QTLs and Genes for Salt Stress Tolerance: A Journey from Seed to Seed Continued
Abstract
:1. Introduction
2. Possible Effect and Mechanism of Salinity in Rice
3. Stress Sensing and Signal Sensing
4. ROS Scavenging and Antioxidant Signalling
5. Variation in Salt Tolerance between Species
6. Genetic Resource–Land Races, Improved Varieties, and Wild Relatives
7. Genetics of Salt Tolerance and QTL Mapping
8. Rice Breeding with Marker Assistance for Salt Tolerance
9. Meta-Analysis of QTL Associated with Salinity Tolerance
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kromdijk, J.; Long, S.P. One Crop Breeding Cycle from Starvation? How Engineering Crop Photosynthesis for Rising CO2 and Temperature Could Be One Important Route to Alleviation. Proc. R. Soc. B Biol. Sci. 2016, 283, 20152578. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Wassmann, R.; Jagadish, S.V.K.; Sumfleth, K.; Pathak, H.; Howell, G.; Ismail, A.; Serraj, R.; Redona, E.; Singh, R.K.; Heuer, S. Chapter 3 Regional Vulnerability of Climate Change Impacts on Asian Rice Production and Scope for Adaptation. Adv. Agron. 2009, 102, 91–133. [Google Scholar] [CrossRef]
- Yeo, A.R.; Flowers, T.J. Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Func. Plant Biol. 1986, 13, 161–173. [Google Scholar] [CrossRef]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt Tolerance and Crop Potential of Halophytes. Crit. Rev. Plant Sci. 2010, 18, 227–255. [Google Scholar] [CrossRef]
- Blumwald, E. Sodium Transport and Salt Tolerance in Plants. Curr. Opin. Cell Biol. 2000, 12, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Nongpiur, R.C.; Singla-Pareek, S.L.; Pareek, A. The Quest for Osmosensors in Plants. J. Exp. Bot. 2020, 71, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.S.; Guo, Y.; Dietrich, M.A.; Schumaker, K.S.; Zhu, J.K. Regulation of SOS1, a Plasma Membrane Na+/H+ Exchanger in Arabidopsis Thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA 2002, 99, 8436–8441. [Google Scholar] [CrossRef]
- Martínez-Atienza, J.; Jiang, X.; Garciadeblas, B.; Mendoza, I.; Zhu, J.K.; Pardo, J.M.; Quintero, F.J. Conservation of the Salt Overly Sensitive Pathway in Rice. Plant Physiol. 2007, 143, 1001–1012. [Google Scholar] [CrossRef]
- Kim, B.G.; Waadt, R.; Cheong, Y.H.; Pandey, G.K.; Dominguez-Solis, J.R.; Schültke, S.; Lee, S.C.; Kudla, J.; Luan, S. The Calcium Sensor CBL10 Mediates Salt Tolerance by Regulating Ion Homeostasis in Arabidopsis. Plant J. 2007, 52, 473–484. [Google Scholar] [CrossRef]
- Li, J.; Yu, L.; Qi, G.N.; Li, J.; Xu, Z.J.; Wu, W.H.; Yi, W. The Os-AKT1 Channel Is Critical for K+ Uptake in Rice Roots and Is Modulated by the Rice CBL1-CIPK23 Complex. Plant Cell 2014, 26, 3387–3402. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, P.; Sanyal, S.K.; Tokas, I.; Yadav, A.K.; Pandey, A.; Kapoor, S.; Pandey, G.K. Comprehensive Structural, Interaction and Expression Analysis of CBL and CIPK Complement during Abiotic Stresses and Development in Rice. Cell Calcium 2014, 56, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Saijo, Y.; Hata, S.; Kyozuka, J.; Shimamoto, K.; Izui, K. Over-Expression of a Single Ca2+-Dependent Protein Kinase Confers Both Cold and Salt/Drought Tolerance on Rice Plants. Plant J. 2000, 23, 319–327. [Google Scholar] [CrossRef]
- Asano, T.; Hakata, M.; Nakamura, H.; Aoki, N.; Komatsu, S.; Ichikawa, H.; Hirochika, H.; Ohsugi, R. Functional Characterisation of OsCPK21, a Calcium-Dependent Protein Kinase That Confers Salt Tolerance in Rice. Plant Mol. Biol. 2011, 75, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Asano, T.; Hayashi, N.; Kobayashi, M.; Aoki, N.; Miyao, A.; Mitsuhara, I.; Ichikawa, H.; Komatsu, S.; Hirochika, H.; Kikuchi, S.; et al. A Rice Calcium-Dependent Protein Kinase OsCPK12 Oppositely Modulates Salt-Stress Tolerance and Blast Disease Resistance. Plant J. 2012, 69, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Chinpongpanich, A.; Limruengroj, K.; Phean-O-Pas, S.; Limpaseni, T.; Buaboocha, T. Expression Analysis of Calmodulin and Calmodulin-like Genes from Rice, Oryza sativa L. BMC Res. Notes 2012, 5, 1–12. [Google Scholar] [CrossRef]
- Saeng-ngam, S.; Takpirom, W.; Buaboocha, T.; Chadchawan, S. The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice. J. Plant Biol. 2012, 55, 198–208. [Google Scholar] [CrossRef]
- Xu, G.Y.; Rocha, P.S.C.F.; Wang, M.L.; Xu, M.L.; Cui, Y.C.; Li, L.Y.; Zhu, Y.X.; Xia, X. A Novel Rice Calmodulin-like Gene, OsMSR2, Enhances Drought and Salt Tolerance and Increases ABA Sensitivity in Arabidopsis. Planta 2011, 234, 47–59. [Google Scholar] [CrossRef]
- Jing, P.; Zou, J.; Kong, L.; Hu, S.; Wang, B.; Yang, J.; Xie, G. OsCCD1, a Novel Small Calcium-Binding Protein with One EF-Hand Motif, Positively Regulates Osmotic and Salt Tolerance in Rice. Plant Sci. 2016, 247, 104–114. [Google Scholar] [CrossRef]
- Yuan, F.; Yang, H.; Xue, Y.; Kong, D.; Ye, R.; Li, C.; Zhang, J.; Theprungsirikul, L.; Shrift, T.; Krichilsky, B.; et al. OSCA1 Mediates Osmotic-Stress-Evoked Ca2+ Increases Vital for Osmosensing in Arabidopsis. Nature 2014, 514, 367–371. [Google Scholar] [CrossRef]
- Maity, K.; Heumann, J.M.; McGrath, A.P.; Kopcho, N.J.; Hsu, P.K.; Lee, C.W.; Mapes, J.H.; Garza, D.; Krishnan, S.; Morgan, G.P.; et al. Cryo-EM Structure of OSCA1.2 from Oryza Sativa Elucidates the Mechanical Basis of Potential Membrane Hyperosmolality Gating. Proc. Natl. Acad. Sci. USA 2019, 116, 14309–14318. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, H.; Song, C.; Zhu, J.K.; Shabala, S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation 2020, 1, 100017. [Google Scholar] [CrossRef] [PubMed]
- Maathuis, F.J.M. Sodium in Plants: Perception, Signalling, and Regulation of Sodium Fluxes. J. Exp. Bot. 2014, 65, 849–858. [Google Scholar] [CrossRef]
- Mittova, V.; Guy, M.; Tal, M.; Volokita, M. Salinity Up-regulates the Antioxidative System in Root Mitochondria and Peroxisomes of the Wild Salt-tolerant Tomato Species Lycopersicon pennellii. J. Exp. Bot. 2004, 55, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Foyer, C.H. Ascorbic Acid, Metal Ions and the Superoxide Radical. Biochem. J. 1976, 155, 697–700. [Google Scholar] [CrossRef]
- Møller, I.M. Plant Mitochondria and Oxidative Stress: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. Annu. Rev. Plant Biol. 2003, 52, 561–591. [Google Scholar] [CrossRef]
- Passardi, F.; Penel, C.; Dunand, C. Performing the Paradoxical: How Plant Peroxidases Modify the Cell Wall. Trends Plant Sci. 2004, 9, 534–540. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Queval, G.; Foyer, C.H. The Impact of Global Change Factors on Redox Signaling Underpinning Stress Tolerance. Plant Physiol. 2012, 161, 5–19. [Google Scholar] [CrossRef]
- Miller, G.; Suzuki, N.; Ciftci-Yilmaz, S.; Mittler, R. Reactive Oxygen Species Homeostasis and Signalling during Drought and Salinity Stresses. Plant. Cell Environ. 2010, 33, 453–467. [Google Scholar] [CrossRef]
- Suzuki, N.; Miller, G.; Morales, J.; Shulaev, V.; Torres, M.A.; Mittler, R. Respiratory Burst Oxidases: The Engines of ROS Signaling. Curr. Opin. Plant Biol. 2011, 14, 691–699. [Google Scholar] [CrossRef]
- Ahmad, P.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of Enzymatic and Nonenzymatic Antioxidants in Plants during Abiotic Stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Ascorbate and Glutathione: The Heart of the Redox Hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.Y.; Chao, Y.Y.; Yang, M.Y.; Cheng, S.Y.; Cho, S.C.; Kao, C.H. NaCl-Induced Expression of Glutathione Reductase in Roots of Rice (Oryza sativa L.) Seedlings Is Mediated through Hydrogen Peroxide but Not Abscisic Acid. Plant Soil 2009, 320, 103–115. [Google Scholar] [CrossRef]
- Cavalcanti, F.R.; Santos Lima, J.P.M.; Ferreira-Silva, S.L.; Viégas, R.A.; Silveira, J.A.G. Roots and Leaves Display Contrasting Oxidative Response during Salt Stress and Recovery in Cowpea. J. Plant Physiol. 2007, 164, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.K.; Menezes-Benavente, L.; Galvão, V.C.; Margis, R.; Margis-Pinheiro, M. Rice Ascorbate Peroxidase Gene Family Encodes Functionally Diverse Isoforms Localized in Different Subcellular Compartments. Planta 2006, 224, 300–314. [Google Scholar] [CrossRef]
- Shigeoka, S.; Maruta, T. Cellular Redox Regulation, Signaling, and Stress Response in Plants. Biosci. Biotechnol. Biochem. 2014, 78, 1457–1470. [Google Scholar] [CrossRef]
- Wang, R.; Liu, S.; Zhou, F.; Ding, C.; Hua, C. Exogenous Ascorbic Acid and Glutathione Alleviate Oxidative Stress Induced by Salt Stress in the Chloroplasts of Oryza sativa L. Z. Naturforsch.—Sect. C J. Biosci. 2014, 69 C, 226–236. [Google Scholar] [CrossRef]
- Noctor, G.; Foyer, C.H. Ascorbate and Glutathione: Keeping Active Oxygen under Control. Annu. Rev. Plant Biol. 2003, 49, 249–279. [Google Scholar] [CrossRef]
- Kaminaka, H.; Morita, S.; Nakajima, M.; Masumura, T.; Tanaka, K. Gene Cloning and Expression of Cytosolic Glutathione Reductase in Rice (Oryza sativa L.). Plant Cell Physiol. 1998, 39, 1269–1280. [Google Scholar] [CrossRef]
- Hong, C.Y.; Hsu, Y.T.; Tsai, Y.C.; Kao, C.H. Expression of ASCORBATE PEROXIDASE 8 in Roots of Rice (Oryza Sativa L.) Seedlings in Response to NaCl. J. Exp. Bot. 2007, 58, 3273–3283. [Google Scholar] [CrossRef]
- Wu, T.M.; Lin, W.R.; Kao, C.H.; Hong, C.Y. Gene Knockout of Glutathione Reductase 3 Results in Increased Sensitivity to Salt Stress in Rice. Plant Mol. Biol. 2015, 87, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Munns, R. Physiological Processes Limiting Plant Growth in Saline Soils: Some Dogmas and Hypotheses. Plant. Cell Environ. 1993, 16, 15–24. [Google Scholar] [CrossRef]
- Munns, R.; Schachtman, D.P.; Condon, A.G. The Significance of a Two-Phase Growth Response to Salinity in Wheat and Barley. Funct. Plant Biol. 1995, 22, 561–569. [Google Scholar] [CrossRef]
- Sun, C.Q.; Wang, X.K.; Li, Z.C.; Yoshimura, A.; Iwata, N. Comparison of the Genetic Diversity of Common Wild Rice (Oryza Rufipogon Griff.) and Cultivated Rice (O. sativa L.) Using RFLP Markers. Theor. Appl. Genet. 2001, 102, 157–162. [Google Scholar] [CrossRef]
- Why Are There So Many Species of Flowering Plants? Available online: https://agris.fao.org/agris-search/search.do?recordID=US19820800327 (accessed on 4 August 2022).
- Ricachenevsky, F.K.; Sperotto, R.A. Into the Wild: Oryza Species as Sources for Enhanced Nutrient Accumulation and Metal Tolerance in Rice. Front. Plant Sci. 2016, 7, 974. [Google Scholar] [CrossRef]
- Vaughan, D.A. The Wild Relatives of Rice: A Genetic Resources Handbook; International Rice Research Institute. 1994.
- Brar, D.S.; Elloran, R.M.; Talag, J.D.; Abbasi, F.; Khush, G.S. Cytogenetic and molecular characterization of an intergeneric hybrid between Oryza sativa L. and Porteresia coarctata (Roxb.) Tateoka. Rice Genet. Newsl. 1997, 14, 43–44. [Google Scholar]
- Molina, J.; Sikora, M.; Garud, N.; Flowers, J.M.; Rubinstein, S.; Reynolds, A.; Huang, P.; Jackson, S.; Schaal, B.A.; Bustamante, C.D.; et al. Molecular Evidence for a Single Evolutionary Origin of Domesticated Rice. Proc. Natl. Acad. Sci. USA 2011, 108, 8351–8356. [Google Scholar] [CrossRef]
- Londo, J.P.; Chiang, Y.C.; Hung, K.H.; Chiang, T.Y.; Schaal, B.A. Phylogeography of Asian Wild Rice, Oryza Rufipogon, Reveals Multiple Independent Domestications of Cultivated Rice, Oryza sativa. Proc. Natl. Acad. Sci. USA 2006, 103, 9578–9583. [Google Scholar] [CrossRef]
- Hoang, T.M.L.; Tran, T.N.; Nguyen, T.K.T.; Williams, B.; Wurm, P.; Bellairs, S.; Mundree, S. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities. Agronomy 2016, 6, 54. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Prentice Hall: Harlow, UK, 1996; Volume 12, ISBN 9780582243026. [Google Scholar]
- Lin, H.X.; Zhu, M.Z.; Yano, M.; Gao, J.P.; Liang, Z.W.; Su, W.A.; Hu, X.H.; Ren, Z.H.; Chao, D.Y. QTLs for Na+ and K+ Uptake of the Shoots and Roots Controlling Rice Salt Tolerance. Theor. Appl. Genet. 2004, 108, 253–260. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.; Zhu, J.K. Salt Stress Signaling and Mechanisms of Plant Salt Tolerance. Genet. Eng. 2006, 27, 141–177. [Google Scholar] [CrossRef]
- Kumari, S.; Panjabinee Sabharwal, V.; Kushwaha, H.R.; Sopory, S.K.; Singla-Pareek, S.L.; Pareek, A. Transcriptome Map for Seedling Stage Specific Salinity Stress Response Indicates a Specific Set of Genes as Candidate for Saline Tolerance in Oryza sativa L. Funct. Integr. Genom. 2009, 9, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Singla-Pareek, S.L.; Rajagopal, D.; Reddy, M.K.; Sopory, S.K. Functional Validation of a Novel Isoform of Na+/H+ Antiporter from Pennisetum Glaucum for Enhancing Salinity Tolerance in Rice. J. Biosci. 2007, 32, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Singh, B.; Panda, K.; Singh, B.P.; Singh, N.; Misra, P.; Rai, V.; Singh, N.K. Association of SNP Haplotypes of HKT Family Genes with Salt Tolerance in Indian Wild Rice Germplasm. Rice 2016, 9, 1–13. [Google Scholar] [CrossRef]
- Kumar, K.; Kumar, M.; Kim, S.R.; Ryu, H.; Cho, Y.G. Insights into Genomics of Salt Stress Response in Rice. Rice 2013, 6, 1–15. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Nath, D.; Mohanta, R.L.; Bhattacharyya, S.; Marndi, B.C.; Nayak, A.K.; Singh, D.P.; Sarkar, R.K.; Singh, O.N. Diversity and validation of microsatellite markers in ‘Saltol’ QTL region in contrasting rice genotypes for salt tolerance at the early vegetative stage. Aust. J. Crop Sci. 2014, 8, 356–362. [Google Scholar]
- Bonilla, P.; Mackell, D.; Deal, K.; Gregorio, G. RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp. Agric. Sci. 2002, 85, 68–76. [Google Scholar]
- Thomson, M.J.; de Ocampo, M.; Egdane, J.; Rahman, M.A.; Sajise, A.G.; Adorada, D.L.; Tumimbang-Raiz, E.; Blumwald, E.; Seraj, Z.I.; Singh, R.K.; et al. Characterizing the Saltol Quantitative Trait Locus for Salinity Tolerance in Rice. Rice 2010, 3, 148–160. [Google Scholar] [CrossRef]
- Genc, Y.; McDonald, G.K.; Tester, M. Reassessment of Tissue Na+ Concentration as a Criterion for Salinity Tolerance in Bread Wheat. Plant. Cell Environ. 2007, 30, 1486–1498. [Google Scholar] [CrossRef]
- Ren, Z.H.; Gao, J.P.; Li, L.G.; Cai, X.L.; Huang, W.; Chao, D.Y.; Zhu, M.Z.; Wang, Z.Y.; Luan, S.; Lin, H.X. A Rice Quantitative Trait Locus for Salt Tolerance Encodes a Sodium Transporter. Nat. Genet. 2005, 37, 1141–1146. [Google Scholar] [CrossRef]
- Flowers, T.J.; Koyama, M.L.; Flowers, S.A.; Sudhakar, C.; Singh, K.P.; Yeo, A.R. QTL: Their Place in Engineering Tolerance of Rice to Salinity. J. Exp. Bot. 2000, 51, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Koyama, M.L.; Levesley, A.; Koebner, R.M.D.; Flowers, T.J.; Yeo, A.R. Quantitative Trait Loci for Component Physiological Traits Determining Salt Tolerance in Rice. Plant Physiol. 2001, 125, 406–422. [Google Scholar] [CrossRef] [PubMed]
- Ammar, M.H.M.; Pandit, A.; Singh, R.K.; Sameena, S.; Chauhan, M.S.; Singh, A.K.; Sharma, P.C.; Gaikwad, K.; Sharma, T.R.; Mohapatra, T.; et al. Mapping of QTLs Controlling Na+, K+ and CI− Ion Concentrations in Salt Tolerant Indica Rice Variety CSR27. J. Plant Biochem. Biotechnol. 2009, 18, 139–150. [Google Scholar] [CrossRef]
- Pandit, A.; Rai, V.; Bal, S.; Sinha, S.; Kumar, V.; Chauhan, M.; Gautam, R.K.; Singh, R.; Sharma, P.C.; Singh, A.K.; et al. Combining QTL Mapping and Transcriptome Profiling of Bulked RILs for Identification of Functional Polymorphism for Salt Tolerance Genes in Rice (Oryza sativa L.). Mol. Genet. Genom. 2010, 284, 121–136. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Y.; Meng, L.; Hu, X.; Cui, Y.; Sun, Y.; Zhu, L.; Ali, J.; Xu, J.; Li, Z. Identification of Salt-Tolerant QTLs with Strong Genetic Background Effect Using Two Sets of Reciprocal Introgression Lines in Rice. Genome 2011, 55, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; He, P.; Qian, Q.; Shen, L.; Zhu, L.; Chen, S. Identification of Salt-Tolerance QTL in Rice (Oryza sativa L.). Chin. Sci. Bull. 1999, 44, 68–71. [Google Scholar] [CrossRef]
- Mohammadi, R.; Mendioro, M.S.; Diaz, G.Q.; Gregorio, G.B.; Singh, R.K. Mapping Quantitative Trait Loci Associated with Yield and Yield Components under Reproductive Stage Salinity Stress in Rice (Oryza sativa L.). J. Genet. 2013, 92, 433–443. [Google Scholar] [CrossRef]
- Hossain, H.; Rahman, M.A.; Alam, M.S.; Singh, R.K. Mapping of Quantitative Trait Loci Associated with Reproductive-Stage Salt Tolerance in Rice. J. Agron. Crop Sci. 2015, 201, 17–31. [Google Scholar] [CrossRef]
- Reddy, I.N.B.L.; Kim, S.M.; Kim, B.K.; Yoon, I.S.; Kwon, T.R. Identification of Rice Accessions Associated with K+/Na+ Ratio and Salt Tolerance Based on Physiological and Molecular Responses. Rice Sci. 2017, 24, 360–364. [Google Scholar] [CrossRef]
- de Ocampo, M.P.; The, H.V.; Thomson, M.J.; Mitsuya, S.; Yamauchi, A.; Ismail, A.M. QTL Mapping and Candidate Gene Identification in Rice Using a Kalarata-Azucena Population under Salt Stress; Research Square: Durham, NC, USA, 2020. [Google Scholar] [CrossRef]
- de Ocampo, M.P.; Ho, V.T.; Thomson, M.J.; Mitsuya, S.; Yamauchi, A.; Ismail, A.M. QTL Mapping under Salt Stress in Rice Using a Kalarata–Azucena Population. Euphytica 2022, 218, 74–88. [Google Scholar] [CrossRef]
- Pundir, P.; Devi, A.; Krishnamurthy, S.L.; Sharma, P.C.; Vinaykumar, N.M. QTLs in Salt Rice Variety CSR10 Reveals Salinity Tolerance at Reproductive Stage. Acta Physiol. Plant. 2021, 43, 35–52. [Google Scholar] [CrossRef]
- Zeng, P.; Zhu, P.; Qian, L.; Qian, X.; Mi, Y.; Lin, Z.; Dong, S.; Aronsson, H.; Zhang, H.; Cheng, J. Identification and Fine Mapping of QGR6.2, a Novel Locus Controlling Rice Seed Germination under Salt Stress. BMC Plant Biol. 2021, 21, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Sl, K.; Kumar, V.; Singh, B.; Rao, A.R.; Sv, A.M.; Rai, V.; Singh, A.K.; Singh, N.K. Mapping QTLs for Salt Tolerance in Rice (Oryza sativa L.) by Bulked Segregant Analysis of Recombinant Inbred Lines Using 50K SNP Chip. PLoS ONE 2016, 11, e0153610. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Zheng, H.; Bi, Y.; Yang, L.; Liu, H.; Wang, J.; Sun, J.; Zhao, H.; Li, X.; Li, J.; et al. Identification of a Major QTL and Candidate Gene Analysis of Salt Tolerance at the Bud Burst Stage in Rice (Oryza sativa L.) Using QTL-Seq and RNA-Seq. Rice 2020, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ponce, K.S.; Meng, L.; Chakraborty, P.; Zhao, Q.; Guo, L.; Gao, Z.; Leng, Y.; Ye, G. QTL Identification for Salt Tolerance Related Traits at the Seedling Stage in Indica Rice Using a Multi-Parent Advanced Generation Intercross (MAGIC) Population. Plant Growth Regul. 2020, 92, 365–373. [Google Scholar] [CrossRef]
- Warraich, A.S.; Krishnamurthy, S.L.; Sooch, B.S.; Vinaykumar, N.M.; Dushyanthkumar, B.M.; Bose, J.; Sharma, P.C. Rice GWAS Reveals Key Genomic Regions Essential for Salinity Tolerance at Reproductive Stage. Acta Physiol. Plant. 2020, 42, 134. [Google Scholar] [CrossRef]
- Goto, I.; Neang, S.; Kuroki, R.; Reyes, V.P.; Doi, K.; Skoulding, N.S.; Taniguchi, M.; Yamauchi, A.; Mitsuya, S. QTL Analysis for Sodium Removal Ability in Rice Leaf Sheaths under Salinity Using an IR-44595/318 F2 Population. Front. Plant Sci. 2022, 13, 4098. [Google Scholar] [CrossRef]
- Gregorio, G.B.; Islam, M.R.; Vergara, G.V.; Thirumeni, S. Recent Advances in Rice Science to Design Salinity and Other Abiotic Stress Tolerant Rice Varieties. Sabrao J. Breed. Genet. 2013, 45, 31–41. [Google Scholar]
- Rahman, M.A.; Bimpong, I.K.; Bizimana, J.B.; Pascual, E.D.; Arceta, M.; Swamy, B.P.M.; Diaw, F.; Rahman, M.S.; Singh, R.K. Mapping QTLs Using a Novel Source of Salinity Tolerance from Hasawi and Their Interaction with Environments in Rice. Rice 2017, 10, 1–17. [Google Scholar] [CrossRef]
- Takehisa, H.; Shimodate, T.; Fukuta, Y.; Ueda, T.; Yano, M.; Yamaya, T.; Kameya, T.; Sato, T. Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Res. 2004, 89, 85–95. [Google Scholar] [CrossRef]
- Lee, S.Y.; Ahn, J.H.; Cha, Y.S.; Yun, D.W.; Lee, M.C.; Ko, J.C.; Lee, K.S.; Eun, M.Y. Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed. 2007, 126, 43–46. [Google Scholar] [CrossRef]
- Sabouri, H.; Sabouri, A. New evidence of QTLs attributed to salinity tolerance in rice. Afr. J. Biotechnol. 2008, 7. [Google Scholar]
- Wang, W.; Zhao, X.; Pan, Y.; Zhu, L.; Fu, B.; Li, Z. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J. Gen. Genom. 2011, 38, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cheng, J.; Chen, Z.; Huang, J.; Bao, Y.; Wang, J.; Zhang, H. Identification of QTLs with main, epistatic and QTL× environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor. Appl. Genet. 2012, 125, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Ghomi, K.; Rabiei, B.; Sabouri, H.; Sabouri, A. Mapping QTLs for traits related to salinity tolerance at seedling stage of rice (Oryza sativa L.): An agrigenomics study of an Iranian rice population. Omics 2013, 17, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Septiningsih, E.M.; Singh, R.K.; Thomson, M.J. Mapping QTLs for Reproductive Stage Salinity Tolerance in Rice Using a Cross between Hasawi and BRRI dhan28. Int. J Mol. Sci. 2022, 23, 11376. [Google Scholar] [CrossRef] [PubMed]
- Maniruzzaman, S.; Rahman, M.A.; Hasan, M.; Rasul, M.G.; Molla, A.H.; Khatun, H.; Akter, S. Genetic Mapping to Detect Stringent QTLs Using 1k-RiCA SNP Genotyping Platform from the New Landrace Associated with Salt Tolerance at the Seedling Stage in Rice. Plants 2022, 11, 1409. [Google Scholar] [CrossRef]
- Salvi, S.; Tuberosa, R. To Clone or Not to Clone Plant QTLs: Present and Future Challenges. Trends Plant Sci. 2005, 10, 297–304. [Google Scholar] [CrossRef]
- Price, A.H. Believe It or Not, QTLs Are Accurate! Trends Plant Sci. 2006, 11, 213–216. [Google Scholar] [CrossRef]
- Michelmore, R.W.; Paran, I.; Kesseli, R.V. Identification of Markers Linked to Disease-Resistance Genes by Bulked Segregant Analysis: A Rapid Method to Detect Markers in Specific Genomic Regions by Using Segregating Populations. Proc. Natl. Acad. Sci. USA 1991, 88, 9828–9832. [Google Scholar] [CrossRef]
- Giovannoni, J.J.; Wing, R.A.; Ganal, M.W.; Tanksley, S.D. Isolation of Molecular Markers from Specific Chromosomal Intervals Using DNA Pools from Existing Mapping Populations. Nucleic Acids Res. 1991, 19, 6553–6568. [Google Scholar] [CrossRef] [PubMed]
- Schneeberger, K.; Ossowski, S.; Lanz, C.; Juul, T.; Petersen, A.H.; Nielsen, K.L.; Jørgensen, J.E.; Weigel, D.; Andersen, S.U. SHOREmap: Simultaneous Mapping and Mutation Identification by Deep Sequencing. Nat. Methods 2009, 6, 550–551. [Google Scholar] [CrossRef] [PubMed]
- Abe, A.; Kosugi, S.; Yoshida, K.; Natsume, S.; Takagi, H.; Kanzaki, H.; Matsumura, H.; Yoshida, K.; Mitsuoka, C.; Tamiru, M.; et al. Genome Sequencing Reveals Agronomically Important Loci in Rice Using MutMap. Nat. Biotechnol. 2012, 30, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Wolyn, D.J.; Borevitz, J.O.; Loudet, O.; Schwartz, C.; Maloof, J.; Ecker, J.R.; Berry, C.C.; Chory, J. Light-Response Quantitative Trait Loci Identified with Composite Interval and Extreme Array Mapping in Arabidopsis Thaliana Sequence Data from This Article Have Been Deposited with the EMBL/GenBank Data Libraries under Accession Nos. AY394847 and AY466496. Genetics 2004, 167, 907–917. [Google Scholar] [CrossRef]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; et al. QTL-Seq: Rapid Mapping of Quantitative Trait Loci in Rice by Whole Genome Resequencing of DNA from Two Bulked Populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, D.; Tang, W.; Zheng, Y.; Liang, K.; Cutler, A.J.; Wu, W. Mapping of Quantitative Trait Loci Underlying Cold Tolerance in Rice Seedlings via High-Throughput Sequencing of Pooled Extremes. PLoS ONE 2013, 8, e68433. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Upadhyaya, H.D.; Bajaj, D.; Kujur, A.; Badoni, S.; Laxmi; Kumar, V.; Tripathi, S.; Gowda, C.L.L.; Sharma, S.; et al. Deploying QTL-Seq for Rapid Delineation of a Potential Candidate Gene Underlying Major Trait-Associated QTL in Chickpea. DNA Res. 2015, 22, 193–203. [Google Scholar] [CrossRef]
- Lu, H.; Lin, T.; Klein, J.; Wang, S.; Qi, J.; Zhou, Q.; Sun, J.; Zhang, Z.; Weng, Y.; Huang, S. QTL-Seq Identifies an Early Flowering QTL Located near Flowering Locus T in Cucumber. Theor. Appl. Genet. 2014, 127, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Magwene, P.M.; Willis, J.H.; Kelly, J.K. The Statistics of Bulk Segregant Analysis Using Next Generation Sequencing. PLoS Comput. Biol. 2011, 7, e1002255. [Google Scholar] [CrossRef]
- Hill, J.T.; Demarest, B.L.; Bisgrove, B.W.; Gorsi, B.; Su, Y.C.; Yost, H.J. MMAPPR: Mutation Mapping Analysis Pipeline for Pooled RNA-Seq. Genome Res. 2013, 23, 687–697. [Google Scholar] [CrossRef]
- Mansfeld, B.N.; Grumet, R. QTLseqr: An R Package for Bulk Segregant Analysis with Next-Generation Sequencing. Plant Genome 2018, 11, 180006. [Google Scholar] [CrossRef]
- De La, C.; Cantó, F.; Vigouroux, Y. Evaluation of Nine Statistics to Identify QTLs in Bulk Segregant Analysis Using next Generation Sequencing Approaches. BMC Genom. 2022, 23, 490. [Google Scholar] [CrossRef]
- Debsharma, S.K.; Rahman, M.A.; Quddus, M.R.; Khatun, H.; Disha, R.F.; Roy, P.R.; Ahmed, S.; El-Sharnouby, M.; Iftekharuddaula, K.M.; Aloufi, S.; et al. SNP Based Trait Characterization Detects Genetically Important and Stable Multiple Stress Tolerance Rice Genotypes in Salt-Stress Environments. Plants 2022, 11, 1150. [Google Scholar] [CrossRef] [PubMed]
- Haque, T.; Elias, S.M.; Razzaque, S.; Biswas, S.; Khan, S.F.; Jewel, G.M.N.A.; Rahman, M.S.; Juenger, T.E.; Seraj, Z.I. Salt Tolerance QTLs of an Endemic Rice Landrace, Horkuch at Seedling and Reproductive Stages. Sci. Rep. 2022, 12, 17306. [Google Scholar] [CrossRef]
- Matsumoto, T.; Wu, J.; Kanamori, H.; Katayose, Y.; Fujisawa, M.; Namiki, N.; Mizuno, H.; Yamamoto, K.; Antonio, B.A.; Baba, T.; et al. The Map-Based Sequence of the Rice Genome. Nature 2005, 436, 793–800. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal Components Analysis Corrects for Stratification in Genome-Wide Association Studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Hu, S.; Tao, H.; Qian, Q.; Guo, L. Genetics and Molecular Breeding for Salt-Tolerance in Rice. Rice Genom. Genet. 2012, 3, 39–49. [Google Scholar] [CrossRef]
- Khan, M.S.K.; Saeed, M.; Iqbal, J. Identification of Quantitative Trait Loci for Na+, K+ and Ca++ Accumulation Traits in Rice Grown under Saline Conditions Using F2 Mapping Population. Rev. Bras. Bot. 2015, 38, 555–565. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, A.; Mithra, S.V.A.; Krishnamurthy, S.L.; Parida, S.K.; Jain, S.; Tiwari, K.K.; Kumar, P.; Rao, A.R.; Sharma, S.K.; et al. Genome-Wide Association Mapping of Salinity Tolerance in Rice (Oryza sativa). DNA Res. 2015, 22, 133–145. [Google Scholar] [CrossRef]
- Akbar, M.; Yabuno, T.; Nakao, S. Breeding for Saline-Resistant Varieties of Rice: I. Variability for Salt Tolerance among Some Rice Varietles. Jpn. J. Breed. 1972, 22, 277–284. [Google Scholar] [CrossRef]
- Mishra, B.; Singh, R.; Bhattacharya, R. CSR10, a Newly Released Dwarf Rice for Salt Affected Soils. Int. Rice Res. Newsl. 1992, 17, 19. [Google Scholar]
- Ho, V.T.; Thomson, M.J.; Ismail, A.M. Development of Salt Tolerant IR64 near Isogenic Lines through Marker-Assisted Breeding. J. Crop Sci. Biotechnol. 2016, 19, 373–381. [Google Scholar] [CrossRef]
- Muthu, V.; Abbai, R.; Nallathambi, J.; Rahman, H.; Ramasamy, S.; Kambale, R.; Thulasinathan, T.; Ayyenar, B.; Muthurajan, R. Pyramiding QTLs Controlling Tolerance against Drought, Salinity, and Submergence in Rice through Marker Assisted Breeding. PLoS ONE 2020, 15, e0227421. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.A.; Rafii, M.Y.; Yusoff, M.M.; Ali, N.S.; Yusuff, O.; Datta, D.R.; Anisuzzaman, M.; Ikbal, M.F. Advanced Breeding Strategies and Future Perspectives of Salinity Tolerance in Rice. Agronomy 1631, 11, 1631. [Google Scholar] [CrossRef]
- Huang, N.; Angeles, E.R.; Domingo, J.; Magpantay, G.; Singh, S.; Zhang, G.; Kumaravadivel, N.; Bennett, J.; Khush, G.S. Pyramiding of bacterial blight resistance genes in rice: Marker-assisted selection using RFLP and PCR. Theor. Appl. Gen. 1997, 95, 313–320. [Google Scholar] [CrossRef]
- Joseph, M.; Gopalakrishnan, S.; Sharma, R.K.; Singh, V.P.; Singh, A.K.; Singh, N.K.; Mohapatra, T. Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Mol. Breed. 2004, 13, 377–387. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, A.; Singh, S.P.; Ellur, R.K.; Choudhary, V.; Sarkel, S.; Singh, D.; Krishnan, S.G.; Nagarajan, M.; Vinod, K.K.; et al. Incorporation of Blast Resistance into “PRR78”, an Elite Basmati Rice Restorer Line, through Marker Assisted Backcross Breeding. Field Crops Res. 2012, 128, 8–16. [Google Scholar] [CrossRef]
- Liang, F.; Deng, Q.; Wang, Y.; Xiong, Y.; Jin, D.; Li, J.; Wang, B. Molecular Marker-Assisted Selection for Yield-Enhancing Genes in the Progeny of “9311×O. Rufipogon” Using SSR. Euphytica 2004, 139, 159–165. [Google Scholar] [CrossRef]
- Lang, N.T.; Buu, B.C.; Ismail, A. Molecular mapping and marker-assisted selection for salt tolerance in rice (Oryza sativa L.). Omonrice 2008, 16, 50–56. [Google Scholar]
- Holland, J.B. Implementation of molecular markers for quantitative traits in breeding programs—Challenges and opportunities. In Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004; Fischer, T., Turner, N., Angus, J., McIntyre, L., Robertson, M., Borrell, A., Lloyd, D., Eds.; New Directions for a Diverse Planet. Regional Institute: Gosford, Australia, 2004. Available online: https://www.cropscience.org.au/icsc2004 (accessed on 1 August 2022).
- Neeraja, C.N.; Maghirang-Rodriguez, R.; Pamplona, A.; Heuer, S.; Collard, B.C.Y.; Septiningsih, E.M.; Vergara, G.; Sanchez, D.; Xu, K.; Ismail, A.M.; et al. A Marker-Assisted Backcross Approach for Developing Submergence-Tolerant Rice Cultivars. Theor. Appl. Genet. 2007, 115, 767–776. [Google Scholar] [CrossRef]
- Alpuerto, V.L.E.B.; Norton, G.W.; Alwang, J.; Ismail, A.M. Economic Impact Analysis of Marker-Assisted Breeding for Tolerance to Salinity and Phosphorous Deficiency in Rice. Rev. Agric. Econ. 2009, 31, 779–792. [Google Scholar] [CrossRef]
- Walia, H.; Wilson, C.; Condamine, P.; Liu, X.; Ismail, A.M.; Zeng, L.; Wanamaker, S.I.; Mandal, J.; Xu, J.; Cui, X.; et al. Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes under Salinity Stress during the Vegetative Growth Stage. Plant Physiol. 2005, 139, 822–835. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-M.; Ju, H.-G.; Kwon, T.-R.; Oh, C.-S.; Ahn, S.-N. Mapping QTLs for Salt Tolerance in an Introgression Line Population between Japonica Cultivars in Rice. J. Crop Sci. Biotechnol. 2009, 12, 121–128. [Google Scholar] [CrossRef]
- Vu, H.T.T.; Le, D.D.; Ismail, A.M.; Le, H.H. Marker-assisted backcrossing (MABC) for improved salinity tolerance in rice (Oryza sativa L.) to cope with climate change in Vietnam. Aust. J. Crop Sci. 2012, 6, 1649–1654. [Google Scholar]
- Linh, L.H.; Linh, T.H.; Xuan, T.D.; Ham, L.H.; Ismail, A.M.; Khanh, T.D. Molecular Breeding to Improve Salt Tolerance of Rice (Oryza sativa L.) in the Red River Delta of Vietnam. Int. J. Plant Genom. 2012, 2012, 949038. [Google Scholar] [CrossRef] [PubMed]
- Huyen, L.T.N. Introgression the SALTOL QTL into Q5DB, the Elite Variety of Vietnam Using Marker- Assisted—Selection (MAS). Am. J. Biosci. 2013, 1, 80. [Google Scholar] [CrossRef]
- Alam, M.; Begum, S.; Islam, M.; Moniruzzaman, M.; Patwary, M. Marker-Assisted Foreground Selection for Identification of Salt Tolerant Rice Genotypes. Agriculturists 2012, 10, 1–8. [Google Scholar] [CrossRef]
- Ramayya, P.J.; Vinukonda, V.P.; Singh, U.M.; Alam, S.; Venkateshwarlu, C.; Vipparla, A.K.; Dixit, S.; Yadav, S.; Abbai, R.; Badri, J.; et al. Marker-Assisted Forward and Backcross Breeding for Improvement of Elite Indian Rice Variety Naveen for Multiple Biotic and Abiotic Stress Tolerance. PLoS ONE 2021, 16, e0256721. [Google Scholar] [CrossRef]
- Rana, M.M.; Takamatsu, T.; Baslam, M.; Kaneko, K.; Itoh, K.; Harada, N.; Sugiyama, T.; Ohnishi, T.; Kinoshita, T.; Takagi, H.; et al. Salt Tolerance Improvement in Rice through Efficient SNP Marker-Assisted Selection Coupled with Speed-Breeding. Int. J. Mol. Sci. 2019, 20, 2585. [Google Scholar] [CrossRef]
- Ma, Y.C.; Augé, R.M.; Dong, C.; Cheng, Z.M.M. Increased Salt Tolerance with Overexpression of Cation/Proton Antiporter 1 Genes: A Meta-Analysis. Plant Biotechnol. J. 2017, 15, 162–173. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of Proline under Changing Environments. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Szabados, L.; Savouré, A. Proline: A Multifunctional Amino Acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Marè, C.; Zampieri, E.; Cavallaro, V.; Frouin, J.; Grenier, C.; Courtois, B.; Brottier, L.; Tacconi, G.; Finocchiaro, F.; Serrat, X.; et al. Marker-Assisted Introgression of the Salinity Tolerance Locus Saltol in Temperate Japonica Rice. Rice 2023, 16, 2. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.M.; Colasuonno, P.; Marcotuli, I.; Gadaleta, A. Meta-QTL Analysis and Identification of Candidate Genes for Quality, Abiotic and Biotic Stress in Durum Wheat. Sci. Rep. 2021, 11, 11877. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Huang, M.; Tao, X.; Guo, T.; Chen, Z.; Xiao, W. Quantitative Trait Loci Identification and Meta-Analysis for Rice Panicle-Related Traits. Mol. Genet. Genom. 2016, 291, 1927–1940. [Google Scholar] [CrossRef]
- Islam, M.S.; Ontoy, J.; Subudhi, P.K. Meta-Analysis of Quantitative Trait Loci Associated with Seedling-Stage Salt Tolerance in Rice (Oryza Sativa L.). Plants 2019, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Prakash, N.R.; Lokeshkumar, B.M.; Rathor, S.; Warraich, A.S.; Yadav, S.; Vinaykumar, N.M.; Dushynthkumar, B.M.; Krishnamurthy, S.L.; Sharma, P.C. Meta-Analysis and Validation of Genomic Loci Governing Seedling and Reproductive Stage Salinity Tolerance in Rice. Physiol. Plant. 2022, 174, e13629. [Google Scholar] [CrossRef]
- Thodberg, S.; Neilson, E.H.J. The “Green” FMOs: Diversity, Functionality and Application of Plant Flavoproteins. Catalysts 2020, 10, 329. [Google Scholar] [CrossRef]
- Cao, X.; Yang, H.; Shang, C.; Ma, S.; Liu, L.; Cheng, J. The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants. Int. J. Mol. Sci. 2019, 20, 6343. [Google Scholar] [CrossRef]
- Bielach, A.; Hrtyan, M.; Tognetti, V.B. Plants under Stress: Involvement of Auxin and Cytokinin. Int. J. Mol. Sci. 2017, 18, 1427. [Google Scholar] [CrossRef] [PubMed]
- Mirdar Mansuri, R.; Shobbar, Z.S.; Babaeian Jelodar, N.; Ghaffari, M.; Mohammadi, S.M.; Daryani, P. Salt Tolerance Involved Candidate Genes in Rice: An Integrative Meta-Analysis Approach. BMC Plant Biol. 2020, 20, 452. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.R.; Bagali, P.G.; Hittalmani, S.; Shashidhar, H.E. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr. Sci. 2000, 78, 162–164. [Google Scholar]
Mapping Population | Total Number of Markers | Trait Studied | Name of QTL | Chr. | Remarks | Ref. |
---|---|---|---|---|---|---|
Nonabokra/Koshihikri 133 F2 | 161 RFLP | Root and shoot Na+, K+ uptake and Na+/K+ concentration | Identified 11 QTLs: qSDS-1, qSDS-6, qSDS-7, qSNC-7, qSNTQ-7, qSKC-1, qRNC-9, qRNTQ-1, qRKC-4, qRKC-7, qRKTQ-7 | 1, 4, 6, 7, 9 | Two significant QTLs with a very large effect, qSNC-7 for shoot Na+ concentration and qSKC-1 for shoot K+ concentration, explained 48.5% and 40.1% of phenotypic variance, respectively. | [53] |
Pokkali/IR29 (RILs) 78 RILs | 23 | Na+ and K+ uptake and Na+/K+ ratio | Saltol | 1 | Define position of Saltol QTL; RFLP SSR flanking markers: RM23, RM140 | [60] |
Pokkali/IR29 140 RILs | 100 SSR | Na+, K+ concentration, Na+/K+ ratio in root and shoot, SES tolerance score, leaf chlorophyll content | Identified 24 QTLs: qPH2, qPH4, qSNC1, qSNK1, qSNK9, qRKC1, qRKC2, qRKC6, qRNK1, qRNK6, qRNK9, qSES4, qSES9, qCHL2, qCHL3, qCHL4, qSES3, qSES12, qSUR1, qSUR2, qSUR12, qCHL1, qCHL1, qCHL12 | 1, 2, 3, 4, 6, 9, 12 | Saltol contributes to Na+/K+ homeostasis; SKC1 may be the causal gene underlying saltol QTL. Identified a region on chromosome 2 contained a cluster of Pokkali-derived QTLs, including height, root K+ concentration, chlorophyll content and survival. | [61] |
Nona Bokra/Koshihikari 192 BC2F2 and 2973 BC3F3 NILs | 14 AFLP/SSTs | K+/Na+ homeostasis | qSKC1 | 1 | Isolated SKC1 gene (7.4 Kb) by map-based cloning; Flanking markers of QTL: K159, K061 | [63] |
IR59462/Nona Bokra/Pokkali//IR4630-22- 2-5-1-3/IR10167-129-3-4 150 F7 NILs | Four | High Na+ uptake, K+ uptake and Na+/K+ discrimination | Identified 16 QTLs governing different ion concentrations: QNa, QK1, QK2, QNaK | 1, 9, 6, 4 | QTLs for the presence of Na and K in the shoots have been located using AFLPs. | [64] |
IR4630/IR15324 118 RILs | Na+, K+ uptake, Na+/K+ ratio, dry mass production, concentration of ions | Identified 11 QTLs: Chr1; Na+ uptake, K+ concentration, Na+/K+ ratio; Chr4: K+ uptake K+ concentration, Na+/K+ ratio; Chr6: dry mass, K+ uptake, Na+ concentration; Chr9: K+ uptake | 1, 4, 6, 9 | QTL for K+ uptake with the largest effect was found on chr 9, explaining 19.6% variation AFLP and RFLP markers | [65] | |
CSR27/MI48 216 (F2/F3) RILs | SSRs | Seedling salt injury score, Na+, K+, Cl− concentration, Na+/K+ ratio in leaf and stem tissue at vegetative and reproductive stages | Reported 25 QTLs: qSIS-1.1, qNaLV-3.1, qNaLV-8.1, qNaLV-8.2, qNaLR-2.1, qNaLR-3.1, qNaLR-8.1, qNaSV-1.1, qNaSV-2.1, qNaSV-8.1, qKLV-3.1, qKLR-8.1, qKSV-1.1, qNa/KLR-3.1, qNa/KLR-8.1, qNa/KSV-1.1, qNa/KSV-2.1, qNa/KSV-2.2, qNa/KSV-2.3, qNa/KSV-3.1, qNa/KSV-8.1, qClLV-3.1, qClLR-2.1, qClSV-1.1, qClSV-2.1 | 1, 2, 3, 8 | QTL interval RM563- RM186 on chromosome 3 was the most important as it influenced nine of the seventeen salt tolerance parameters studied | [66] |
CSR27/MI48 216 F7 RILs | 1058 SSR (598 RM and 460HvSSR) | Na+, K+ and Cl− ion concentrations in different tissues and salt stress susceptibility index for spikelet fertility, grain weight and grain yield | Identified 9 QTLs: qKLV1.1, qNaSH1.1, qKSH1.1, qNa/KSH1.1, qNaSH8.1, qClLV8.1a, qClLV8.1b, qSSISFH8.1, qNaSV12.1 | 1, 8, 12 | A significant QTL for SSI for spikelet fertility at high salt stress (qSSISFH8.1) was located on chr 8 in marker interval HvSSR8-25-RM3395 | [67] |
Zaiyeqing8/Jingxi 17 (DH) | Survival days of seedlings on 0.7% NaCl Yoshida solution | Identified 8 QTLs for survival times of seedlings in 0.7% NaCl | 1, 2, 3, 7, 8, 12 | Major QTL Std on Chr1; flanking markers RG612, C131 | [69] | |
Sadri/FL478 232 F2 | 155 SSR | plant height, days to flowering, panicle length, no of panicles, spikelet no, 1000 grain weight, grain yield under salinity stress | Identified 35 QTLs: qDTF4.1, qDTF6.1, qDTF10.1, qPH1.1, qPH3.1, qPH5.1, qPH7.1, qPL1.1, qPL2.1, qPL3.1, qPN4.1, qPN6.1, qPN9.1, qSTW4.1, qSTW7.1,qSTW8.1, qSTW9.1, qFRSP2.1, qFRSP4.1, qFRSP6.1, qFRSP10.1, qSTSP3.1, qSTSP7.1, qTSP4.1, qTSP7.1, qTSP9.1, qGY2.1, qGY4.1, qGY6.1, qGY8.1, qSPFR2.1, qSPFR2.5, qSPFR2.10, qTGW5.1, qTGW6.1, qTGW6.8, qTGW10.1 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | Three major QTL clusters were found on chromosomes 2 (RM423–RM174), 4 (RM551–RM518) and 6 (RM20224– RM528) for multiple traits under salinity stress. | [70] |
Cheriviruppu/Pusa basmati 1 218 F2/F3 | 131 SSR | Plant height, tiller no, panicle length grain yield, biomass, pollen fertility, Na+/K+ ratio, Na+ concentration at reproductive stage | 24 QTLs: qPH1.1, qPH4.1, qPH7.1, qTN7.2, qTN7.3, qTN8.1, qPL1.2, qPL7.4, qGY2.1, qGY3.1, qGY, qGY12.1, qBM8.2, qPF1.4, qPF1.5, qPF10.1, qPF10.2, qNa1.6, qNa1.7, qNaKR1.8 | 1, 7, 8, 10 | Tight cluster of QTLs on chromosome 1 at position 31.06 Mb novel loci different from saltol and SKC1 at reproductive stage | [71] |
Kalarata/Azucena 400 F2 | 151 SSR | Shoot fresh weight (SFW), Shoot dry weight (SDW), Root dry weight (RDW), Shoot K+ concentration (SKC), Root K+ concentration (RKC), Shoot Na+ concentration (SNC), Root length (RL), Chlorophyll b (CHLB), Root Na+ concentration (RNC), SES | qSFW1.1, qSDW1.1, qRDW1.1, qRDW5.1, qSKC1.1, qRKC3, qRKC11.1, qSNC1.1, qRL2.1, qSNKR1.1, qCHLB3.1, qRNC3.1, qSES3.1 | 1, 2, 3, 5 | Highest density at chromosome 1 with saltol locus | [74] |
CSR10/PS5 140 F2 | 100 HvSSR | Total 39 QTLs for sodium content, potassium content, sodium/potassium ratio in roots and leaves, and grain yield | qNaL-1.2, qNa/KL-1.3, qKR-1 and qNa/KL-1.2 qGY-2, qGSSI-6.2 | 1, 2, 4, 6, 7, 8, 9, 10, 11, 12 | Major QTLs identified for QTLs for sodium content, potassium content, sodium/potassium ratio, grain yield qGY-2, and SSI for grain yield qSSI-6.2 | [75] |
Wujiaozhan (WJZ)/Nipponbare 181 BC1F2 | 157 SSR | Germination rate and germination index | qGR6.1, qGR6.2, qGR8.1, qGR8.2, qGR10.1, qGR10.2, qGI6.2, qGI10.1, qGI10.2 | 6, 8, 10 | Salt-tolerance-specific major QTL qGR6.2 was identified and fine-mapped. | [76] |
CSR11/MI48 208 | 6,068 SNPs | New QTLs for grain yield under salt stress | qSSIGY2.1, qSSIGY2.2 and qSSIGY2.3 | 1, 2, 3, 5, 6, 9, 11 and 12 | 21 novel QTL for grain yield SSI | [77] |
Weiguo/IR36 199 F2:3 | KASP | 25 KASP markers were used to narrow down the QTL region to 222 kb | qRSL7 | 7 | A major QTL for relative shoot length (RSL) and candidate gene Os07g0569700 (OsSAP16) was indenitfied | [78] |
MAGIC population 221 DC1 | 55k SNP array | Root length after salt stress (RLST), shoot length after salt stress (SLST), relative root length (RRL), dry shoot weight after salt stress (DSW), relative dry shoot weight (RDSW), biomass under salt stress (BST), relative biomass (RB) | qRLST5, qSLST1, qRRL2, qDSW9, qRDSW1, qBST9, qRB1 | 1, 2, 5, 9 | 7 QTLs delineated with 186 significant marker-trait associations were identified. A new QTL (qRRL2) at chromosome 2 for RRL and one multi-trait QTL for shoot length, root biomass, and root dry weight at chromosome 1 under salt stress | [79] |
180 diverse genotypes | 127 SSR | Twenty-eight marker-trait associations, among which 19 were identified for Na+, K+, Na+/K+ uptake in stem and leaves | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | [80] | ||
IR-44595 (indica)/IR- 318 (tropical japonica) 168 F2 | 2221 SNP | Na+ sheath-blade ratio, Na+ concentration in leaf blades, Na+ concentration in leaf sheaths, Na+ concentration in shoots, and K+/Na+ ratio in leaf blades, Na+ concentration in shoots and leaf sheath | qNSBR4, qNSBR11, qBNC11, qSHNC11, qSNC11, qBKNR11, qSNC4, qSNC1.1, qSNC1.2, At qSNC1.1, qSHNC1 | 1, 4, 11 | two major QTLs (qNSBR4 and qNSBR11) were identified for Na+ sheath-blade ratio | [81] |
Pokkali/I R29 80 RILs | 206 | High K+ absorption, low Na+ absorption and low Na+/K+ absorption ratio | Identified 10 QTLs: High K absorption: Chr1, 4 and 12; Na Absorption: chr1, 10, 3; Na-K ratio: Chr 1, 10, 12 | 1, 3, 4, 10, 12 | Identified a major QTL Saltol on Chr1; Flanking AFLP marker P3/M9-8 and P1/M9-3 | [82] |
Pokkali/IR29 181 BC3F4 | 40 SSR | Salinity screening for percent survival and total leaf area affected at EC 18dS/m according to SES score | Identified 11 QTLs: Seven QTLs using single marker analysis (SMA) and six using the LTR-RSTEP, of which two were common | 1, 3, 4, 5, 6, 10, 11 | Similar salinity tolerance at the seedling stage without the Saltol allele distributed on Chr 5, 6, 10, 11 and three QTLs on Chr 3 with R2 value 8–15% | [83] |
Milyang 23 (Indica) /Gihobyeo (Japonica) 164 F 18: F19 RILs | 1300 RFLPs, SSLP, AFLP, isozyme | Seedling stage Salt tolerance in shoots at 0.5% and 0.7% NaCl concentration | Two QTLs: qST1, qST3 | 1, 3 | qST1 and qST3 confer salt tolerance at young seedling stage explaining phenotypic variance 35–37% | [84] |
Tarommhalli (Indica) /Khazar (Indica) 192 F2/F3 | 74 SSRs | Chlorophyll content, root and shoot length, fresh and dry weight of root and shoot, Na+ and K+ uptake, Na+/K+ ratio | Identified 32 QTLs; 11 major QTLs: qKUP-8, qKUP-3, qNAUP-1b, qDWR9a, qDWRO9b, qDWSH-3, qDWSH-7, qFWRO-3a, qFWSH-1, qFWSH-3, qSHL-3 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | Two QTLs with largest effect, qDWRO-9a and qDWRO-9b for root dry weight explained 27.43 and 25.5% phenotypic variance | [85] |
IR26/Jiucaiqing 150 F2:9 RILs | Imbibition rate and germination percentage at 100mM NaCl concentration | Identified 17 QTLs: qIR-4, qIR12, qIR-2, qIR-3, qIR-8, qIR10, qGP4-1, qGP4-2, qGP7-1, qGP-10, qIR-4, qIR-9, qIR-6, qGP7-2, qGP-2, qGP-3, qGP-9 | 2, 3, 4, 6, 7, 8, 9, 10, 12 | QTLs for imbibition and germination were rarely co-located, and only one QTL qIR-3 and qGP-3 was located at the same position | [86] | |
Jiucaiqing (japonica)/IR26 150 F2:9 RILs | 135 SSR | Na+ and K+ concentration in roots and shoots at 0, 100 and 120 mM NaCl concentration, salt tolerance rating | Identified 17 QTLs: qRKC6.1, qRKC6.2, qRKC10, qSKC10, qSNC9, qSKC1, qSKC9, qRKC4, qSNC11, qRKC10, qSTR7, qSNC3, qSKC1, qSKC4, qSKC9, qRKC4, qSNC11 | 1, 3, 4, 6, 7, 9, 10,11 | One novel major QTL qSNC11 was identified explaining 16% phenotypic variance at the marker interval RM286-RM6288 | [87] |
Gharib (indica)/Sepidroud (indica) 148 F2:4 | 131 SSR 105 AFLP | Root and shoot: length, fresh weight, dry weight, biomass, shoot: Na+, K+ concentration and Na+/K+ ratio at the seedling stage, standard tolerance ranking (STR) from 0 to 9 | Identified 41 QTLs on all rice chromosomes: Major effect QTLs: qRFW-4b, qSFW-4a, qSFW-5b, qSDW-2, qBM-5a, qBM-5b, qSTR-8, qSTR-9, qRL-9, qSHL-5, qSKC-1, qSKC-10b, qSNK-8, qCHL-8 | All 12 chromosomes | Six QTLs were mapped for STR on chromosomes 1, 4, 8, 9, 11, and 12. Among these, two QTLs located on chromosome 8 (qSTR-8) and 9 (qSTR-9) had explained 19.66% and 21.7% of the total phenotypic variation. | [88] |
Hasawi/BRR dhan 28 435 BC1F2 | 6209 SNP | Total 40 QTLs, including 24 plant height, productive tillers, panicle length, number of filled spikelets, number of unfilled spikelets, percent filled spikelets, grain yield, and Na+−K+ ratio. | 1 to 12 | 3 important QTLs: qPT3.1 for productive tillers, qNFS3.1 for number of filled spikelets, qGY3.1 for grain yield | [89] | |
Horkuch/IR29 Biparental reciprocal population 137 F2:3 | 2230 SNP | Six QTLs for seedling stage shoot length, root length and total potassium | qSL.1, qSL.3, qSL.5, qRL.2, qTK.2, qTK.3, qPH.1, qPH.5, qET.7, qFGN.10, qFGW.10, qSF.10, qHI.10 | 1, 2, 3, 5, 7, 10 | one large effect QTL for root length qRL.2, shoot length qSL.1 effective tiller number qET.7, filled grain weight qFGW.10, and spikelet fertility qSF.10 | [90] |
Akundi/BRRI dhan 49 F2:3 | 884 SNP | Seedling injury, Survival rate (%), shoot length, shoot dry weight, root length, Na+ and K+ concentration and Na+/K+ ratio. | q qSES1, qSES3, qSUR1, qSUR5.1, qSUR5.2, qSL1, qSDW5, qSDW11, qRL1, qSPAD12, qNa6, qK8, qK12, qNaKR8, qNaKR11 | 1, 3, 5, 6, 8, 11, 12 | Three major QTLs: qSES3 for seedling injury, qNa6 sodium concentration, and qK8 for potassium concentration | [91] |
Country | Variety Name/Designation |
---|---|
Philippines | IRRI 112 as PSBRc48 (Hagonoy), IRRI 113 as PSBRc50 (Bicol), IRRI 124 as PSBRc84 (Sipocot), IRRI 125 as PSBRc86 (Matnog), IRRI 126 as PSBRc88 (Naga), IRRI 128 as NSICRc106, NSICRc296, NSICRc290, NSICRc294, NSIC2013Rc324, NSIC2013Rc326, NSIC2013Rc328, NSIC2013Rc330, NSIC2013Rc332, NSIC2013Rc334, NSIC2013Rc336, NSIC2013Rc338, NSIC2013Rc340 |
India | CSR10, CSR13, CSR22, CSR23, CSR27, CSR30 (Yamini), CSR36, Lunishree, Vytilla 1, Vytilla 2, Vytilla 3, Vytilla 4, Vyttila 5, Vyttila 6, Try 1, Panvel 1, Panvel 2, Panvel 3, Sumati, Jarava, Bhutnath, Usar dhan 1, Usar dhan 2, Usar dhan 3, CSR43,CR dhan405, CR dhan406 |
Bangladesh | BRRI dhan 40, BRRI dhan 41, BRRI dhan 55, BINA dhan10, BRRI dhan 61, BR11-SalTol *, BRRI dhan28-SalTol *, BRRI dhan 47 (Saltol) * (MAB product) |
Vietnam | OM576, OM2717, OM2517, OM3242, AS996, OM5629, OM5981, OM6377, OM4488, OM11270, OM11271, Bacthom7-SalTol * (MAB product) |
Egypt | Giza 177, Giza 178, Sakha 104, Sakha 111 |
Myanmar | Sangankhan Sinthwellat (Saltol) (MAS product) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, K.; Tiwari, S.; Kumar, N.; Sinha, S.; Krishnamurthy, S.L.; Singh, R.; Kalia, S.; Singh, N.K.; Rai, V. QTLs and Genes for Salt Stress Tolerance: A Journey from Seed to Seed Continued. Plants 2024, 13, 1099. https://doi.org/10.3390/plants13081099
Tiwari K, Tiwari S, Kumar N, Sinha S, Krishnamurthy SL, Singh R, Kalia S, Singh NK, Rai V. QTLs and Genes for Salt Stress Tolerance: A Journey from Seed to Seed Continued. Plants. 2024; 13(8):1099. https://doi.org/10.3390/plants13081099
Chicago/Turabian StyleTiwari, Keshav, Sushma Tiwari, Nivesh Kumar, Shikha Sinha, Saraswathipura L. Krishnamurthy, Renu Singh, Sanjay Kalia, Nagendra Kumar Singh, and Vandna Rai. 2024. "QTLs and Genes for Salt Stress Tolerance: A Journey from Seed to Seed Continued" Plants 13, no. 8: 1099. https://doi.org/10.3390/plants13081099
APA StyleTiwari, K., Tiwari, S., Kumar, N., Sinha, S., Krishnamurthy, S. L., Singh, R., Kalia, S., Singh, N. K., & Rai, V. (2024). QTLs and Genes for Salt Stress Tolerance: A Journey from Seed to Seed Continued. Plants, 13(8), 1099. https://doi.org/10.3390/plants13081099