Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate
Abstract
:1. Introduction
2. Phenolic Compound
- Hydroxybenzoic acids (Figure 2), the carboxylic acid group is directly attached to the phenol ring, the resulting phenolic compound (C6-C1). Examples: salicylic acid, protocatechuic acid, gallic acid.
3. Isolation and Purification Method
3.1. Medium Pressure Liquid Chromatography
3.2. High Performance Liquid Chromatography
Sample | Compound | System | Stationary Phase | Mobile Phase | Yield (%) * | Ref. |
---|---|---|---|---|---|---|
Theobroma cacao | (+)-Catechin, d (−)-epicatechin, B-type dimer of flavan-3-ols, epicatechin, trimer flavan-3-ols | Semi- preparative HPLC | NM | NM | NM | [101] |
Chaerophyllum bulbosum | Quercetin-3-O-β- D-glucopyranoside | Recycle HPLC | GS-320 column | 100% Methanol | 0.011 | [38] |
Luteolin-7-O β-D-glucopyranoside | C18 | 50% Methanol/50% water | 0.007 | |||
Banana leaves (Musa balbisiana) | Rutin | Semi- preparative RP-HPLC for purification | C18 | 50% Methanol/50% water | 3.24 | [96] |
Hippocrepis emerus flowers | quercetin-3-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-glucopyranoside | Prep-HPLC | NM | gradient system (15–25% acetonitrile) for 45 min | 0.517 | [100] |
quercetin-7-O-α-L-rhamnopyranoside | Semipreparative-HPLC | NM | gradient system (30–35% acetonitrile) fo 20 min) | 0.138 | ||
Smilax glabra Roxb | (-)-Epicatechin | Preparative HPLC | Waters Sunfire Prep C18 OBDTM 250 × 19 mm, 5 μm | Acetonitrile (A) and water with 0.3% formic acid (B) with gradient elution | 1.77 | [102] |
Neoastilbin | 11.04 | |||||
Astilbin | 18.10 | |||||
Neoisoastilbin | 4.09 | |||||
Isoastilbin | 5.03 | |||||
Pleioblastus amarus shoots | 3-O-feruloylquinic acid | semi-preparative HPLC | C-18 | Methanol-0.1% acetic acid (60:40, v/v) | 0.03 | [103] |
Frankenia pulverulenta | Gallic acid | Prep-HPLC | C-18, 5 µm | Gradient system using solvent A (water: 0.1% TFA) and solvent B (ACN/0.1% TFA) | NM | [104] |
Catechin | ||||||
Quercetin | ||||||
Magnolia officinalis | Syringin | Semi-preparative HPLC | C-18, 5 µm | Gradient system using solvent A (water containing 0.2% acetic acid, v/v) and B (methanol) | NM | [105] |
Magnoloside B | ||||||
Magnoloside A | ||||||
Magnoloside F | ||||||
Magnolol | isocratic system using solvent A (water containing 0.2% acetic acid, v/v) and B (methanol), with 80% B | |||||
Obvatol | ||||||
Honokiol | ||||||
Origanum minutiflorum | Eriodictyol | Semi-preparative HPLC | NM | NM | NM | [106] |
Luteolin | ||||||
Rosmarinic acid | ||||||
Teucrium hyrcanicum L. | Acteoside | Semi preparative HPLC | NM | Gradient system using water:acetic acid (99:1) (solvent A) and acetonitrile (solvent B) | NM | [107] |
Moringa oleifera leaves | Isoquercitrin | Semipreparative HPLC | C-18 | Gradient system using water (solvent A) and an acetonitrile and water mixture (40:60, v/v) (solvent B) | 0.02 | [13] |
Astragalin | 0.002 | |||||
3-O-caffeoylquinic acid | 0.003 | |||||
Schinopsis brasiliensis | gallic acid 4-O-b-D-(60-Ogalloyl)-glucopyranoside | Semi-preparative HPLC | NM | Methanol:water (3:7) | 0.18 | [108] |
2-Hydroxy-4-methoxyphenol 1-O-b-D-(60-O-galloyl) glucopyranoside | 0.16 | |||||
4,9-Dihydroxypropiophenone-9-O-(60-O-galloyl)-b-Dglucopyranoside | 0.17 | |||||
3,4-di-O-galloyl-quinic acid | 0.31 | |||||
4-hydroxy-3-methoxyphenol-1-O-(60-O-galloyl)- b-D-glucopyranoside | Methanol:water (1:3) | 0.17 | ||||
4-hydroxy-2- methoxyphenol-1-O-b-D-(60-O-galloyl) glucopyranoside | 0.19 | |||||
Artocarpus elasticus | Artonin W | Prep-HPLC | C18 | 30% Methanol in water | 0.092 | [109] |
Artorigidinone B | 0.088 | |||||
Cycloartobiloxanthone | 0.078 | |||||
Berberis baluchistanica | Pakistanine | Preparative recycling HPLC | C18 | Acetonitrile:water (60:40) | 0.34 | [110] |
Malus prunifolia (Willd.) Borkh. | Sachaliside | Semi-preparative HPLC | Xbridge® (250 mm × 4.6 mm, 10 μm,) | Methanol–0.1% formic acid-water (15:85) | NM | [111] |
Chlorogenic acid | ACN-0.1% formic acid-water (15:85) | |||||
Epicatechin | ACN-0.1% formic acid-water (8:92) | |||||
Procyanidin B2 | ACN-0.1% formic acid-water (14:86) | |||||
Nitraria tangutorum | Tyrosol 8-O-β-d’glucopyranoside | Prep-HPLC | XCharge 18 | 5%−55% of acetonitrile with 0.2% formic acid | NM | [112] |
Querceitn 3-O-(2G-rhamnosylrutinoside) | ||||||
Vanillic acid | 5%−35% of acetonitrile with 0.2% formic acid | |||||
Tithonia diversifolia (Hemsl.) A. Gray | (E)-3-(((3-(3,4-dihydroxyphenyl)acryloyl)oxy)methyl)-2-methyloxyrane-2-carboxylic acid | Prep-HPLC for purification | C18 | Phosphorous acid 0.05%:isopropyl alcohol (93:7) | 0.003 | [113] |
3.3. Counter Current Chromatography
3.4. Hydrophilic Interaction Liquid Chromatography
3.5. Column Chromatography
3.5.1. Silica Gel Chromatography
3.5.2. Size Exclusion Chromatography
Sample | Compound | Type of Sorbent | Mobile Phase | Yield (%) * | Ref. |
---|---|---|---|---|---|
Pistacia integerrima gall | Quercetin and pyrogallol | Silica gel | Mixture of ethyl acetate: n-hexane with different concentrations (1–60%) | NM | [37] |
Rhizomes of the Bergenia ciliata | pyrogallol, rutin and morin | Silica gel | n-hexane at the first and followed by increase in polarity of n-Hexane/ethyl acetate gradients up to 50% ethyl acetate/n-hexane (1:1) gradient | NM | [160] |
Endopleura uchi | Bergenin | silica gel LC60A (70–200 μm) | Chloroform/ethanol (7:3) isocratic | 5.4% (Leave extract), 5.73% (Twigs extract), and 6.09% (Bark extract) | [165] |
Alseodaphne semecarpifolia Nees | Icariin | Silica gel | Gradient elution: n-hexane: ethyl acetate (100:0 → 0:100), then ethyl acetate: petroleum ether (100:0 → 0:100), then petroleum ether: chloroform (100:0 → 0:100) | 1.34 | [166] |
Baicalein | 1.23 | ||||
Litsea glaucescens | Epicatechin | Silica gel 60 column (100 cm × 5 cm) | Gradient elution using mixture of hexane-ethyl acetate-methanol mixtures | NM | [167] |
Quercitrin | |||||
Kaempferol | |||||
Boesenbergia rotunda | 2′, 4′-dihydroxy-6-methoxychalcone | Silica gel | Hexane-ethyl acetate (6:4) | 0.125 | [168] |
5-hydroxy-7-methoxyflavanone | 0.35 | ||||
5, 7-dihydroxyflavanone | 0.2 | ||||
Apocynum venetum tea | (−)-epicatechin | Silica gel | Hexane | 0.003 | [169] |
Jatropha podagrica | Fraxetin | Silica gel | Hexane and ethyl acetate at 8:2, 7:3, and 6:4 ratios, | 0.059 | [170] |
Euphorbia balsamifera | Quercetin-3-O-glucopyranoside | Silica gel | Methanol | 0.003 | [171] |
Isoorientin | Silica gel | chloroform/methanol (7:3) | 0.004 | ||
Hibiscus rosa sinensis | Hibiscetin-3-glucoside | Silica Gel G-60 | NM | NM | [33] |
Cordia sebestena flower | Hesperitin | Silica gel | Chloroform/methanol (60:40) | NM | [172] |
Ipomoea pes-caprea (Convolvulaceae) leaves | (5,7-dihydroxy-4-phenyl-2H-chromen-2- one) | Silica gel | 100% hexane followed by a gradient mixture of hexane: methanol (95:5–100). | 1.02 | [173] |
Afzelia africana | 3,3′ -di-O-methyl ellagic acid. | Silica gel | Petroleum ether-ethyl acetate (85:15) | 0.029 | [174] |
Zygophyllum simplex L. | Myricitrin | Silica gel 100 C18 | Methanol:water (1:9) | 0.105 | [175] |
Luteolin-7- O-β-D-glucoside | Methanol:water (2:8) | 0.084 | |||
Calendula tripterocarpa Rupr | Quercetin | Silica gel | Ethyl acetate-methanol–water (90:5:4) | 0.32 | [176] |
Scopoletin | 0.23 | ||||
Ferulago cassia | Peucedanol | Silica gel | Hexane:ethyl acetate (76:24) | 0.1 | [177] |
Umbelliferone | Hexane:ethyl acetate (63:35) | 0.16 | |||
Perilla frutescens (L.) Britt. | Ferulic acid | Silica gel | Mixture of chloroform and methanol | 0.042 | [178] |
Luteolin | Silica gel | Mixture of chloroform and methanol | 0.033 | ||
Apigenin | Silica gel | Chloroform:methanol mixture (12:1 to 4:1) | 0.042 | ||
Caffeic acid | Combination of silica gel and Sephadex LH-20 | NM | 0.024 | ||
Rosmarinic acid | Sephadex LH-20 | 90% of methanol | 0.16 | ||
Retama monosperma (L.) Boiss. | Quercetin | Silica gel | Mixture of Hexane, diethyl ether, and ethyl acetate with gradient elution | NM | [179] |
6-methoxykaempferol | |||||
Kaempferol | |||||
Origanum rotundifolium | Apigenin | Silica gel | Solvent system with increasing polarity from hexane to ethyl acetate and ethyl acetate- methanol | NM | [180] |
Ferulic acid | |||||
Vitexin | |||||
Rosmarinic acid | |||||
Globoidnan A | |||||
Palmyra palm (Borassus flabellifer Linn.) syrup | 2,3,4-trihydroxy-5 methylacetophenone | Silica gel | Mixture of dichloromethane and methanol | 1.82 | [181] |
Prunus mahaleb L. | Gallic acid | Silica gel | Mixture of chloroform and methanol with different ratio | 0.0067 | [182] |
Odontites serotina (Lam.) Dum | Acteoside | Silica gel | NM | NM | [183] |
Euphorbia geniculata | Gallic acid | Sephadex LH-20 | 20% of methanol in water | NM | [184] |
Ellagic acid | |||||
Rutin | 40% of methanol in water | ||||
Quercetin | 100% of methanol | ||||
Pomelo peels | Naringin | Sephadex LH-20 | 30% of ethanol | NM | [185] |
Desmodium caudatum | Descaudatine A | Combination of silica gel, Sephadex LH-20 and C-18 | NM | NM | [186] |
8-Dimethylallyltaxifolin | |||||
Arisaema heterophyllum tubers | 6,7-dihydroxy-2-(4-hydroxyphenyl)-4 H-chromen-4-one | Sephadex LH-20 | Methanol | 0.047 | [187] |
(E)-4-(3-hydroxypropyl-1-en-1-yl)phenol | 0.005 | ||||
Mulberry fruit (Morus alba L.) | (2R)-eriodictyol | Sephadex LH-20 | Mixture of methanol/water, 50:50 to 70:30 (v/v) | 0.006 | [164] |
Quercetin | 0.0004 | ||||
Ombrophytum subterraneum (Aspl.) B. Hansen (Balanophoraceae) | 3′,5,5′,7-tetrahydroxyflavanone 7-O-β-D-1 → 6 diglucoside | Sephadex LH-20 | Mixture of methanol/water, (8:2) | 17.82 | [188] |
Mulberry leaves | Rutin | Sephadex LH-20 | Methanol:water (3:7) | 0.041 | [189] |
Isoquercetin | Methanol:water (1:9) | 0.039 | |||
Manilkara hexandra fruit | Gallic acid | Sephadex LH-20 | n-Butanol–Isopropyl alcohol–Water | 0.133 | [190] |
Taxifolin | 0.066 | ||||
Myricetin | 10% MeOH and n-Butanol–Isopropyl alcohol–Water | 0.133 | |||
Quercetin | 0.133 |
3.6. Supercritical Fluid Chromatography (SFC)
Sample | Compound | Mode Separation | Purity | Yield (%) * | Ref. |
---|---|---|---|---|---|
Fructus Arctii | Matairesinol | 2D-SFC/RPLC | >90% | NM | [194] |
Arctigenin | |||||
Lappaol C | |||||
Fructus Cnidii | Osthole and | Semi-preparative SFC | 98.9% | 19.6 | [195] |
Imperatorin | 98.2% | 24.4 | |||
Alpinia officinarum | Pinocembrin | SFC/preparative SFC | 99.9% | NM | [196] |
Galangin | 99.5% | ||||
Kaempferide | 98.5% |
3.7. Molecularly Imprinted Technology
Synthesis Method | Sample | Compound | Sample Pre-Treatment Method | Adsorption Capacity | Yield (%) | Ref. |
---|---|---|---|---|---|---|
Bulk polymerization | Rosmarinus officinalis L | Rosmarinic acid | MISPE | 15.49 mg/g | 49.11 ± 4.58 mg/g | [43] |
Rhodiola crenulata | Salidroside | MISPE | 28.13 mg/g | NM | [226] | |
green coffee bean extract | Caffeic acid | MISPE | 1.03 mg/g | 42% | [227] | |
Chlorogenic acid | NM | 49% | ||||
Pickering emulsion polymerization | Spina Gleditsiae | Quercetin | NM | 0.521 mg/g | NM | [204] |
Precipitation polymerization | Carthamus tinctorius L. and Abelmoschus manihot (Linn.) | Myricetin | MISPE | 11.80 mg/g | 79.82–83.91% and 81.50–84.32%, | [228] |
Salvia officinalis leaves | Rosmarinic acid | UA-DSPE | NM | 77.80% | [229] | |
Surface molecular imprinting | Citrus reticulata Blanco | Hesperetin | MIDSPE with MMIP | 7.316 mg/g | NM | [209] |
Apple sample | Kaempferol | MIDSPE with MMIP | 3.84 mg/g | NM | [230] | |
Spiked sample in Larix griffithiana | Dihydroquercetin | MIDSPE with MMIP | 77.72 ± 3.56 mg/g | NM | [231] | |
Polygonum cuspidatum. | Resveratrol | MIDSPE | 11.56 mg/g | 23.74% | [232] |
3.8. High-Performance Thin Layer Chromatography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2D-LC | 2-dimensional liquid chromatography |
2D RP/HILIC | 2-dimensional reversed-phase/hydrophilic interaction liquid chromatography |
ABTS | 3-ethylbenzothiazoline-6-sulfonic acid |
ACN | Acetonitrile |
DES | Deep eutectic solvent |
DPPH | 1,1-diphenyl-2-picrylhydrazyl |
EGDMA | Ethylene glycol dimethacrylate |
FRAP | Ferric reducing antioxidant power |
TAC | Total antioxidant capacity |
HPLC | high-performance liquid chromatography |
MPLC | Medium-pressure liquid chromatography |
CCC | Counter-current chromatography |
CPC | Centrifugal partition chromatography |
CUPRAC | Cupric reducing antioxidant capacity |
HILIC | Hydrophilic interaction chromatography |
HSCCC | High-speed counter-current chromatography |
HPCCC | High-performance counter-current chromatography |
HPTLC | High-performance thin layer chromatography |
IC50 | Half-maximal inhibitory concentration |
MITs | Molecularly imprinted polymer techniques |
MIP | Molecularly imprinted polymer |
MIDSPE | Molecularly imprinted-dispersive solid-phase extraction |
MISPE | Molecularly imprinted-solid phase extraction |
MMIP | Magnetic Molecularly imprinted polymer |
MMA | Methacrylic acid |
Prep-HPLC | Preparative high-performance/high-pressure liquid chromatography |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
RP-HPLC | Reverse-phase high-performance liquid chromatography |
SFC | Supercritical fluid chromatography |
SMIT | Surface molecularly imprinted technique |
References
- Ahmad Khan, M.S.; Chattopadhyay, D.; Ahmad, I. New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads; Elsevier B.V.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Aldossary, K.M. Use of Herbal Medicines in Saudi Arabia; A Systematic Review. Int. Res. J. Pharm. 2019, 10, 9–14. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, C.; Li, M.; Qin, X.; Guo, J.; Wei, W.; Yao, G.; Qian, Y.; Ye, L.; Liu, H.; et al. The Use of Chinese Herbal Medicines throughout the Pregnancy Life Course and Their Safety Profiles: A Population-Based Cohort Study. Am. J. Obstet. Gynecol. MFM 2023, 5, 100907. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The Effect of Developmental and Environmental Factors on Secondary Metabolites in Medicinal Plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Leicach, S.R.; Chludil, H.D. Plant Secondary Metabolites: Structure-Activity Relationships in Human Health Prevention and Treatment of Common Diseases, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2014; Volume 42. [Google Scholar]
- Nurzyńska-Wierdak, R. Phenolic Compounds from New Natural Sources—Plant Genotype and Ontogenetic Variation. Molecules 2023, 28, 1731. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.A.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.G.; et al. The Potential of Secondary Metabolites from Plants as Drugs or Leads Against Protozoan Neglected Diseases—Part II. Curr. Med. Chem. 2012, 19, 2176–2228. [Google Scholar] [CrossRef] [PubMed]
- Kabir, F.; Sultana, S.; Kurnianta, H. Antimicrobial Activities of Grape (Vitis vinifera L.) Pomace Polyphenols as a Source of Naturally Occurring Bioactive Components. African J. Biotechnol. 2015, 14, 2157–2161. [Google Scholar] [CrossRef]
- Nazeam, J.A.; AL-Shareef, W.A.; Helmy, M.W.; El-Haddad, A.E. Bioassay-Guided Isolation of Potential Bioactive Constituents from Pomegranate Agrifood by-Product. Food Chem. 2020, 326, 126993. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Wang, Y.; Lin, Y.; Lang, Y.; Li, E.; Zhang, X.; Zhang, Q.; Feng, Y.; Meng, X.; Li, B. Blueberry Polyphenols Extract as a Potential Prebiotic with Anti-Obesity Effects on C57BL/6 J Mice by Modulating the Gut Microbiota. J. Nutr. Biochem. 2019, 64, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Matulja, D.; Vranješević, F.; Markovic, M.K.; Pavelić, S.K.; Marković, D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022, 27, 1449. [Google Scholar] [CrossRef]
- Praparatana, R.; Maliyam, P.; Barrows, L.R.; Puttarak, P. Flavonoids and Phenols, the Potential Anti-Diabetic Compounds from Bauhinia strychnifolia Craib. Stem. Molecules 2022, 27, 2393. [Google Scholar] [CrossRef]
- Oldoni, T.L.C.; Merlin, N.; Bicas, T.C.; Prasniewski, A.; Carpes, S.T.; Ascari, J.; de Alencar, S.M.; Massarioli, A.P.; Bagatini, M.D.; Morales, R.; et al. Antihyperglycemic Activity of Crude Extract and Isolation of Phenolic Compounds with Antioxidant Activity from Moringa oleifera Lam. Leaves Grown in Southern Brazil. Food Res. Int. 2020, 141, 110082. [Google Scholar] [CrossRef] [PubMed]
- Kasmi, S.; Hamdi, A.; Atmani-Kilani, D.; Debbache-Benaida, N.; Jaramillo-Carmona, S.; Rodríguez-Arcos, R.; Jiménez-Araujo, A.; Ayouni, K.; Atmani, D.; Guillén-Bejarano, R. Characterization of Phenolic Compounds Isolated from the Fraxinus angustifolia Plant and Several Associated Bioactivities. J. Herb. Med. 2021, 29, 100485. [Google Scholar] [CrossRef]
- Hwang, I.W.; Chung, S.K. Isolation and Identification of Myricitrin, an Antioxidant Flavonoid, from Daebong Persimmon Peel. Prev. Nutr. Food Sci. 2018, 23, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ruiz, J.C.; Matus-Basto, A.J.; Acereto-Escoffié, P.; Segura-Campos, M.R. Antioxidant and Anti-Inflammatory Activities of Phenolic Compounds Isolated from Melipona beecheii Honey. Food Agric. Immunol. 2017, 28, 1424–1437. [Google Scholar] [CrossRef]
- Tessema, F.B.; Gonfa, Y.H.; Asfaw, T.B.; Tadesse, M.G.; Bachheti, R.K. Antioxidant Activity of Flavonoids and Phenolic Acids from Dodonaea angustifolia Flower: HPLC Profile and PASS Prediction. J. Chem. 2023, 2023, 1–11. [Google Scholar] [CrossRef]
- Mititelu, R.R.; Pădureanu, R.; Băcănoiu, M.; Pădureanu, V.; Docea, A.O.; Calina, D.; Barbulescu, A.L.; Buga, A.M. Inflammatory and Oxidative Stress Markers-Mirror Tools in Rheumatoid Arthritis. Biomedicines 2020, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.M.; Hossain, R.; Herrera-Bravo, J.; Islam, M.T.; Atolani, O.; Adeyemi, O.S.; Owolodun, O.A.; Kambizi, L.; Daştan, S.D.; Calina, D.; et al. Natural Antioxidants from Some Fruits, Seeds, Foods, Natural Products, and Associated Health Benefits: An Update. Food Sci. Nutr. 2023, 11, 1657–1670. [Google Scholar] [CrossRef] [PubMed]
- Rungratanawanich, W.; Memo, M.; Uberti, D. Redox Homeostasis and Natural Dietary Compounds: Focusing on Antioxidants of Rice (Oryza sativa L.). Nutrients 2018, 10, 1605. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhao, W.; Yang, Z.; Subbiah, V.; Suleria, H.A.R. Extraction and Characterization of Phenolic Compounds and Their Potential Antioxidant Activities. Environ. Sci. Pollut. Res. 2022, 29, 81112–81129. [Google Scholar] [CrossRef]
- Fang, Y.Z.; Yang, S.; Wu, G. Free Radicals, Antioxidants, and Nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Wang, X.; Chen, J.; Jiao, R.; Wang, L.; Li, Y.M.; Zuo, Y.; Liu, Y.; Lei, L.; Ma, K.Y.; et al. Biology of Ageing and Role of Dietary Antioxidants. BioMed Res. Int. 2014, 2014, 831841. [Google Scholar] [CrossRef] [PubMed]
- Neganova, M.; Liu, J.; Aleksandrova, Y.; Klochkov, S.; Fan, R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers 2021, 13, 6062. [Google Scholar] [CrossRef] [PubMed]
- Kölker, S.; Ahlemeyer, B.; Krieglstein, J.; Hoffmann, G.F. Contribution of Reactive Oxygen Species to 3-Hydroxyglutarate Neurotoxicity in Primary Neuronal Cultures from Chick Embryo Telencephalons. Pediatr. Res. 2001, 50, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Ryden, L.; Grant, P.J.; Anker, S.D.; Berne, C.; Cosentino, F.; Danchin, N.; Deaton, C.; Escaned, J.; Hammes, H.P.; Huikuri, H.; et al. ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD—Summary the Task Force on Diabetes, Pre-Diabetes, and Cardiovascular Diseases of the European Society of Cardiology (ESC) and Developed in Collaboration with the European Association for the Study of Diabetes (EASD). Diabetes Vasc. Dis. Res. 2014, 11, 133–173. [Google Scholar] [CrossRef]
- Poelstra, K.; Schuppan, D. Targeted Therapy of Liver Fibrosis/Cirrhosis and Its Complications. J. Hepatol. 2011, 55, 726–728. [Google Scholar] [CrossRef] [PubMed]
- Spoto, B.; Pisano, A.; Zoccali, C. Insulin Resistance in Chronic Kidney Disease: A Systematic Review. Am. J. Physiol. 2016, 311, F1087–F1108. [Google Scholar] [CrossRef] [PubMed]
- Sochorova, L.; Prusova, B.; Cebova, M.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Nedomova, S.; Baron, M.; Sochor, J. Health Effects of Grape Seed and Skin Extracts and Their Influence on Biochemical Markers. Molecules 2020, 25, 5311. [Google Scholar] [CrossRef] [PubMed]
- Dharshini, L.C.P.; Rasmi, R.R.; Kathirvelan, C.; Kumar, K.M.; Saradhadevi, K.M.; Sakthivel, K.M. Regulatory Components of Oxidative Stress and Inflammation and Their Complex Interplay in Carcinogenesis. Appl. Biochem. Biotechnol. 2023, 195, 2893–2916. [Google Scholar] [CrossRef]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H. Bin. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Rengarajan, S.; Melanathuru, V.; Govindasamy, C.; Chinnadurai, V.; Elsadek, M.F. Antioxidant Activity of Flavonoid Compounds Isolated from the Petals of Hibiscus rosa Sinensis. J. King Saud Univ.-Sci. 2020, 32, 2236–2242. [Google Scholar] [CrossRef]
- Ajileye, O.O.; Obuotor, E.M.; Akinkunmi, E.O.; Aderogba, M.A. Isolation and Characterization of Antioxidant and Antimicrobial Compounds from Anacardium occidentale L. (Anacardiaceae) Leaf Extract. J. King Saud Univ.-Sci. 2015, 27, 244–252. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Lu, J.J.; Ding, J. Natural Products in Cancer Therapy: Past, Present and Future. Nat. Prod. Bioprospecting 2021, 11, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, M.; Zafar, R.; Rahman, N.U. Isolation and Identification of Phenolic Antioxidants from Pistacia Integerrima Gall and Their Anticholine Esterase Activities. Heliyon 2018, 4, e01007. [Google Scholar] [CrossRef] [PubMed]
- Molo, Z.; Tel-Çayan, G.; Deveci, E.; Öztürk, M.; Duru, M.E. Insight into Isolation and Characterization of Compounds of Chaerophyllum bulbosum Aerial Part with Antioxidant, Anticholinesterase, Anti-Urease, Anti-Tyrosinase, and Anti-Diabetic Activities. Food Biosci. 2021, 42, 101201. [Google Scholar] [CrossRef]
- Dang, J.; Ma, J.; Du, Y.; Dawa, Y.Z.; Wang, Q.; Chen, C.; Wang, Q.; Tao, Y.; Ji, T. Large-Scale Preparative Isolation of Bergenin Standard Substance from Saxifraga Atrata Using Polyamide Coupled with MCI GEL® CHP20P as Stationary Phases in Medium Pressure Chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1170, 122617. [Google Scholar] [CrossRef] [PubMed]
- Morais Fernandes, J.; Ortiz, S.; Padilha, M.; Tavares, R.; Mandova, T.; Rodrigues, D.; Araújo, E.; Anderson, A.W.; Michel, S.; Grougnet, R.; et al. Bryophyllum pinnatum Markers: CPC Isolation, Simultaneous Quantification by a Validated UPLC-DAD Method and Biological Evaluations. J. Pharm. Biomed. Anal. 2021, 193, 113682. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Xiao, M.; Zou, X.; Tang, J.; Huang, B.; Xue, H. Extraction and Separation of Flavonoids from Malus Hupehensis Using High-Speed Countercurrent Chromatography Based on Deep Eutectic Solvent. J. Chromatogr. A 2021, 1641, 461998. [Google Scholar] [CrossRef]
- Xu, Y.; Lv, X.; Yang, G.; Zhan, J.; Li, M.; Long, T.; Ho, C.T.; Li, S. Simultaneous Separation of Six Pure Polymethoxyflavones from Sweet Orange Peel Extract by High Performance Counter Current Chromatography. Food Chem. 2019, 292, 160–165. [Google Scholar] [CrossRef]
- Saad, E.M.; El Gohary, N.A.; Abdel-Halim, M.; Handoussa, H.; Mohamed El Nashar, R.; Mizaikoff, B. Molecularly Imprinted Polymers for Selective Extraction of Rosmarinic Acid from Rosmarinus officinalis L. Food Chem. 2021, 335, 127644. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Pizani, R.S.; Viganó, J.; de Souza Mesquita, L.M.; Contieri, L.S.; Sanches, V.L.; Chaves, J.O.; Souza, M.C.; da Silva, L.C.; Rostagno, M.A. Beyond Aroma: A Review on Advanced Extraction Processes from Rosemary (Rosmarinus officinalis) and Sage (Salvia officinalis) to Produce Phenolic Acids and Diterpenes. Trends Food Sci. Technol. 2022, 127, 245–262. [Google Scholar] [CrossRef]
- Lu, X.; Gu, X.; Shi, Y. A Review on Lignin Antioxidants: Their Sources, Isolations, Antioxidant Activities and Various Applications. Int. J. Biol. Macromol. 2022, 210, 716–741. [Google Scholar] [CrossRef] [PubMed]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Al Mamari, H.H. Phenolic Compounds: Classification, Chemistry, and Updated Techniques of Analysis and Synthesis; IntechOpen Limited: London, UK, 2022. [Google Scholar] [CrossRef]
- Umaru, I.J. Pyrogallol Isolation, Characterization, Cytotoxicity, Antioxidant and Bioactive Potentials on Selected Bacterial and Fungi. Int. J. Pharm. Biomed. Res. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X211069721. [Google Scholar] [CrossRef]
- Antika, L.D.; Tasfiyati, A.N.; Hikmat, H.; Septama, A.W. Scopoletin: A Review of Its Source, Biosynthesis, Methods of Extraction, and Pharmacological Activities. Zeitschrift fur Naturforschung-Sect. C J. Biosci. 2022, 77, 303–316. [Google Scholar] [CrossRef]
- Grivicich, I.; Mello, R.; Ledel, A.; Silva, T.; Dieter, D.; Conter, F.; Grossi, M.; Ferraz, A. In Vitro Cytotoxicity of Scopoletin Derived from Eupatorium laevigatum Lam. Br. J. Pharm. Res. 2016, 13, 1–7. [Google Scholar] [CrossRef]
- Jamuna, S.; Karthika, K.; Paulsamy, S.; Thenmozhi, K.; Kathiravan, S.; Venkatesh, R. Confertin and Scopoletin from Leaf and Root Extracts of Hypochaeris Radicata Have Anti-Inflammatory and Antioxidant Activities. Ind. Crops Prod. 2015, 70, 221–230. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on Tannins: Extraction Processes, Applications and Possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef] [PubMed]
- Gabaston, J.; Leborgne, C.; Valls, J.; Renouf, E.; Richard, T.; Waffo-Teguo, P.; Mérillon, J.M. Subcritical Water Extraction of Stilbenes from Grapevine By-Products: A New Green Chemistry Approach. Ind. Crops Prod. 2018, 126, 272–279. [Google Scholar] [CrossRef]
- Latva-Mäenpää, H.; Wufu, R.; Mulat, D.; Sarjala, T.; Saranpää, P.; Wähälä, K. Stability and Photoisomerization of Stilbenes Isolated from the Bark of Norway Spruce Roots. Molecules 2021, 26, 1036. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant Effects of Resveratrol in the Cardiovascular System. Br. J. Pharmacol. 2017, 174, 1633–1646. [Google Scholar] [CrossRef]
- Soural, I.; Vrchotová, N.; Tříska, J.; Balík, J.; Horník, Š.; Cuřínová, P.; Sýkora, J. Various Extraction Methods for Obtaining Stilbenes from Grape Cane of Vitis vinifera L. Molecules 2015, 20, 6093–6112. [Google Scholar] [CrossRef]
- Shahidi, F.; Ho, C.-T. Phenolics in Food and Natural Health Products: An Overview; ACS Publications: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Cui, Q.; Du, R.; Liu, M.; Rong, L. Lignans and Their Derivatives from Plants as Antivirals. Molecules 2020, 25, 183. [Google Scholar] [CrossRef]
- Gülçin, I.; Elias, R.; Gepdiremen, A.; Boyer, L. Antioxidant Activity of Lignans from Fringe Tree (Chionanthus virginicus L.). Eur. Food Res. Technol. 2006, 223, 759–767. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Muema, F.W.; Kimutai, F.; Chen, G.; Guo, M. Phenolic Compounds from Carissa spinarum Are Characterized by Their Antioxidant, Anti-Inflammatory and Hepatoprotective Activities. Antioxidants 2021, 10, 652. [Google Scholar] [CrossRef] [PubMed]
- Sriwiriyajan, S.; Sukpondma, Y.; Srisawat, T.; Madla, S.; Graidist, P. (−)-Kusunokinin and Piperloguminine from Piper nigrum: An Alternative Option to Treat Breast Cancer. Biomed. Pharmacother. 2017, 92, 732–743. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Itankar, P. Extraction, Isolation and Identification of Flavonoid from Chenopodium album Aerial Parts. J. Tradit. Complement. Med. 2018, 8, 476–482. [Google Scholar] [CrossRef] [PubMed]
- El Houda Lezoul, N.; Belkadi, M.; Habibi, F.; Guillén, F. Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules 2020, 25, 4672. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Wang, Z.; Jia, Y.; Sun, L.; Fu, Z.; Zhao, M.; Li, Y.; Yuan, N.; Cong, B.; Zhao, L.; et al. Optimization of Ultrasonic-Assisted Extraction of Flavonoids from Lactuca indica L. Cv. Mengzao and Their Antioxidant Properties. Front. Nutr. 2023, 10, 1065662. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Ko, M.J.; Park, C.H.; Chung, M.S. Application of Pulsed Electric Field as a Pre-Treatment for Subcritical Water Extraction of Quercetin from Onion Skin. Foods 2022, 11, 1069. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Chu, X.; Su, J.; Fu, X.; Kan, Q.; Wang, X.; Zhang, X. Enzyme-Assisted Ultrasonic Extraction of Total Flavonoids from Acanthopanax senticosus and Their Enrichment and Antioxidant Properties. Processes 2021, 9, 1708. [Google Scholar] [CrossRef]
- Choommongkol, V.; Punturee, K.; Klumphu, P.; Rattanaburi, P.; Meepowpan, P.; Suttiarporn, P. Microwave-Assisted Extraction of Anticancer Flavonoid, 2′,4′-Dihydroxy-6′-Methoxy-3′,5′-Dimethyl Chalcone (DMC), Rich Extract from Syzygium nervosum Fruits. Molecules 2022, 27, 1397. [Google Scholar] [CrossRef]
- Yang, J.; Li, N.; Wang, C.; Chang, T.; Jiang, H. Ultrasound-Homogenization-Assisted Extraction of Polyphenols from Coconut Mesocarp: Optimization Study. Ultrason. Sonochem. 2021, 78, 105739. [Google Scholar] [CrossRef]
- Radovanović, K.; Gavarić, N.; Švarc-Gajić, J.; Brezo-Borjan, T.; Zlatković, B.; Lončar, B.; Aćimović, M. Subcritical Water Extraction as an Effective Technique for the Isolation of Phenolic Compounds of Achillea Species. Processes 2023, 11, 86. [Google Scholar] [CrossRef]
- Hostettmann, K. and Terreaux, C. Medium-Pressure Liquid. In Encyclopedia of Separation Science; Poole, C.F., Cooke, M., Eds.; Academic Press: Cambridge, MA, USA, 2000; pp. 3296–3303. [Google Scholar]
- Ma, Z.; Wei, X.; Zhou, M.; Liu, G.; Liu, F.; Liu, Z.; Yu, X.; Zong, Z. Isolation and Purification of Carbazole Contained in Anthracene Slag by Extraction Combined with Medium Pressure Liquid Chromatography. Chin. J. Chem. Eng. 2019, 27, 2925–2929. [Google Scholar] [CrossRef]
- Cheng, Y.; Liang, Q.; Hu, P.; Wang, Y.; Jun, F.W.; Luo, G. Combination of Normal-Phase Medium-Pressure Liquid Chromatography and High-Performance Counter-Current Chromatography for Preparation of Ginsenoside-Ro from Panax Ginseng with High Recovery and Efficiency. Sep. Purif. Technol. 2010, 73, 397–402. [Google Scholar] [CrossRef]
- Rahman, M. Computational Phytochemistry: Chapter 4- Application of Computational Methods in Isolation of Plant Secondary Metabolites; Elsevier B.V.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Hwu, J.R.; Robl, J.A.; Khoudary, K.P. Instrumentation and Separation Results of Medium Pressure Liquid Chromatography. J. Chromatogr. Sci. 1987, 25, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.; Wang, Q.; Wang, Q.; Yuan, C.; Li, G.; Ji, T. Preparative Isolation of Antioxidative Gallic Acid Derivatives from Saxifraga tangutica Using a Class Separation Method Based on Medium-Pressure Liquid Chromatography and Reversed-Phase Liquid Chromatography. J. Sep. Sci. 2021, 44, 3734–3746. [Google Scholar] [CrossRef] [PubMed]
- Ebada, S.S.; Edrada, R.A.; Lin, W.; Proksch, P. Methods for Isolation, Purification and Structural Elucidation of Bioactive Secondary Metabolites from Marine Invertebrates. Nat. Protoc. 2008, 3, 1820–1831. [Google Scholar] [CrossRef] [PubMed]
- Mottaghipisheh, J.; Iriti, M. Sephadex® LH-20, Isolation, and Purification of Flavonoids from Plant Species: A Comprehensive Review. Molecules 2020, 25, 4146. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Wang, M.; Liu, D.; Wang, D.; Lin, X.; Liu, J.; Wang, X.; Huang, L. Preparative Separation of Polyphenols from Artichoke by Polyamide Column Chromatography and High-Speed Counter-Current Chromatography. Quim. Nova 2013, 36, 836–839. [Google Scholar] [CrossRef]
- Salimo, Z.M.; Yakubu, M.N.; da Silva, E.L.; de Almeida, A.C.G.; Chaves, Y.O.; Costa, E.V.; da Silva, F.M.A.; Tavares, J.F.; Monteiro, W.M.; de Melo, G.C.; et al. Chemistry and Pharmacology of Bergenin or Its Derivatives: A Promising Molecule. Biomolecules 2023, 13, 403. [Google Scholar] [CrossRef]
- Agber, C.T.; Tor-Anyii, T.A.; Igoli, J.O.; Anyam, J.V. Isolation and Characterisation of Bergenin from Ethyl Acetate Extract of Flueggea virosa Leaves. J. Chem. Soc. Niger. 2020, 45, 1042–1047. [Google Scholar] [CrossRef]
- Magaji, M.G.; Musa, A.M.; Abdullahi, M.I.; Ya ’u, J.; Hussaini, I.M. Isolation of Bergenin from the Root Bark of Securinega virosa and Evaluation of Its Potential Sleep Promoting Effect. AJP 2015, 5, 587–596. [Google Scholar] [PubMed]
- Subramanian, R.; Subbramaniyan, P.; Raj, V. Isolation of Bergenin from Peltophorum pterocarpum Flowers and Its Bioactivity. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 256–261. [Google Scholar] [CrossRef]
- Dawa, Y.; Du, Y.; Wang, Q.; Chen, C.; Zou, D.; Qi, D.; Ma, J.; Dang, J. Targeted Isolation of 1,1-Diphenyl-2-Picrylhydrazyl Inhibitors from Saxifraga Atrata Using Medium- and High-Pressure Liquid Chromatography Combined with Online High Performance Liquid Chromatography–1,1-Diphenyl-2-Picrylhydrazyl Detection. J. Chromatogr. A 2021, 1635, 461690. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.; Ma, J.; Dawa, Y.; Liu, C.; Ji, T.; Wang, Q. Preparative Separation of 1,1-Diphenyl-2-Picrylhydrazyl Inhibitors Originating from: Saxifraga sinomontana Employing Medium-Pressure Liquid Chromatography in Combination with Reversed-Phase Liquid Chromatography. RSC Adv. 2021, 11, 38739–38749. [Google Scholar] [CrossRef] [PubMed]
- Hamid, S.; Ramli, R.; Manshoor, N. Resolving Co-Eluted Oligostilbenes Using Recycling High Performance Liquid Chromatography (R-HPLC). Aust. J. Basic Appl. Sci. Aust. J. Basic Appl. Sci 2016, 10, 111–116. [Google Scholar]
- Kirkland, J.J. Development of Some Stationary Phases for Reversed-Phase High-Performance Liquid Chromatography. J. Chromatogr. A 2004, 1060, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.D.; Nahar, L. Applications of High Performance Liquid Chromatography in the Analysis of Herbal Products. In Evidence-Based Validation of Herbal Medicine; Elsevier Inc.: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxidative Med. Cell. Longev. 2018, 2018, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Balmeh, N.; Mahmoudi, S.; Mohammadi, N.; Karabedianhajiabadi, A. Predicted Therapeutic Targets for COVID-19 Disease by Inhibiting SARS-CoV-2 and Its Related Receptors. Inform. Med. Unlocked 2020, 20, 100407. [Google Scholar] [CrossRef] [PubMed]
- Yingyuen, P.; Sukrong, S.; Phisalaphong, M. Isolation, Separation and Purification of Rutin from Banana Leaves (Musa balbisiana). Ind. Crops Prod. 2020, 149, 112307. [Google Scholar] [CrossRef]
- Sidana, J.; Joshi, L.K. Recycle HPLC: A Powerful Tool for the Purification of Natural Products. Chromatogr. Res. Int. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Ramli, R.; Ismail, N.H.; Manshoor, N. Recycling HPLC for the Purification of Oligostilbenes from Dipterocarpus semivestitus and Neobalanocarpus heimii (Dipterocarpaceae). J. Liq. Chromatogr. Relat. Technol. 2017, 40, 943–949. [Google Scholar] [CrossRef]
- Latif, Z.; Sarker, S.D. Isolation of Natural Products by Preparative High Performance Liquid Chromatography (Prep-HPLC). Methods Mol. Biol. 2012, 864, 255–274. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Alabdul Magid, A.; Hubert, J.; Etique, N.; Duca, L.; Voutquenne-Nazabadioko, L. Bio-Guided Isolation of New Phenolic Compounds from Hippocrepis emerus Flowers and Investigation of Their Antioxidant, Tyrosinase and Elastase Inhibitory Activities. Phytochem. Lett. 2020, 35, 28–36. [Google Scholar] [CrossRef]
- de la Luz Cádiz-Gurrea, M.; Fernández de las Nieves, I.; Aguilera Saez, L.M.; Fernández-Arroyo, S.; Legeai-Mallet, L.; Bouaziz, M.; Segura-Carretero, A. Bioactive Compounds from Theobroma Cacao: Effect of Isolation and Safety Evaluation. Plant Foods Hum. Nutr. 2019, 74, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, R.; Shi, Y.; Zhang, X.; Tian, C.; Xia, D. Antioxidant and Anti-Inflammatory Activities of Six Flavonoids from Smilax glabra Roxb. Molecules 2020, 25, 5295. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.; Yan, J.; Liu, S.; Chen, S.; Zou, L.; Yang, Y.; He, L.; Li, S.; Liu, A.; Zhao, K. Extraction, Isolation and Identification of Four Phenolic Compounds from Pleioblastus amarus Shoots and Their Antioxidant and Anti-Inflammatory Properties In Vitro. Food Chem. 2022, 374, 131743. [Google Scholar] [CrossRef] [PubMed]
- Mansour, R.B.; Wided, M.K.; Cluzet, S.; Krisa, S.; Richard, T.; Ksouri, R. LC-MS Identification and Preparative HPLC Isolation of Frankenia pulverulenta Phenolics with Antioxidant and Neuroprotective Capacities in PC12 Cell Line. Pharm. Biol. 2017, 55, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cheng, S.; Liang, Y.; Mu, Y.; Yan, H.; Liu, Q.; Geng, Y.; Wang, X.; Zhao, H. Rapid Purification of Antioxidants from Magnolia officinalis by Semi-Prep-HPLC with a Two-Step Separation Strategy Guided by on-Line HPLC-Radical Scavenging Detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1100–1101, 140–147. [Google Scholar] [CrossRef]
- Elmastas, M.; Celik, S.M.; Genc, N.; Aksit, H.; Erenler, R.; Gulcin, İ. Antioxidant Activity of an Anatolian Herbal Tea—Origanum minutiflorum: Isolation and Characterization of Its Secondary Metabolites. Int. J. Food Prop. 2018, 21, 374–384. [Google Scholar] [CrossRef]
- Ghasemi, S.; Evazalipour, M.; Peyghanbari, N.; Zamani, E.; Bellstedt, P.; Molaee, M.; Koohi, D.E.; Yousefbeyk, F. Isolation and Structure Elucidation of the Compounds from Teucrium hyrcanicum L. and the Investigation of Cytotoxicity, Antioxidant Activity, and Protective Effect on Hydrogen Peroxide-Induced Oxidative Stress. BMC Complement. Med. Ther. 2023, 23, 447. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.C. de S.; Masullo, M.; Cerulli, A.; Mari, A.; Estevam, C.D.S.; Pizza, C.; Piacente, S. Isolation of Antioxidant Phenolics from Schinopsis brasiliensis Based on a Preliminary LC-MS Profiling. Phytochemistry 2017, 140, 45–51. [Google Scholar] [CrossRef]
- Baiseitova, A.; Shah, A.B.; Khan, A.M.; Idrees, M.; Kim, J.H.; Lee, Y.H.; Kong, I.K.; Park, K.H. Antioxidant Potentials of Furanodihydrobenzoxanthones from Artocarpus Elasticus and Their Protection against OxLDL Induced Injury in SH-SY5Y Cells. Biomed. Pharmacother. 2023, 165, 115278. [Google Scholar] [CrossRef] [PubMed]
- Muddassir, M.; Batool, A.; Alam, M.; Abbas Miana, G.; Altaf, R.; Alghamdi, S.; Almehmadi, M.; Abdulaziz, O.; Amer Alsaiari, A.; Umar Khayam Sahibzada, M.; et al. Evaluation of In Vitro, In Silico Antidiabetic and Antioxidant Potential of Bioactivity Based Isolated “Pakistanine” from Berberis baluchistanica. Arab. J. Chem. 2022, 15, 104221. [Google Scholar] [CrossRef]
- Abuduaini, M.; Li, J.; Ruan, J.H.; Zhao, Y.X.; Maitinuer, M.; Aisa, H.A. Bioassay-Guided Preparation of Antioxidant, Anti-Inflammatory Active Fraction from Crabapples (Malus prunifolia (Willd.) Borkh.). Food Chem. 2023, 406, 135091. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Q.; Wang, Y.M.; Yang, Y.L.; Zeng, Y.; Wang, Q.L.; Shao, Y.; Mei, L.J.; Shi, Y.P.; Tao, Y.D. Isolation and Identification of Antioxidant and α-Glucosidase Inhibitory Compounds from Fruit Juice of Nitraria tangutorum. Food Chem. 2017, 227, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Pantoja Pulido, K.D.; Colmenares Dulcey, A.J.; Isaza Martínez, J.H. New Caffeic Acid Derivative from Tithonia diversifolia (Hemsl.) A. Gray Butanolic Extract and Its Antioxidant Activity. Food Chem. Toxicol. 2017, 109, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y. Countercurrent Chromatography—Overview. In Encyclopedia of Analytical Science: Second Edition; Elsevier Ltd.: Amsterdam, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Shibuswa, Y.; Ito, Y. PROTEINS|High-Speed Countercurrent Chromatography. In Encyclopedia of Separation Science; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar] [CrossRef]
- Ito, Y. Countercurrent Chromatography: Overview☆. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Hamzaoui, M.; Renault, J.H.; Reynaud, R.; Hubert, J. Centrifugal Partition Extraction in the PH-Zone-Refining Displacement Mode: An Efficient Strategy for the Screening and Isolation of Biologically Active Phenolic Compounds. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 937, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Bojczuk, M.; Żyżelewicz, D.; Hodurek, P. Centrifugal Partition Chromatography—A Review of Recent Applications and Some Classic References. J. Sep. Sci. 2017, 40, 1597–1609. [Google Scholar] [CrossRef]
- Kumar, G.M.; Neelam, I.; Ajitha, A.; Rao, V.U.M. Centrifugal Partition Chromatography: An Overview. Int. J. Pharm. Res. Anal. 2014, 4, 353–360. [Google Scholar]
- Schwienheer, C.; Merz, J.; Schembecker, G. Investigation, Comparison and Design of Chambers Used in Centrifugal Partition Chromatography on the Basis of Flow Pattern and Separation Experiments. J. Chromatogr. A 2015, 1390, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Bezold, F.; Goll, J.; Minceva, M. Study of the Applicability of Non-Conventional Aqueous Two-Phase Systems in Counter-Current and Centrifugal Partition Chromatography. J. Chromatogr. A 2015, 1388, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Ko, J.Y.; Samarakoon, K.; Oh, J.Y.; Heo, S.J.; Kim, C.Y.; Nah, J.W.; Jang, M.K.; Lee, J.S.; Jeon, Y.J. Preparative Isolation of Sargachromanol E from Sargassum siliquastrum by Centrifugal Partition Chromatography and Its Anti-Inflammatory Activity. Food Chem. Toxicol. 2013, 62, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Y.; Ignatova, S.; Hewitson, P.; Di, D.L. An Overview of Recent Progress in Elution Mode of Counter Current Chromatography. TrAC Trends Anal. Chem. 2016, 77, 214–225. [Google Scholar] [CrossRef]
- Abdelgadir, A.A.; Boudesocque-Delaye, L.; Thery-Koné, I.; Gueiffier, A.; Ahmed, E.M.; Enguehard-Gueiffier, C. One-Step Preparative Isolation of Aristolochic Acids by Strong Ion-Exchange Centrifugal Partition Chromatography. Sep. Purif. Technol. 2015, 156, 444–449. [Google Scholar] [CrossRef]
- Barrientos, R.; Fernández-Galleguillos, C.; Pastene, E.; Simirgiotis, M.; Romero-Parra, J.; Ahmed, S.; Echeverría, J. Metabolomic Analysis, Fast Isolation of Phenolic Compounds, and Evaluation of Biological Activities of the Bark From Weinmannia trichosperma Cav. (Cunoniaceae). Front. Pharmacol. 2020, 11, 780. [Google Scholar] [CrossRef] [PubMed]
- Bezold, F.; Weinberger, M.E.; Minceva, M. Computational Solvent System Screening for the Separation of Tocopherols with Centrifugal Partition Chromatography Using Deep Eutectic Solvent-Based Biphasic Systems. J. Chromatogr. A 2017, 1491, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Bezold, F.; Minceva, M. Liquid-Liquid Equilibria of n-Heptane, Methanol and Deep Eutectic Solvents Composed of Carboxylic Acid and Monocyclic Terpenes. Fluid Phase Equilib. 2018, 477, 98–106. [Google Scholar] [CrossRef]
- Bezold, F.; Minceva, M. A Water-Free Solvent System Containing an L-Menthol-Based Deep Eutectic Solvent for Centrifugal Partition Chromatography Applications. J. Chromatogr. A 2019, 1587, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Muley, P.D.; Mobley, J.K.; Tong, X.; Novak, B.; Stevens, J.; Moldovan, D.; Shi, J.; Boldor, D. Rapid Microwave-Assisted Biomass Delignification and Lignin Depolymerization in Deep Eutectic Solvents. Energy Convers. Manag. 2019, 196, 1080–1088. [Google Scholar] [CrossRef]
- Wang, S.; Su, S.; Xiao, L.P.; Wang, B.; Sun, R.C.; Song, G. Catechyl Lignin Extracted from Castor Seed Coats Using Deep Eutectic Solvents: Characterization and Depolymerization. ACS Sustain. Chem. Eng. 2020, 8, 7031–7038. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Extraction Techniques with Deep Eutectic Solvents. TrAC Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, A.Y.; Quilantang, N.G.; Geraldino, P.J.L.; Cho, E.J.; Lee, S. Anti-Oxidant Activity of Avicularin and Isovitexin from Lespedeza Cuneata. J. Appl. Biol. Chem. 2019, 62, 143–147. [Google Scholar] [CrossRef]
- Dugé de Bernonville, T.; Guyot, S.; Paulin, J.P.; Gaucher, M.; Loufrani, L.; Henrion, D.; Derbré, S.; Guilet, D.; Richomme, P.; Dat, J.F.; et al. Dihydrochalcones: Implication in Resistance to Oxidative Stress and Bioactivities against Advanced Glycation End-Products and Vasoconstriction. Phytochemistry 2010, 71, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Lin, P.; Huang, Y.L.; He, R.J.; Yang, B.Y.; Liu, Z. Bin. Isolation of Two New Phenolic Glycosides from Castanopsis Chinensis Hance by Combined Multistep CC and HSCCC Separation and Evaluation of Their Antioxidant Activity. Molecules 2023, 28, 3331. [Google Scholar] [CrossRef] [PubMed]
- Guzlek, H.; Wood, P.L.; Janaway, L. Performance Comparison Using the GUESS Mixture to Evaluate Counter-Current Chromatography Instruments. J. Chromatogr. A 2009, 1216, 4181–4186. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shan, H.; Haitao, L. Optimization, Extraction, and Purification of Three Bioactive Compounds from Entada phaseoloides by High-Speed Countercurrent Chromatography. Biomed. Chromatogr. 2021, 35, e5232. [Google Scholar] [CrossRef] [PubMed]
- Echiburu-Chau, C.; Pastén, L.; Parra, C.; Bórquez, J.; Mocan, A.; Simirgiotis, M.J. High Resolution UHPLC-MS Characterization and Isolation of Main Compounds from the Antioxidant Medicinal Plant Parastrephia lucida (Meyen). Saudi Pharm. J. 2017, 25, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, N.; Lu, Y.; Geng, P.; Shao, Q.; Wei, Y. Isolation of Four Phenolic Compounds from Mangifera indica L. Flowers by Using Normal Phase Combined with Elution Extrusion Two-Step High Speed Countercurrent Chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1046, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, S.E.; Kaiser, S.; Pittol, V.; Doneda, E.; De Souza, K.C.B.; Bassani, V.L. Semi-Preparative Isolation and Purification of Phenolic Compounds from Achyrocline satureioides (Lam) D.C. by High-Performance Counter-Current Chromatography. Phytochem. Anal. 2019, 30, 182–192. [Google Scholar] [CrossRef]
- Kiene, M.; Blum, S.; Jerz, G.; Winterhalter, P. A Comparison between High-Performance Countercurrent Chromatography and Fast-Centrifugal Partition Chromatography for a One-Step Isolation of Flavonoids from Peanut Hulls Supported by a Conductor like Screening Model for Real Solvents. Molecules 2023, 28, 5111. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Liu, Q.; Xie, S.; Zhu, F.; Chen, X. Preparative Isolation and Purification of 12 Main Antioxidants from the Roots of Polygonum multiflorum Thunb. Using High-Speed Countercurrent Chromatography and Preparative HPLC Guided by 1,1′-Diphenyl-2-Picrylhydrazyl-HPLC. J. Sep. Sci. 2020, 43, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Du, N.; Wen, L.; Zhu, H.; Liu, F.; Wang, X.; Du, J.; Li, S. An Efficient Method for the Preparative Isolation and Purification of Flavonoid Glycosides and Caffeoylquinic Acid Derivatives from Leaves of Lonicera japonica Thunb. Using High Speed Counter-Current Chromatography (HSCCC) and Prep-HPLC Guided by DPPH-HPLC Experiments. Molecules 2017, 22, 229. [Google Scholar] [CrossRef]
- Peng, J.; Li, K.; Zhu, W.; Deng, X.; Li, C. Separation and Purification of Four Phenolic Compounds from Persimmon by High-Speed Counter-Current Chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1072, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Qi, Y.; Liu, W.; Li, J.; Wang, D.; Fang, L.; Zhang, Y. Separation of Five Flavonoids from Aerial Parts of Salvia miltiorrhiza Bunge Using HSCCC and Their Antioxidant Activities. Molecules 2019, 24, 3448. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhou, J.; Shen, T.; Wang, X. Target-Guided Isolation of Three Main Antioxidants from Mahonia bealei (Fort.) Carr. Leaves Using HSCCC. Molecules 2019, 24, 1907. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Huang, H.; Wang, R.; Luo, S.; Mi, Y.; Pan, Y.; Shen, W.; Cui, J.; Hu, X.; Cheng, X.; et al. High-Speed Counter-Current Chromatography Assisted Preparative Isolation of Phenolic Compounds from the Flowers of Chrysanthemum morifolium Cv. Fubaiju. J. Sep. Sci. 2023, 46, e2300172. [Google Scholar] [CrossRef] [PubMed]
- Correa, D.I.; Pastene-Navarrete, E.; Bustamante, L.; Baeza, M.; Alarcón-Enos, J. Isolation of Three Lycorine Type Alkaloids from Rhodolirium speciosum (Herb.) Ravenna Using Ph-Zone-Refinement Centrifugal Partition Chromatography and Their Acetylcholinesterase Inhibitory Activities. Metabolites 2020, 10, 309. [Google Scholar] [CrossRef] [PubMed]
- Szabó, L.U.; Schmidt, T.J. Target-Guided Isolation of O-Tigloylcyclovirobuxeine-B from Buxus sempervirens L. By Centrifugal Partition Chromatography. Molecules 2020, 25, 4804. [Google Scholar] [CrossRef] [PubMed]
- Bárcenas-Pérez, D.; Lukeš, M.; Hrouzek, P.; Kubáč, D.; Kopecký, J.; Kaštánek, P.; Cheel, J. A Biorefinery Approach to Obtain Docosahexaenoic Acid and Docosapentaenoic Acid N-6 from Schizochytrium Using High Performance Countercurrent Chromatography. Algal Res. 2021, 55, 102241. [Google Scholar] [CrossRef]
- Hage, D.S. Chromatography. In Principles and Applications of Clinical Mass Spectrometry: Small Molecules, Peptides, and Pathogens; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; pp. 1–32. [Google Scholar] [CrossRef]
- Berlinck, R.G.S.; Crnkovic, C.M.; Gubiani, J.R.; Bernardi, D.I.; Ióca, L.P.; Quintana-Bulla, J.I. The Isolation of Water-Soluble Natural Products—Challenges, Strategies and Perspectives. Nat. Prod. Rep. 2021, 39, 596–669. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Deng, J.; Hou, X.; Hao, E.; Zhang, L.; Yu, H.; Li, P. Chemical Characterization of Flavonoids and Alkaloids in Safflower (Carthamus tinctorius L.) by Comprehensive Two-Dimensional Hydrophilic Interaction Chromatography Coupled with Hybrid Linear Ion Trap Orbitrap Mass Spectrometry. Food Chem. X 2021, 12, 100143. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.; Zhang, L.; Shao, Y.; Mei, L.; Liu, Z.; Yue, H.; Wang, Q.; Tao, Y. Preparative Isolation of Antioxidative Compounds from Dracocephalum heterophyllum Using Off-Line Two-Dimensional Reversed-Phase Liquid Chromatography/Hydrophilic Interaction Chromatography Guided by on-Line HPLC-DPPH Assay. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1095, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.; Zhang, L.; Wang, Q.; Mei, L.; Yue, H.; Liu, Z.; Shao, Y.; Gao, Q.; Tao, Y. Target Separation of Flavonoids from Saxifraga tangutica Using Two-Dimensional Hydrophilic Interaction Chromatography/Reversed-Phase Liquid Chromatography. J. Sep. Sci. 2018, 41, 4419–4429. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.; Shao, Y.; Zhao, J.; Mei, L.; Tao, Y.; Wang, Q.; Zhang, L. Two-Dimensional Hydrophilic Interaction Chromatography × Reversed-Phase Liquid Chromatography for the Preparative Isolation of Potential Anti-Hepatitis Phenylpropanoids from Salvia prattii. J. Sep. Sci. 2016, 39, 3327–3338. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Shen, N.; Yuan, X.; Dang, J.; Shao, Y.; Mei, L.; Tao, Y.; Wang, Q.; Liu, Z. Two-Dimensional Chromatography Based on on-Line HPLC-DPPH Bioactivity-Guided Assay for the Preparative Isolation of Analogue Antioxidant Compound from Arenaria kansuensis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1046, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Kumari, V.B.C.; Patil, S.M.; Ramu, R.; Shirahatti, P.S.; Kumar, N.; Sowmya, B.P.; Egbuna, C.; Uche, C.Z.; Patrick-Iwuanyanwu, K.C. Chromatographic Techniques: Types, Principles, and Applications. In Analytical Techniques in Biosciences; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Srivastava, N.; Singh, A.; Kumari, P.; Nishad, J.H.; Gautam, V.S.; Yadav, M.; Bharti, R.; Kumar, D.; Kharwar, R.N. Advances in Extraction Technologies: Isolation and Purification of Bioactive Compounds from Biological Materials. In Natural Bioactive Compounds; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Zafar, R.; Ullah, H.; Zahoor, M.; Sadiq, A. Isolation of Bioactive Compounds from Bergenia ciliata (Haw.) Sternb Rhizome and Their Antioxidant and Anticholinesterase Activities. BMC Complement. Altern. Med. 2019, 19, 296. [Google Scholar] [CrossRef] [PubMed]
- Månsson, M.; Phipps, R.K.; Gram, L.; Munro, M.H.G.; Larsen, T.O.; Nielsen, K.F. Explorative Solid-Phase Extraction (E-SPE) for Accelerated Microbial Natural Product Discovery, Dereplication, and Purification. J. Nat. Prod. 2010, 73, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.E.P.; D’Aux, R.C.D. The Use of Sephadex LH-20 Column Chromatography to Separate Unconjugated Steroids. J. Steroid Biochem. 1975, 6, 233–237. [Google Scholar] [CrossRef]
- Stabrauskiene, J.; Kopustinskiene, D.M.; Lazauskas, R.; Bernatoniene, J. Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities. Biomedicines 2022, 10, 1686. [Google Scholar] [CrossRef]
- Xu, X.; Huang, Y.; Xu, J.; He, X.; Wang, Y. Anti-Neuroinflammatory and Antioxidant Phenols from Mulberry Fruit (Morus alba L.). J. Funct. Foods 2020, 68, 103914. [Google Scholar] [CrossRef]
- Muniza, M.P.; Nunomura, S.M.; Lima, E.S.; Lima, A.S.; Patrícia, D.O.d.A.; Nunomuraa, R.C.S. Quantification of bergenin, antioxidant activity and nitric oxide inhibition from bark, leaf and twig of Endopleura uchi. Quim. Nova 2020, 43, 413–418. [Google Scholar] [CrossRef]
- Chethankumara, G.P.; Nagaraj, K.; Krishna, V.; Krishnaswamy, G. Isolation, Characterization and In Vitro Cytotoxicity Studies of Bioactive Compounds from Alseodaphne semecarpifolia Nees. Heliyon 2021, 7, e07325. [Google Scholar] [CrossRef] [PubMed]
- César, L.R.J.; Javier, H.; Fernando, A.Z.J.; Carlos, V.; Enrique, R.Z.R.; Efrain, A.; Evelin, M.B.; Inocencio, H.C.; Luis, O.J.; Zaira, D.; et al. Identification of the Main Phenolic Compounds Responsible for the Antioxidant Activity of Litsea glaucescens Kunth. S. Afr. J. Bot. 2022, 147, 208–214. [Google Scholar] [CrossRef]
- Atun, S.; Handayani, S.; Rakhmawati, A. Potential Bioactive Compounds Isolated from Boesenbergia rotunda as Antioxidant and Antimicrobial Agents. Pharmacogn. J. 2018, 10, 513–518. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, Y.; Wang, L.; Tan, Y.; Shi, Y.; Sedjoah, R.C.A.A.; Shao, Y.; Li, L.; Wang, M.; Wan, J.; et al. Ultrasound-Assisted Extraction of Bound Phenolic Compounds from the Residue of Apocynum venetum Tea and Their Antioxidant Activities. Food Biosci. 2022, 47, 101646. [Google Scholar] [CrossRef]
- Minh, T.N.; Xuan, T.D.; Tran, H.D.; Van, T.M.; Andriana, Y.; Khanh, T.D.; Van Quan, N.; Ahmad, A. Isolation and Purification of Bioactive Compounds from the Stem Bark of Jatropha podagrica. Molecules 2019, 24, 889. [Google Scholar] [CrossRef]
- Aljubiri, S.M.; Mahgoub, S.A.; Almansour, A.I.; Shaaban, M.; Shaker, K.H. Isolation of Diverse Bioactive Compounds from Euphorbia balsamifera: Cytotoxicity and Antibacterial Activity Studies. Saudi J. Biol. Sci. 2021, 28, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Elavarasan, N.; Subashini, K.; Kanaga, S.; Dhandapani, R.; Sivanandam, M.; Kumaradhas, P.; Thirunavukkarasu, C.; Sujatha, V. Isolation of Hesperetin—A Flavonoid from Cordia sebestena Flower Extract through Antioxidant Assay Guided Method and Its Antibacterial, Anticancer Effect on Cervical Cancer via In Vitro and In Silico Molecular Docking Studies. J. Mol. Struct. 2020, 1207, 127751. [Google Scholar] [CrossRef]
- Alagesan, V.; Ramalingam, S.; Kim, M.; Venugopal, S. Antioxidant Activity Guided Isolation of a Coumarin Compound from Ipomoea Pes-Caprea (Convolvulaceae) Leaves Acetone Extract and Its Biological and Molecular Docking Studies. Eur. J. Integr. Med. 2019, 32, 100984. [Google Scholar] [CrossRef]
- Vigbedor, B.Y.; Akoto, C.O.; Neglo, D. Isolation and Characterization of 3,3′-Di-O-Methyl Ellagic Acid from the Root Bark of Afzelia Africana and Its Antimicrobial and Antioxidant Activities. Sci. Afr. 2022, 17, e01332. [Google Scholar] [CrossRef]
- Abdallah, H.M.; Esmat, A. Antioxidant and Anti-Inflammatory Activities of the Major Phenolics from Zygophyllum simplex L. J. Ethnopharmacol. 2017, 205, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Al-Rifai, A. Identification and Evaluation of In-Vitro Antioxidant Phenolic Compounds from the Calendula tripterocarpa Rupr. South African J. Bot. 2018, 116, 238–244. [Google Scholar] [CrossRef]
- Karakaya, S.; Koca, M.; Sytar, O.; Dursunoglu, B.; Ozbek, H.; Duman, H.; Guvenalp, Z.; Kılıc, C.S. Antioxidant and Anticholinesterase Potential of Ferulago cassia with Farther Bio-Guided Isolation of Active Coumarin Constituents. S. Afr. J. Bot. 2019, 121, 536–542. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, Y.S. Assessment of Phenolic Profiles from Various Organs in Different Species of Perilla Plant (Perilla frutescens (L.) Britt.) and Their Antioxidant and Enzyme Inhibitory Potential. Ind. Crops Prod. 2021, 171, 113914. [Google Scholar] [CrossRef]
- Zefzoufi, M.; Fdil, R.; Bouamama, H.; Gadhi, C.; Katakura, Y.; Mouzdahir, A.; Sraidi, K. Effect of Extracts and Isolated Compounds Derived from Retama monosperma (L.) Boiss. on Anti-Aging Gene Expression in Human Keratinocytes and Antioxidant Activity. J. Ethnopharmacol. 2021, 280, 114451. [Google Scholar] [CrossRef] [PubMed]
- Erenler, R.; Meral, B.; Sen, O.; Elmastas, M.; Aydin, A.; Eminagaoglu, O.; Topcu, G. Bioassay-Guided Isolation, Identification of Compounds from Origanum rotundifolium and Investigation of Their Antiproliferative and Antioxidant Activities. Pharm. Biol. 2017, 55, 1646–1653. [Google Scholar] [CrossRef] [PubMed]
- Reshma, M.V.; Jacob, J.; Syamnath, V.L.; Habeeba, V.P.; Dileep Kumar, B.S.; Lankalapalli, R.S. First Report on Isolation of 2,3,4-Trihydroxy-5-Methylacetophenone from Palmyra Palm (Borassus flabellifer Linn.) Syrup, Its Antioxidant and Antimicrobial Properties. Food Chem. 2017, 228, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Bayrakçeken Güven, Z.; Dogan, Z.; Saracoglu, I.; Picot, L.; Nagatsu, A.; Basaran, A.A. Food Plant with Antioxidant, Tyrosinase Inhibitory and Antimelanoma Activity: Prunus mahaleb L. Food Biosci. 2022, 48, 101804. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L.; Wang, H.; Chang, X.; Ren, S.; Lai, H.; Liu, L. Phytochemical Profiles and Antioxidant, Anticholinergic, and Antidiabetic Activities of Odontites serotina (Lam.) Dum. Eur. J. Integr. Med. 2021, 44, 101340. [Google Scholar] [CrossRef]
- Al-Yousef, H.M.; Alqahtani, A.S.; Ghani, A.E.A.; El-Toumy, S.A.; El-Dougdoug, W.I.A.; Hassan, W.H.B.; Hassan, H.M. Nephroprotective and Antioxidant Activities of Ethyl Acetate Fraction of Euphorbia geniculata Ortega Family Euphorbiaceae. Arab. J. Chem. 2020, 13, 7843–7850. [Google Scholar] [CrossRef]
- Shangguan, Y.; Ni, J.; Jiang, L.; Hu, Y.; He, C.; Ma, Y.; Wu, G.; Xiong, H. Response Surface Methodology-Optimized Extraction of Flavonoids from Pomelo Peels and Isolation of Naringin with Antioxidant Activities by Sephadex LH20 Gel Chromatography. Curr. Res. Food Sci. 2023, 7, 100610. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.N.; Zhu, D.; Wang, G.H.; Lin, T.; Sun, C.L.; Ding, R.; Tian, W.J.; Chen, H.F. Phenolic Glycosides and Flavonoids with Antioxidant and Anticancer Activities from Desmodium caudatum. Nat. Prod. Res. 2020, 35, 4534–4541. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Yang, H.; Zhou, M.; Hou, Y.; Wu, X.; Li, W.; Zhang, Y.; Sun, J.; Xiong, X.; Huang, J.; et al. Isolation and Evaluation of Antioxidants from Arisaema heterophyllum Tubers. Phytochem. Lett. 2023, 53, 106–110. [Google Scholar] [CrossRef]
- Nina, N.; Theoduloz, C.; Giménez, A.; Schmeda-Hirschmann, G. Phenolics from the Bolivian Highlands Food Plant Ombrophytum subterraneum (Aspl.) B. Hansen (Balanophoraceae): Antioxidant and α-Glucosidase Inhibitory Activity. Food Res. Int. 2020, 137, 109382. [Google Scholar] [CrossRef] [PubMed]
- Ganzon, J.G.; Chen, L.G.; Wang, C.C. 4-O-Caffeoylquinic Acid as an Antioxidant Marker for Mulberry Leaves Rich in Phenolic Compounds. J. Food Drug Anal. 2017, 26, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Baky, M.H.; Kamal, A.M.; Haggag, E.G.; Elgindi, M.R. Flavonoids from Manilkara hexandra and Antimicrobial and Antioxidant Activities. Biochem. Syst. Ecol. 2022, 100, 104375. [Google Scholar] [CrossRef]
- Lau, E. Handbook of Modern Pharmaceutical Analysis: Preformulation Studies; Academic Press: Cambridge, MA, USA, 2001; Volume 3. [Google Scholar]
- Ul’yanovskii, N.V.; Onuchina, A.A.; Ovchinnikov, D.V.; Faleva, A.V.; Gorbova, N.S.; Kosyakov, D.S. Analytical and Preparative Separation of Softwood Lignans by Supercritical Fluid Chromatography. Separations 2023, 10, 449. [Google Scholar] [CrossRef]
- Song, W.; Qiao, X.; Liang, W.F.; Ji, S.; Yang, L.; Wang, Y.; Xu, Y.W.; Yang, Y.; Guo, D.A.; Ye, M. Efficient Separation of Curcumin, Demethoxycurcumin, and Bisdemethoxycurcumin from Turmeric Using Supercritical Fluid Chromatography: From Analytical to Preparative Scale. J. Sep. Sci. 2015, 38, 3450–3453. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Xin, H.; Wang, F.; Cai, J.; Liu, Y.; Fu, Q.; Jin, Y.; Liang, X. Purification of Lignans from Fructus arctii Using Off-Line Two-Dimensional Supercritical Fluid Chromatography/Reversed-Phase Liquid Chromatography. J. Sep. Sci. 2017, 40, 3231–3238. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, A.; Li, A.; Kang, J.; Wang, Y.; Liu, R. Isolation and Purification of Osthole and Imperatorin from Fructus cnidii by Semi-Preparative Supercritical Fluid Chromatography. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 407–414. [Google Scholar] [CrossRef]
- Wu, D.; Ge, D.; Dai, Y.; Chen, Y.; Fu, Q.; Jin, Y. Extraction and Isolation of Diphenylheptanes and Flavonoids from Alpinia officinarum Hance Using Supercritical Fluid Extraction Followed by Supercritical Fluid Chromatography. J. Sep. Sci. 2023, 46, e2300156. [Google Scholar] [CrossRef] [PubMed]
- Belbruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, Y.; Zhang, C.; Wu, M.; Feng, S. Preparation of Porous Magnetic Molecularly Imprinted Polymers for Fast and Specifically Extracting Trace Norfloxacin Residue in Pork Liver. J. Sep. Sci. 2019, 43, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Li, F.; Li, Y.; He, X.; Chen, L.; Zhang, Y. Molecularly Imprinted Polymer Functionalized Magnetic Fe3O4 for the Highly Selective Extraction of Triclosan. J. Sep. Sci. 2019, 43, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Abbasi Ghaeni, F.; Karimi, G.; Mohsenzadeh, M.S.; Nazarzadeh, M.; Motamedshariaty, V.S.; Mohajeri, S.A. Preparation of Dual-Template Molecularly Imprinted Nanoparticles for Organophosphate Pesticides and Their Application as Selective Sorbents for Water Treatment. Sep. Sci. Technol. 2018, 53, 2517–2526. [Google Scholar] [CrossRef]
- Ostovan, A.; Ghaedi, M.; Arabi, M.; Yang, Q.; Li, J.; Chen, L. Hydrophilic Multitemplate Molecularly Imprinted Biopolymers Based on a Green Synthesis Strategy for Determination of B-Family Vitamins. ACS Appl. Mater. Interfaces 2018, 10, 4140–4150. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Pang, W.; Zhang, J.; Lin, S.; Hu, J. A Target Analogue Imprinted Polymer for the Recognition of Antiplatelet Active Ingredients in Radix Salviae Miltiorrhizae by LC/MS/MS. J. Pharm. Biomed. Anal. 2012, 58, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Fang, Q.; Feng, B.; Sun, S.; Du, W.; Amut, E.; Xiao, A.; Chang, C. Matrine-Imprinted Monolithic Stationary Phase for Extraction and Purification of Matrine from Sophorae flavescentis Ait. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 894–900. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Ju, Z.; Niu, L.; Gong, Z.; Xu, Z. Molecularly Imprinted Polymers Fabricated by Pickering Emulsion Polymerization for the Selective Adsorption and Separation of Quercetin from Spina Gleditsiae. New J. Chem. 2019, 43, 14747–14755. [Google Scholar] [CrossRef]
- Hosny, H.; El Gohary, N.; Saad, E.; Handoussa, H.; El Nashar, R.M. Isolation of Sinapic Acid from Broccoli Using Molecularly Imprinted Polymers. J. Sep. Sci. 2018, 41, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Eidi, S.; Iranshahi, M.; Mohammadinejad, A.; Mohsenzadeh, M.S.; Farhadi, F.; Mohajeri, S.A. Selective Isolation of Sesquiterpene Coumarins from Asafoetida Using Dummy Molecularly Imprinted Solid Phase Extraction Method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1138, 121943. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Lin, H.; Zhang, J.; She, Y.; Zhou, X.; Li, X.; Cui, Y.; Wang, J.; Rabah, T.; Shao, Y. Extraction and Identification of Matrine-Type Alkaloids from Sophora moorcroftiana Using Double-Templated Molecularly Imprinted Polymers with HPLC–MS/MS. J. Sep. Sci. 2018, 41, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Winingsih, W.; Ibrahim, S.; Damayanti, S. Purification of Andrographolide Methanolic Extract Using Molecularly Imprinted Polymer Prepared by Precipitation Polymerization. Sci. Pharm. 2022, 90, 27. [Google Scholar] [CrossRef]
- Wang, D.D.; Gao, D.; Xu, W.J.; Li, F.; Yin, M.N.; Fu, Q.F.; Xia, Z.N. Magnetic Molecularly Imprinted Polymer for the Selective Extraction of Hesperetin from the Dried Pericarp of Citrus Reticulata Blanco. Talanta 2018, 184, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Deng, L.; Quan, T.; Gao, M.; Zhang, K.; Xia, Z.; Gao, D. Selective Extraction of Quinolizidine Alkaloids from Sophora flavescens Aiton Root Using Tailor-Made Deep Eutectic Solvents and Magnetic Molecularly Imprinted Polymers. Sep. Purif. Technol. 2021, 261, 118282. [Google Scholar] [CrossRef]
- He, J.X.; Pan, H.Y.; Xu, L.; Tang, R.Y. Application of Molecularly Imprinted Polymers for the Separation and Detection of Aflatoxin. J. Chem. Res. 2020, 45, 400–410. [Google Scholar] [CrossRef]
- Xia, Q.; Yun, Y.; Li, Q.; Huang, Z.; Liang, Z. Preparation and Characterization of Monodisperse Molecularly Imprinted Polymer Microspheres by Precipitation Polymerization for Kaempferol. Des. Monomers Polym. 2016, 20, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiar, S.; Bhawani, S.A.; Shafqat, S.R. Synthesis and Characterization of Molecular Imprinting Polymer for the Removal of 2-Phenylphenol from Spiked Blood Serum and River Water. Chem. Biol. Technol. Agric. 2019, 6, 1–10. [Google Scholar] [CrossRef]
- Zhao, W.R.; Kang, T.F.; Lu, L.P.; Cheng, S.Y. Magnetic Surface Molecularly Imprinted Poly(3-Aminophenylboronic Acid) for Selective Capture and Determination of Diethylstilbestrol. RSC Adv. 2018, 8, 13129–13141. [Google Scholar] [CrossRef]
- Dong, C.; Shi, H.; Han, Y.; Yang, Y.; Wang, R.; Men, J. Molecularly Imprinted Polymers by the Surface Imprinting Technique. Eur. Polym. J. 2020, 145, 110231. [Google Scholar] [CrossRef]
- Maranata, G.J.; Surya, N.O.; Hasanah, A.N. Optimising Factors Affecting Solid Phase Extraction Performances of Molecular Imprinted Polymer as Recent Sample Preparation Technique. Heliyon 2021, 7, e05934. [Google Scholar] [CrossRef]
- Jayasinghe, G.D.T.M.; Moreda-Piñeiro, A. Molecularly Imprinted Polymers for Dispersive (Micro)Solid Phase Extraction: A Review. Separations 2021, 8, 99. [Google Scholar] [CrossRef]
- Susanti, I.; Holik, H.A. Review: Application of Magnetic Solid-Phase Extraction (MSPE) in Various Types of Samples. Int. J. Appl. Pharm. 2021, 13, 59–68. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxidative Med. Cell. Longev. 2016, 2016, 3571614. [Google Scholar] [CrossRef] [PubMed]
- Kanchana, G.; Shyni, W.J.; Rajadurai, M.; Periasamy, R. Evaluation of Antihyperglycemic Effect of Sinapic Acid in Normal and Streptozotocin-Induced Diabetes in Albino Rats. Glob. J. Pharmacol. 2011, 5, 33–39. [Google Scholar]
- Maddox, C.E.; Laur, L.M.; Tian, L. Antibacterial Activity of Phenolic Compounds against the Phytopathogen Xylella fastidiosa. Curr. Microbiol. 2010, 60, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Kim, A.R.; Kim, J.E.; Choi, J.S.; Chung, H.Y. Peroxynitrite Scavenging Activity of Sinapic Acid (3,5-Dimethoxy-4-Hydroxycinnamic Acid) Isolated from Brassica juncea. J. Agric. Food Chem. 2002, 50, 5884–5890. [Google Scholar] [CrossRef]
- Hudson, E.A.; Dinh, P.A.; Kokubun, T.; Simmonds, M.S.J.; Gescher, A. Characterization of Potentially Chemopreventive Phenols in Extracts of Brown Rice That Inhibit the Growth of Human Breast and Colon Cancer Cells. Cancer Epidemiol. Biomarkers Prev. 2000, 9, 1163–1170. [Google Scholar]
- Shoravi, S.; Olsson, G.D.; Karlsson, B.C.G.; Nicholls, I.A. On the Influence of Crosslinker on Template Complexation in Molecularly Imprinted Polymers: A Computational Study of Prepolymerization Mixture Events with Correlations to Template-Polymer Recognition Behavior and NMR Spectroscopic Studies. Int. J. Mol. Sci. 2010, 15, 10622–10634. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; He, Y.; She, Y.; Wang, M.; Yan, Z.; Ren, J.H.; Cao, Z.; Shao, Y.; Wang, S.; Abd El-Aty, A.M.; et al. Preparation of Molecularly Imprinted Polymers Coupled with High-Performance Liquid Chromatography for the Selective Extraction of Salidroside from Rhodiola Crenulata. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1118–1119, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, Ş.K.; Tütem, E.; Başkan, K.S.; Apak, R. Preparation and Application of Caffeic Acid Imprinted Polymer. Turkish J. Chem. 2023, 47, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, M.; Fu, Q.; Wang, L.; Wang, D.; Zhang, K.; Xia, Z.; Gao, D. Novel Dual Functional Monomers Based Molecularly Imprinted Polymers for Selective Extraction of Myricetin from Herbal Medicines. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1097–1098, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Alipour, S.; Azar, P.A.; Husain, S.W.; Rajabi, H.R. Synthesis, Characterization and Application of Spherical and Uniform Molecularly Imprinted Polymeric Nanobeads as Efficient Sorbent for Selective Extraction of Rosmarinic Acid from Plant Matrix. J. Mater. Res. Technol. 2021, 12, 2298–2306. [Google Scholar] [CrossRef]
- Cheng, Y.; Nie, J.; Liu, H.; Kuang, L.; Xu, G. Synthesis and Characterization of Magnetic Molecularly Imprinted Polymers for Effective Extraction and Determination of Kaempferol from Apple Samples. J. Chromatogr. A 2020, 1630, 461531. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, X.; Lin, H.; Abd El-Aty, A.M.; Rabah, T.; Liu, X.; Yu, Z.; Yong, Y.; Ju, X.; She, Y. Magnetic Molecularly Imprinted Specific Solid-Phase Extraction for Determination of Dihydroquercetin from Larix griffithiana Using HPLC. J. Sep. Sci. 2020, 43, 2301–2310. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Shen, C.; Wang, X.; Zhu, Y.; Bao, S.; Wu, X.; Fu, Y. A Porous Cellulose-Based Molecular Imprinted Polymer for Specific Recognition and Enrichment of Resveratrol. Carbohydr. Polym. 2021, 251, 117026. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.P.; Kushwaha, S.; Tripathi, D.N.; Jena, G.B. Cardioprotective Effects of Hesperetin against Doxorubicin-Induced Oxidative Stress and DNA Damage in Rat. Cardiovasc. Toxicol. 2011, 11, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.W.; Huang, A.L.; Zhang, Y.L.; Li, B.; Huang, C.; Ma, T.T.; Meng, X.M.; Li, J. Design, Synthesis and Biological Evaluation of Hesperetin Derivatives as Potent Anti-Inflammatory Agent. Fitoterapia 2017, 121, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Toumi, M.L.; Merzoug, S.; Boutefnouchet, A.; Tahraoui, A.; Ouali, K.; Guellati, M.A. Hesperidin, a Natural Citrus Flavanone, Alleviates Hyperglycaemic State and Attenuates Embryopathies in Pregnant Diabetic Mice. J. Med. Plants Res. 2009, 3, 862–869. [Google Scholar]
- Bagheri, A.R.; Arabi, M.; Ghaedi, M.; Ostovan, A.; Wang, X.; Li, J.; Chen, L. Dummy Molecularly Imprinted Polymers Based on a Green Synthesis Strategy for Magnetic Solid-Phase Extraction of Acrylamide in Food Samples. Talanta 2019, 195, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Ma, X.; Xie, X.; Huang, R.; Zhang, M.; Li, J.; Zeng, G.; Fan, Y. Preparation of Dual-Dummy-Template Molecularly Imprinted Polymers Coated Magnetic Graphene Oxide for Separation and Enrichment of Phthalate Esters in Water. Chem. Eng. J. 2018, 361, 245–255. [Google Scholar] [CrossRef]
- Golfakhrabadi, F.; Khaledi, M.; Nazemi, M.; Safdarian, M. Isolation, Identification, and HPTLC Quantification of Dehydrodeoxycholic Acid from Persian Gulf Sponges. J. Pharm. Biomed. Anal. 2021, 197, 113962. [Google Scholar] [CrossRef] [PubMed]
- Jug, U.; Vovk, I.; Glavnik, V.; Makuc, D.; Naumoska, K. Off-Line Multidimensional High Performance Thin-Layer Chromatography for Fractionation of Japanese Knotweed Rhizome Bark Extract and Isolation of Flavan-3-Ols, Proanthocyanidins and Anthraquinones. J. Chromatogr. A 2021, 1637, 461802. [Google Scholar] [CrossRef]
- Pandya, D.J.; Anand, I.S. Isolation and High-Performance Thin Layer Chromatographic Estimation of Lupeol from Oxystelma esculentum. Pharm. Methods 2011, 2, 99–105. [Google Scholar] [CrossRef]
Sample | Separation and Purification Method | Yield (%) * | Purity (%) | Ref. |
---|---|---|---|---|
Saxifraga atrata | Polyamide column coupled with MCI GEL® CHP20P in MPLC | 1.9 | >99 | [39] |
Flueggea virosa leaves | vacuum liquid chromatography column | 2 | NM | [86] |
Securinega virosa | Silica column chromatography and Sephadex LH gel filtration chromatography | 0.043 | NM | [87] |
Peltophorum pterocarpum | Crystallization | 1 | NM | [88] |
Sample | Compound | Separation Method | Yield (%) * | Purity (%) | Ref. |
---|---|---|---|---|---|
Saxifraga atrata | Bergenin | MPLC | 1.9 | >99 | [39] |
Saxifraga atrata | Ethyl gallate | MPLC-HPLC | 0.013 | >95 | [89] |
11-O-Galloylbergenin | 0.031 | ||||
Rutin | 1.12 | ||||
Isoquercitrin | 0.176 | ||||
Saxifraga sinomontan | 3-methoxy-4-hydroxyphenol-(60-O-galloyl)-1-O-β-D-glucopyranoside | MPLC-RP-HPLC | 0.6 | >95 | [90] |
3,4,5-trimethoxyphenyl-(60-O-galloyl)-1-O-β-D-glucopyranoside | 1.39 | ||||
Saximonsin A | 1.40 | ||||
Saximonsin B | 0.24 |
Sample | Compound | Instrument | Elution System | Yield (%) * | Purity (%) | Ref. |
---|---|---|---|---|---|---|
Entada phaseoloides | Phaseoloidin | HSCCC | n-Butanol:acetic acid:water, 4:1:5 (v/v) | 7.76% | 99.3% | [136] |
Entadamide A | 6.97% | 96.4% | ||||
Entadamide A-β-D-glucopyranoside | 6.79% | 97.7% | ||||
Malus hupehensis | Avicularin | HSCCC | DES: choline chloride/glucose:water:ethyl acetate, 1:1:2 (v/v) | NM | 93.1% | [41] |
Phloridzin | 94.5% | |||||
Sieboldin | 93.6% | |||||
Sweet orange peel extract | Sinensetin | HPCCC | Hexanes:ethyl acetate:methanol:water, 1.4:0.6:1.4:0.6 (v/v), for the normal phase Hexanes:ethyl acetate:methanol:water, 0.7:1.3:0.7:1.3 (v/v), for the reverse phase | 1.08% | 100% | [42] |
3,5,6,7,3′,4′-hexamethoxyflavone | 1.17% | 100% | ||||
Nobiletin | 14.25% | 99.1% | ||||
5,6,7,4′-tetramethoxyflavone | 2.17% | 96.6% | ||||
3,5,6,7,8,3′,4′-heptamethoxyflavone | 10.08% | 98.4% | ||||
Tangeretin | 2.75% | 97.6% | ||||
(+)-catechin-phloroglucinol derivative; | 76% | |||||
(-)-epicatechin | 93% | |||||
(+)-catechin | 77% | |||||
(-)-epicatechin-3-O-gallate | 85% | |||||
(-)-epicatechin-3-O-galloyl-phloroglucinol derivative | 95% | |||||
Parastrephia lucida (Meyen) | 11- p-coumaroyloxyltremetone | HSCCC | N-hexane: ethyl acetate:methanol:water (6:5:6:3 v/v/v) | 11% | NM | [137] |
Mango flowers | Gallic acid | HSCCC | N-hexane-ethyl acetate-methanol-water (4:6:4:6, v/v) for normal phase | 1.85% | 98.87% | [138] |
Ethyl gallate | 1.95% | 99.55% | ||||
Ellagic acid | dichloromethane-methanol-water (4:3:2, v/v) elution-extrusion mode | 2.85% | 99.71% | |||
Achyrocline satureioides (Lam) D.C. | Quercetin | HPCCC semi-preparative HPLC | N-hexane:ethyl acetate:methanol:water (0.8:1.0:0.8:1.0) and dichloromethane:methanol:water (3.5:3.5:2.5) | 60% | 97.5% | [139] |
Luteolin | 90.2% | |||||
3-O-methylquercetin | 65% | 97.0% | ||||
Peanut Hull | Luteolin | HPCCC | N-hexane:ethyl acetate:methanol:water (1.0:1.0:1.0:1.5) | 1.5% | 96% | [140] |
Eriodictyol | 0.8% | |||||
5,7-dihydroxychromone | 0.3% | 99% | ||||
Roots of Polygonum multiflorum Thunb | Gallic acid | HSCCC and preparative HPLC | Petroleum ether:ethyl acetate:methanol:water (1:5:1:5) Preparative HPLC: using methanol/water | NM | 98.28% | [141] |
Epicatechin | 96.71% | |||||
Piceatannol | 96.85% | |||||
Rutin | 97.92% | |||||
Resveratrol | 96.94% | |||||
Hyperoside | 98.52% | |||||
Roots of Polygonum multiflorum Thunb | Catechin | HSCCC | Petroleum ether:ethyl acetate:methanol:water (1:5:1:5) | NM | 90.69% | [141] |
Polydatin | 94.91% | |||||
2,3,5,4′ -tetrahydroxy stilbene-2-O-β-D-glucoside | 95.23% | |||||
Leaves of Lonicera japonica Thunb. | Rhoifolin | HSCCCC | Methyl tert-butyl ether:n-butanol:acetonitrile:water (0.5% acetic acid) (2:2:1:5, v/v) | 2.15% | 94.3% | [142] |
Luteoloside | 3.19% | 96.1% | ||||
Chlorogenic acid | HSCCC and preparative HPLC | HSCCC system:methyl tert-butyl ether:n-butanol:acetonitrile:water (0.5% acetic acid) (2:2:1:5, v/v) Preparative HPLC system: C-18 (15 μm) column as stationary phase and solution of eluent A (methanol) and eluent B (0.3%, v/v, acetic acid in water) as mobile phase | 1.09% | 99.5% | ||
Lonicerin | 3.07% | 98.7% | ||||
Rutin | 1.67% | 99.3% | ||||
3,4-O-dicaffeoylquinic acid | 2.03% | 97.1% | ||||
Hyperoside | 1.82% | 97.4% | ||||
3,5-O-Dicaffeoylquinic acid | 2.47% | 96.9% | ||||
4,5-O-Dicaffeoylquinic acid | 2.61% | 97.8% | ||||
Persimmon | Gallic acid | HSCCC | N-hexane:ethyl acetate:water (3:17:20, v/v/v) and ethyl acetate:methanol:water (50:1:50, v/v/v) | 3.13% | >95% | [143] |
Methyl gallate | 29.47% | |||||
Epigallocatechin-3-gallate-(4β → 8, 2β → O → 7)-epigallocatechin-3-gallate dimer | 3.93% | |||||
Salvia Miltiorrhiza | Rutin | HSCCC | tert-butyl methyl ether/n-butanol/acetonitrile/water (3:1:1:20, v/v) | 0.14% | 97.3% | [144] |
Isoquercitrin | 0.17% | 99.5% | ||||
Mahonia bealei (Fort.) Carr. Leaves | Chlorogenic acid | HSCCC | n-hexane/ethyl acetate/methanol/water (1:5:1:5, v/v/v/v) | NM | >92% | [145] |
Quercetin-3-O-β-D-glucopyranoside | ||||||
Isorhamnetin-3-O-β-D-glucopyranoside | ||||||
Castanopsis chinensis Hance | Chinensin D | Combined multi step CC and HSCCC | N-Hexane/Ethyl acetate/Methanol/Water (1:6:3:4, v/v/v/v) | NM | 93% | [134] |
chinensin E | 95.7% | |||||
Chrysanthemum morifolium cv. Fubaiju | Luteolin-7-O-β-D-glucoside | HSCCC combined with preparative HPLC | Ethyl acetate-n-butanol–acetonitrile–water–acetic acid (5:0.5:2.5:5:0.25, v/v/v/v/v) | NM | 97.1% | [146] |
Luteolin-7-O-β-Dglucuronide | 97.8% | |||||
Apigenin-7-O-β-D-glucoside | 95.8% | |||||
luteolin- 7-O-β-D-rutinoside | 96.7% | |||||
3,5-dicaffeoylquinic acid | 97.8% | |||||
4,5-dicaffeoylquinic acid | 97.5% |
Sample | Compound | Mode Separation | Purity | Yield(%) * | Ref. |
---|---|---|---|---|---|
Saxifraga tangutica | Hyperoside | 2D HILIC/RPLC | >95% | NM | [154] |
Luteoline-glucoside | |||||
Trifolin | |||||
Salvia prattii | Caffeic Acid | 2D HILIC/RPLC | >98% | 1.39 | [155] |
Ethyl Rosmarinate | 1.49 | ||||
Methyl Rosmarinate | 1.09 | ||||
Rosmarinic acid | 8.90 | ||||
Dracocephalum heterophyllum | caffeoyl-β-D glucopyranoside | 2D RP/HILIC technique guided by on-line HPLC-DPPH | >95% | 0.011 | [153] |
ferruginoside B | 0.014 | ||||
verbascoside | 0.083 | ||||
2′-O-acetylplantamajoside | 0.039 | ||||
sibiricin A | 0.026 | ||||
luteolin | 0.0106 | ||||
rosmarinic acid | 0.108 | ||||
methyl rosmarinate | 0.017 | ||||
Arenaria kansuensis | Tricin | 2D RP/HILIC technique guided by on-line HPLC-DPPH | >98% | NM | [156] |
Homoeriodictyol | |||||
Luteolin | |||||
Lycium ruthenicum Murr. | Anthocyanin | 2D RP/HILIC | NM | NM | [156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Susanti, I.; Pratiwi, R.; Rosandi, Y.; Hasanah, A.N. Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate. Plants 2024, 13, 965. https://doi.org/10.3390/plants13070965
Susanti I, Pratiwi R, Rosandi Y, Hasanah AN. Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate. Plants. 2024; 13(7):965. https://doi.org/10.3390/plants13070965
Chicago/Turabian StyleSusanti, Ike, Rimadani Pratiwi, Yudi Rosandi, and Aliya Nur Hasanah. 2024. "Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate" Plants 13, no. 7: 965. https://doi.org/10.3390/plants13070965
APA StyleSusanti, I., Pratiwi, R., Rosandi, Y., & Hasanah, A. N. (2024). Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate. Plants, 13(7), 965. https://doi.org/10.3390/plants13070965