; Cui, J. Potential of Cucurbitacin B and Epigallocatechin Gallate as Biopesticides against Aphis gossypii. Insects 2021, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.H.; Qiang, B.; Li, S.; Ullah, H.; Hao, K.; McNeill, M.R.; Rajput, A.; Raza, A.; Huang, X.; Zhang, Z. Inhibitory Effect of Genistein and PTP1B on Grasshopper Oedaleus asiaticus Development. Arthropod. Plant. Interact. 2020, 14, 441–452. [Google Scholar] [CrossRef]
- Wiwattanawanichakun, P.; Saehlee, S.; Yooboon, T.; Kumrungsee, N.; Nobsathian, S.; Bullangpoti, V. Toxicity of Isolated Phenolic Compounds from Acorus calamus L. to Control Spodoptera litura (Lepidoptera: Noctuidae) under Laboratory Conditions. Chem. Biol. Technol. Agric. 2022, 9, 10. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Shen, J.; Zhou, Y.; Wei, Z.-P.; Gao, J.-M. Insecticidal Constituents from Buddlej aalbiflora Hemsl. Nat. Prod. Res. 2017, 31, 1446–1449. [Google Scholar] [CrossRef]
- Ruttanaphan, T.; Songoen, W.; Pluempanupat, W.; Bullangpoti, V. Potential Insecticidal Extracts from Artocarpus lacucha against Spodoptera litura (Lepidoptera: Noctuidae) Larvae. J. Econ. Entomol. 2023, 116, 1205–1210. [Google Scholar] [CrossRef]
- Da Silva, D.; Bomfim, J.; Marchi, R.; Amaral, J.; Pinto, L.; Carlos, R.; Ferreira, A.; Forim, M.; Fernandes, J.; da Silva, M.; et al. Valorization of Hesperidin from Citrus Residues: Evaluation of Microwave-Assisted Synthesis of Hesperidin-Mg Complex and Their Insecticidal Activity. J. Braz. Chem. Soc. 2022, 33, 772–782. [Google Scholar] [CrossRef]
- Diaz Napal, G.N.; Defagó, M.T.; Valladares, G.R.; Palacios, S.M. Response of Epilachna Paenulata to Two Flavonoids, Pinocembrin and Quercetin, in a Comparative Study. J. Chem. Ecol. 2010, 36, 898–904. [Google Scholar] [CrossRef]
- Diaz Napal, G.N.; Palacios, S.M. Bioinsecticidal Effect of the Flavonoids Pinocembrin and Quercetin against Spodoptera Frugiperda. J. Pest Sci. 2015, 88, 629–635. [Google Scholar] [CrossRef]
- Stec, K.; Kordan, B.; Gabryś, B. Effect of Soy Leaf Flavonoids on Pea Aphid Probing Behavior. Insects 2021, 12, 756. [Google Scholar] [CrossRef]
- Datta, R.; Kaur, A.; Saraf, I.; Singh, I.P.; Kaur, S. Effect of Crude Extracts and Purified Compounds of Alpinia galanga on Nutritional Physiology of a Polyphagous Lepidopteran Pest, Spodoptera litura (Fabricius). Ecotoxicol. Environ. Saf. 2019, 168, 324–329. [Google Scholar] [CrossRef]
- Stec, K.; Kordan, B.; Gabryś, B. Quercetin and Rutin as Modifiers of Aphid Probing Behavior. Molecules 2021, 26, 3622. [Google Scholar] [CrossRef]
- Sharma, R.; Sohal, S.K. Bioefficacy of Quercetin against Melon Fruit Fly. Bull. Insectology 2013, 66, 79–83. [Google Scholar]
- Jadhav, D.R.; Mallikarjuna, N.; Rathore, A.; Pokle, D. Effect of Some Flavonoids on Survival and Development of Helicoverpa armigera (Hübner) and Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Asian J. Agric. Sci. 2012, 4, 298–307. [Google Scholar]
- Selin-Rani, S.; Senthil-Nathan, S.; Thanigaivel, A.; Vasantha-Srinivasan, P.; Edwin, E.-S.; Ponsankar, A.; Lija-Escaline, J.; Kalaivani, K.; Abdel-Megeed, A.; Hunter, W.B.; et al. Toxicity and Physiological Effect of Quercetin on Generalist Herbivore, Spodoptera litura Fab. and a Non-Target Earthworm Eisenia Fetida Savigny. Chemosphere 2016, 165, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Y.; Luo, S.H.; Yi, T.S.; Li, C.H.; Luo, Q.; Hua, J.; Liu, Y.; Li, S.H. Secondary Metabolites from Glycine Soja and Their Growth Inhibitory Effect against Spodoptera litura. J. Agric. Food Chem. 2011, 59, 6004–6010. [Google Scholar] [CrossRef] [PubMed]
- Punia, A.; Chauhan, N.S. Effect of Daidzein on Growth, Development and Biochemical Physiology of Insect Pest, Spodoptera litura (Fabricius). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 262, 109465. [Google Scholar] [CrossRef] [PubMed]
- Ohmura, W.; Doi, S.; Aoyama, M.; Ohara, S. Antifeedant Activity of Flavonoids and Related Compounds against the Subterranean Termite Coptotermes formosanus Shiraki. J. Wood Sci. 2000, 46, 149–153. [Google Scholar] [CrossRef]
- Morimoto, M.; Tanimoto, K.; Nakano, S.; Ozaki, T.; Nakano, A.; Komai, K. Insect Antifeedant Activity of Flavones and Chromones against Spodoptera litura. J. Agric. Food Chem. 2003, 51, 389–393. [Google Scholar] [CrossRef] [PubMed]
- War, A.R.; Paulraj, M.G.; Hussain, B.; Buhroo, A.A.; Ignacimuthu, S.; Sharma, H.C. Effect of Plant Secondary Metabolites on Legume Pod Borer, Helicoverpa armigera. J. Pest Sci. 2013, 86, 399–408. [Google Scholar] [CrossRef]
- Su, Q.; Zhou, Z.; Zhang, J.; Shi, C.; Zhang, G.; Jin, Z.; Wang, W.; Li, C. Effect of Plant Secondary Metabolites on Common Cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Entomol. Res. 2018, 48, 18–26. [Google Scholar] [CrossRef]
- Mikani, A. Effect of Quercetin on Some Digestive Enzyme Activity via Crustacean Cardioactive Peptide (CCAP) Content of the Midgut of the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). J. Crop Prot. 2019, 8, 33–43. [Google Scholar]
- Maazoun, A.M.; Hamdi, S.H.; Belhadj, F.; Jemâa, J.M.B.; Messaoud, C.; Marzouki, M.N. Phytochemical Profile and Insecticidal Activity of Agave americana Leaf Extract towards Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Environ. Sci. Pollut. Res. 2019, 26, 19468–19480. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.; Cheng, X.; Liu, S.; Wei, Q.; Scott, I.M. Conifer Flavonoid Compounds Inhibit Detoxification Enzymes and Synergize Insecticides. Pestic. Biochem. Physiol. 2016, 127, 1–7. [Google Scholar] [CrossRef]
- Li, M.; Gao, X.; Lan, M.; Liao, X.; Su, F.; Fan, L.; Zhao, Y.; Hao, X.; Wu, G.; Ding, X. Inhibitory Activities of Flavonoids from Eupatorium Adenophorum against Acetylcholinesterase. Pestic. Biochem. Physiol. 2020, 170, 104701. [Google Scholar] [CrossRef]
- Kumar, M.; Gupta, G.P.; Rajam, M.V. Silencing of Acetylcholinesterase Gene of Helicoverpa armigera by SiRNA Affects Larval Growth and Its Life Cycle. J. Insect Physiol. 2009, 55, 273–278. [Google Scholar] [CrossRef]
- Haribal, M.; Renwick, J.A.A. Oviposition Stimulants for the Monarch Butterfly: Flavonol Glycosides from Asclepias curassavica. Phytochemistry 1996, 41, 139–144. [Google Scholar] [CrossRef]
- Honda, K. Flavanone Glycosides as Oviposition Stimulants in a Papilionid Butterfly, Papilio Protenor. J. Chem. Ecol. 1986, 12, 1999–2010. [Google Scholar] [CrossRef] [PubMed]
- Riddick, E.; Wu, Z.; Eller, F.; Berhow, M. Utilization of Quercetin as an Oviposition Stimulant by Lab-Cultured Coleomegilla maculata in the Presence of Conspecifics and a Tissue Substrate. Insects 2018, 9, 77. [Google Scholar] [CrossRef]
- Isaac, R.E.; Ekbote, U.; Coates, D.; Shirras, A.D. Insect Angiotensin-converting Enzyme: A Processing Enzyme with Broad Substrate Specificity and a Role in Reproduction. Ann. N. Y. Acad. Sci. 2006, 897, 342–347. [Google Scholar] [CrossRef]
- Shinoda, T.; Itoyama, K. Juvenile Hormone Acid Methyltransferase: A Key Regulatory Enzyme for Insect Metamorphosis. Proc. Natl. Acad. Sci. USA 2003, 100, 11986–11991. [Google Scholar] [CrossRef]
- Chen, W.; Yang, Q. Development of Novel Pesticides Targeting Insect Chitinases: A Minireview and Perspective. J. Agric. Food Chem. 2020, 68, 4559–4565. [Google Scholar] [CrossRef]
- Hussain, A.; AlJabr, A.M.; Al-Ayedh, H. Development-Disrupting Chitin Synthesis Inhibitor, Novaluron, Reprogramming the Chitin Degradation Mechanism of Red Palm Weevils. Molecules 2019, 24, 4304. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Q.; Lu, L.; Jin, H.; Tao, K.; Hou, T. Toxicity and Physiological Actions of Biflavones on Potassium Current in Insect Neuronal Cells. Pestic. Biochem. Physiol. 2021, 171, 104735. [Google Scholar] [CrossRef] [PubMed]
- Andersch, W.; Hungenberg, H.; Mansfield, D. Insecticidal Active Ingredient Combinations (Formononetins + Insecticides). US8334268, 29 May 2009. [Google Scholar]
- Pang, Y.P. Chapter Six—Insect Acetylcholinesterase as a Target for Effective and Environmentally Safe Insecticides. In Advances in Insect Physiology; Cohen, E., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 46, pp. 435–494. ISBN 9780124170100. [Google Scholar]
- Ozan, A.; Safir, G.R.; Nair, M.G. Persistence of Isoflavones Formononetin and Biochanin A in Soil and Their Effects on Soil Microbe Populations. J. Chem. Ecol. 1997, 23, 247–258. [Google Scholar] [CrossRef]
- Shaw, L.J.; Hooker, J.E. The Fate and Toxicity of the Flavonoids Naringenin and Formononetin in Soil. Soil Biol. Biochem. 2008, 40, 528–536. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, Nano-Guard for Pesticides: A New Window for Safe Application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef] [PubMed]
Flavonoid | Target Organism | Main Affected Crops | Main Results | Reference |
---|---|---|---|---|
Flavan-3-ol | ||||
Catechin | S. litura | Tobacco, Cotton | LD50 of 8.37 µg/2nd-instar larvae after 24 h. It decreased the activities of acetylcholinesterase, carboxylesterases, and glutathione S-transferase in the larvae. | [52] |
Epigallocatechin Gallate | A. gossypii | Melon, Cucurbits, Cotton | For Cucurbit- and Cotton-specialized aphids, it inhibited development, survival, and fecundity at 10 mg/L. | [48] |
Flavanone | ||||
Hesperidin | B. tabaci | Sweet potato, Cabbages, Avocado | [Mg(hesp)2(phen)]OAc (0.14 µmol/L) killed 80% of adults whitefly after 72 h. | [53] |
S. frugiperda | Maize, Soy, Cotton | [Mg(hesp)2(phen)]OAc (0.14 µmol/L) killed all 2nd-instar larvae after 72 h. | ||
[Cu(phen)(hesperidin)] increased larval mortality by 96.66% when compared to control. | [46] | |||
Naringenin | A. pisum | Pea and other leguminous | Increasing concentrations increased the development time, the pre-reproductive period, and mortality, and decreased fecundity. At 1000 µg/cm3, it blocked ingestion and deterred aphid probing. | [44] |
Pinocembrin | E. paenulata | Cucurbits | Pinocembrin (5 and 50 µg/cm2) stopped larval feeding after 9 days. Mechanism of action through chronic intoxication for food-deprived larval. | [54] |
S. frugiperda | Maize, Soy, Cotton | High concentrations (5 and 50 µg/cm2) were rejected by 3rd-instar larvae. At low concentrations (0.1, 0.01, and 1 µg/cm2), it acted as a phagostimulant, while at high concentrations (10, 50, and 100 µg/cm2), it acted as a deterrent. | [55] | |
Flavone | ||||
Apigenin | A. pisum | Pea and other leguminous | At 0.1%, it reduced probes in general (2.5 times lower) but enhanced the duration of probes in non-phloem tissues (2.3 times longer than on control). | [56] |
S. litura | Tobacco, Cotton | At 100 µg/mL, it had a mortality rate of 50% after 48 h on 2nd-instar larvae. At 500 µg/mL, it reduced antifeedant activities by approximately 1.2-fold when compared to control. | [47] | |
Chrysin | S. litura | Tobacco, Cotton | LD50 of 2.752 µg/2nd-instar larvae. Reduced carboxylesterase activity (approximately 1.2-fold reduction) and induced glutathione-S-transferase activity (1.2-fold induction) | [50] |
Z. cucurbitae | Melon | Chrysin (3125 ppm) was more effective in reducing percent pupation for the 1st-instar larvae (53.02%) than in the 2nd and 3rd instars (46.15 and 11.49%, respectively). Oviposition was reduced under choice and no-choice conditions. | [42] | |
Cynaroside | M. sanborni | Chrysanthemum | LC50 of 7.4207 mg/mL after 4 h for 3rd-instar larvae. | [51] |
M. separata | Maize, Rice, Wheat | At 1 mg/mL, it had a mortality rate of 36% on 3rd-instar larvae. | ||
P. xylostella | Cruciferous vegetables | AFC50 of 0.0109 mg/mL and LC50 of 0.0703 mg/mL after 48 h for 3rd- and 4th-instar larvae, respectively. | ||
Luteolin | A. pisum | Pea and other leguminous | Passive ingestion and salivation were completely blocked at 100 µg/cm3. | [45] |
M. sanborni | Chrysanthemum | LC50 of 24.0429 mg/mL after 4 h for 3rd-instar larvae. | [51] | |
P. xylostella | Cruciferous vegetables | AFC50 of 0.1462 mg/mL and LC50 of 0.0047 mg/mL after 48 h for 3rd- and 4th-instar larvae, respectively. | ||
S. litura | Tobacco, Cotton | At 100 µg/mL, it had a mortality rate of 18% after 48 h on 2nd-instar larvae. At 500 µg/mL, it reduced antifeedant activities by approximately 1.3-fold when compared to control. | [47] | |
Wogonin | M. separata | Maize, Rice, Wheat | At 10 mM, it had a mortality rate of 88% after 6 days. | [41] |
O. furnacalis | Maize | Mortality rate around 50% and reduced larval weight after 6 days. | ||
S. frugiperda | Maize, Soy, Cotton | Significant changes in mortality rate were not detected. Larval weight decreased by 38% compared to those in the control group. | ||
Flavonol | ||||
Galangin | S. litura | Tobacco, Cotton | All concentrations (5, 25, 125, and 625 ppm) reduced the capacity of 2nd-instar larvae to gain weight. | [57] |
LD50 of 4.718 µg/2nd-instar larvae. Reduced carboxylesterase activities (approximately 1.4-fold reduction) and induced glutathione-S-transferase (1.5-fold induction). | [50] | |||
Kaempferol | A. pisum | Pea and other leguminous | At 0.1%, it prolonged the non-probing phase (3.5 times longer than the control). | [51] |
M. sanborni | Chrysanthemum | LC50 of 6.2688 mg/mL after 4 h for 3rd-instar larvae. | ||
M. separata | Maize, Rice, Wheat | At 1 mg/mL, it had a mortality rate of 82% on 3rd-instar larvae. | ||
P. xylostella | Cruciferous vegetables | AFC50 of 0.0122 mg/mL and LC50 of 1.0586 mg/mL after 48 h for 3rd- and 4th-instar larvae, respectively. | ||
Quercetin | A. pisum | Pea and other leguminous | Increasing concentrations of quercetin increased the development time, the pre-reproductive period, and mortality, and decreased fecundity. Quercetin deterred aphid probing and feeding. | [44] |
On Pisum sativum, quercetin (0.1 and 0.5%) did not affect the aphid probing behavior when compared to control. | [58] | |||
B. cucurbitae | Melon | At 3125 ppm, it reduced egg hatching (to 86.20% of the control), larval and pupal weight of the 2nd instar (5.4 and 8.8, respectively), percentage pupation and emergence of all instars (47 and 25%, respectively), and food assimilation. | [59] | |
E. paenulata | Cucurbits | Acted as a phagostimulant. | [54] | |
M. sanborni | Chrysanthemum | LC50 of 18.4179 mg/mL after 4 h for 3rd-instar larvae. | [51] | |
M.separata | Maize, Rice, Wheat | At 1 mg/mL, it presented a mortality rate of 86% on 3rd-instar larvae. | ||
Myzus persicae (Sulzer, 1776) | Peach, Potato | On Brassica rapa subsp. pekinensis, quercetin (0.1 and 0.5%) did not affect the aphid probing behavior when compared to control. | [58] | |
P. xylostella | Cruciferous vegetables | AFC50 of 0.0242 mg/mL and LC50 of 0.0696 mg/mL after 48 h for 3rd- and 4th-instar larvae, respectively. | [51] | |
Rhopalosiphum padi (Linnaeus, 1758) | Wheat, Barley, Oat, Rye | On Avena sativa, quercetin (0.1 and 0.5%) did not affect the aphid activities’ probing behavior when compared to control. | [58] | |
S. frugiperda | Maize, Soy, Cotton | Higher deterrent effects with increasing concentrations when compared to control. At low concentrations (0.1, 0.01, and 1 µg/cm2), it acted as a phagostimulant. | [55] | |
S. litura | Tobacco, Cotton | At 1 µg/mL, it provided the lowest larval survival percentage after 24 days. All the tested concentrations had the same extended larval duration (around 40 days). | [60] | |
At 50 ppm, it had the highest mortality rate for all tested larvae instars. It negatively affected larvae growth and pupae weight. Quercetin’ s effect on earthworm was non-significant when compared with monotrophos and cypermethrin. | [61] | |||
Rutin | A. pisum | Pea and other leguminous | On Pisum sativum, it only significantly increased the duration of time needed to achieve the first sustained sap ingestion period (1.8 and 2.5 times longer for 0.1 and 0.5%, respectively). | [58] |
Helicoverpa armigera (Hübner, 1808) | Pigeon pea | At 1 µg/mL, it had the lowest larval survival and weight percentages after 21 days, and the highest larval duration and extension (32 and 51 days, respectively) due to cessation of feeding. | [60] | |
M. persicae | Peach, Potato | On Brassica rapa subsp. Pekinensis, the first phloem phase was 3.3 times longer, the number of probes was 1.5 times higher, and the duration of probes was 3.0 times lower for 0.5% rutin-treated plants. | [58] | |
R. padi | Wheat, Barley, Oat, Rye | On Avena sativa, in 0.5% rutin-treated plants, more aphids reached sieve elements and sooner than the control and 0.1% concentration. | ||
S. litura | Tobacco, Cotton | All concentrations extended larval duration to between 27 and 52 days. Significant effect on larval development, pupal mortality, and malformed adults. | [60] | |
Isoflavone | ||||
Daidzein | A. pisum | Pea and other leguminous | At 0.1%, it delayed the ability of aphids to reach phloem vessels (3 times more time than the control) and limited sap ingestion (49% at the end of the experiment). | [56] |
S. litura | Tobacco, Cotton | No antifeedant activity against 4th-instar larvae but inhibited its growth after 3 days. | [62] | |
At 625 ppm, it had a mortality of 90% of the 2nd-instar larvae. It decreased pupal weight by inhibition digestion or post absorption. Higher activity of detoxifying enzymes and increase in oxidative stress markers of larvae when compared to control. | [63] | |||
Genistein | A. pisum | Pea and other leguminous | Prolonged period of probing and shortened passive digestion duration. Passive ingestion and salivation were completely blocked at 1000 µg/cm3. | [45] |
At 1 and 10 µg/cm3, it reduced the survival rate of 2nd-instar nymphs of Pisum host race after 5 days. It did not affect the 2nd-instar nymphs of Medicago host race. | [43] | |||
At 0.1%, it did not significantly affect aphid probing behavior. | [56] | |||
Oedaleus asiaticus (Bey-Bienko, 1941) | Grassland forages | At 5 μg/μL, it reduced the survival rate after 8 days, weight, and growth of 5th-instar nymphs of Oedaleus asiaticus when compared with control and PTP1B-IN-1. It negatively regulates insulin-signaling pathway by inhibiting protein tyrosine kinase, resulting in suppressed growth and development. | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, V.; Figueira, O.; Castilho, P.C. Flavonoids as Insecticides in Crop Protection—A Review of Current Research and Future Prospects. Plants 2024, 13, 776. https://doi.org/10.3390/plants13060776
Pereira V, Figueira O, Castilho PC. Flavonoids as Insecticides in Crop Protection—A Review of Current Research and Future Prospects. Plants. 2024; 13(6):776. https://doi.org/10.3390/plants13060776
Chicago/Turabian StylePereira, Verónica, Onofre Figueira, and Paula C. Castilho. 2024. "Flavonoids as Insecticides in Crop Protection—A Review of Current Research and Future Prospects" Plants 13, no. 6: 776. https://doi.org/10.3390/plants13060776
APA StylePereira, V., Figueira, O., & Castilho, P. C. (2024). Flavonoids as Insecticides in Crop Protection—A Review of Current Research and Future Prospects. Plants, 13(6), 776. https://doi.org/10.3390/plants13060776