Germination and Growth Characteristics of nud Knockout and win1 Knockout Barley Lines under Salt Stress
Abstract
:1. Introduction
2. Results
2.1. Seed Germination, the Survival Rate, and the Number of Seedlings with Leaves in nud KO and win1 KO Lines under Salinity Stress
2.2. Seedling Root and Shoot Growth Parameters of nud KO and win1 KO Lines under Salinity Stress
2.3. Seedling Weights of nud KO and win1 KO Lines under Salinity Stress
2.4. Seedlings’ Abnormalities in nud KO and win1 KO Lines under the Influence of the Salt Stressor
3. Discussion
4. Materials and Methods
4.1. A Short Literature Review and Database Compilation
4.2. Plant Models
4.3. Greenhouse Growth Conditions
4.4. Experimental Design
4.5. Seedling Emergence Rates and Growth Characteristics
4.6. Estimation of Seedlings’ Abnormalities
4.7. Salt Tolerance Index
4.8. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corwin, D.L. Climate Change Impacts on Soil Salinity in Agricultural Areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Schofield, R.V.; Kirkby, M.J. Application of Salinization Indicators and Initial Development of Potential Global Soil Salinization Scenario under Climatic Change. Glob. Biogeochem. Cycles 2003, 17, 1078. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Mayer, P.M.; Shatkay, R.R.; Shelton, S.A.; Grant, S.B.; Utz, R.M.; Yaculak, A.M.; Maas, C.M.; Reimer, J.E.; et al. The Anthropogenic Salt Cycle. Nat. Rev. Earth Environ. 2023, 4, 770–784. [Google Scholar] [CrossRef] [PubMed]
- FAO. Global Map of Salt-Affected Soils; Gsasmap V1.0. 20; FAO: Rome, Italy, 2021. [Google Scholar]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of Salt-Induced Land Degradation and Restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Mwando, E.; Angessa, T.T.; Han, Y.; Li, C. Salinity Tolerance in Barley During Germination—Homologs and Potential Genes. J. Zhejiang Univ. Sci. B 2020, 21, 93–121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.X. Barley Production and Consumption. In Genetics and Improvement of Barley Malt Quality; Zhang, G., Li, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–17. [Google Scholar]
- Maas, E.V.; Hoffman, G.J. Crop Salt Tolerance—Current Assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- USDA. Agricultural Water Efficiency and Salinity Research Unit. Grasses and Forage Crops; GF Crops U.S. Salinity Laboratory: Riverside, CA, USA, 2019.
- Munns, R.; James, R.A.; Läuchli, A. Approaches to Increasing the Salt Tolerance of Wheat and Other Cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef] [PubMed]
- Ukhatova, Y.V.; Erastenkova, M.V.; Korshikova, E.S.; Krylova, E.A.; Mikhailova, A.S.; Semilet, T.V.; Tikhonova, N.G.; Shvachko, N.A.; Khlestkina, E.K. Improvement of Crops Using the Crispr/Cas System: New Target Genes. Mol. Biol. 2023, 57, 375–397. [Google Scholar] [CrossRef]
- Maharajan, T.; Krishna, T.P.A.; Rakkammal, K.; Ceasar, S.A.; Ramesh, M. Application of Crispr/Cas System in Cereal Improvement for Biotic and Abiotic Stress Tolerance. Planta 2022, 256, 106. [Google Scholar] [CrossRef]
- Gerasimova, S.V.; Hertig, C.; Korotkova, A.M.; Kolosovskaya, E.V.; Otto, I.; Hiekel, S.; Kochetov, A.V.; Khlestkina, E.K.; Kumlehn, J. Conversion of Hulled into Naked Barley by Cas Endonuclease-Mediated Knockout of the Nud Gene. BMC Plant Biol. 2020, 20, 255. [Google Scholar] [CrossRef]
- Gerasimova, S.; Kolosovskaya, E.; Vikhorev, A.; Korotkova, A.; Hertig, C.; Genaev, M.; Domrachev, D.; Morozov, S.; Chernyak, E.; Shmakov, N.; et al. Wax Inducer 1 Regulates Β-Diketone Biosynthesis by Mediating Expression of the Cer-Cqu Gene Cluster in Barley. Int. J. Mol. Sci. 2023, 24, 6762. [Google Scholar] [CrossRef]
- González, A.; Ayerbe, L. Effect of Terminal Water Stress on Leaf Epicuticular Wax Load, Residual Transpiration and Grain Yield in Barley. Euphytica 2010, 172, 341–349. [Google Scholar] [CrossRef]
- Aharoni, A.; Dixit, S.; Jetter, R.; Thoenes, E.; van Arkel, G.; Pereira, A. The Shine Clade of Ap2 Domain Transcription Factors Activates Wax Biosynthesis, Alters Cuticle Properties, and Confers Drought Tolerance When Overexpressed in Arabidopsis. Plant Cell 2004, 16, 2463–2480. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Ranathunge, K.; Huang, H.; Pei, Z.; Franke, R.; Schreiber, L.; He, C. Wax Crystal-Sparse Leaf1 Encodes a Β–Ketoacyl Coa Synthase Involved in Biosynthesis of Cuticular Waxes on Rice Leaf. Planta 2008, 228, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Antonova, E.V.; Khlestkina, E.K. Radiosensitivity and Mutability of Wheat Seed Progeny Cultivated under Adverse Environments. Plant Physiol. Biochem. 2019, 137, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Karimullina, E.; Antonova, E.; Pozolotina, V.; Tokarev, A.; Minko, S. The Toxicity of Engineered Nanoparticles on Seed Plants Chronically Exposed to Low-Level Environmental Radiation. Russ. J. Ecol. 2015, 46, 236–245. [Google Scholar] [CrossRef]
- Vorobeichik, E.L.; Pozolotina, V.N. Microscale Spatial Variation in Forest Litter Phytotoxicity. Russ. J. Ecol. 2003, 34, 381–388. [Google Scholar] [CrossRef]
- Perea-Brenes, A.; Garcia, J.L.; Cantos, M.; Cotrino, J.; Gonzalez-Elipe, A.R.; Gomez-Ramirez, A.; Lopez-Santos, C. Germination and First Stages of Growth in Drought, Salinity, and Cold Stress Conditions of Plasma-Treated Barley Seeds. ACS Agric. Sci. Technol. 2023, 3, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Çavuşoğlu, K.; Kılıç, S.; Kabar, K. Some Morphological and Anatomical Observations During Alleviation of Salinity (Naci) Stress on Seed Germination and Seedling Growth of Barley by Polyamines. Acta Physiol. Plant. 2007, 29, 551–557. [Google Scholar] [CrossRef]
- Ben Youssef, R.; Jelali, N.; Boukari, N.; Albacete, A.; Martinez, C.; Alfocea, F.P.; Abdelly, C. The Efficiency of Different Priming Agents for Improving Germination and Early Seedling Growth of Local Tunisian Barley under Salinity Stress. Plants 2021, 10, 2264. [Google Scholar] [CrossRef]
- Ureta-Leones, D.; García-Quintana, Y.; Vega-Rosete, S.; Pérez-Morell, L.; Bravo-Medina, C.A.; Arteaga-Crespo, Y. Effect of Pre-Germination Treatment with Direct Magnetic Field Exposure: A Systematic Review and Meta-Analysis. Eur. J. For. Res. 2021, 140, 1029–1038. [Google Scholar] [CrossRef]
- Trubina, M.R. Effect of Temperature and Fluorides on Growth and Development of Crepis tectorum L. Seedlings from Populations of Polluted and Nonpolluted Habitats. Contemp. Probl. Ecol. 2014, 7, 104–113. [Google Scholar] [CrossRef]
- Madani, H.; Stopps, G.; Upadhyaya, M.K. Seed Germination Ecophysiology of Hoary Alyssum (Berteroa incana L.) in Different Temperature, Dry Heat and Anaerobiosis Conditions. Plant Ecophysiol. 2010, 2, 121–126. [Google Scholar]
- Abdel-Ghani, A.H.; Sanchez, D.L.; Kumar, B.; Lubberstedt, T. Paper Roll Culture and Assessment of Maize Root Parameters. Bio-Protoc. 2016, 6, e1926. [Google Scholar] [CrossRef]
- Antonova, E.V.; Shimalina, N.S.; Korotkova, A.M.; Kolosovskaya, E.V.; Gerasimova, S.V.; Khlestkina, E.K. Seedling Biometry of the Nud Knockout and Win1 Knockout Barley Lines under Ionizing Radiation. Plants 2022, 11, 2474. [Google Scholar] [CrossRef] [PubMed]
- Pozolotina, V.N. Remote Consequences of Radiation Effect on Plants; Goschitsky: Ekaterinburg, Russia, 2003. [Google Scholar]
- Rizvi, A.; Khan, M.S. Biotoxic Impact of Heavy Metals on Growth, Oxidative Stress and Morphological Changes in Root Structure of Wheat (Triticum aestivum L.) and Stress Alleviation by Pseudomonas Aeruginosa Strain Cpsb1. Chemosphere 2017, 185, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Prudnikova, E.V.; Neaman, A.; Terekhova, V.A.; Karpukhin, M.M.; Vorobeichik, E.L.; Smorkalov, I.A.; Dovletyarova, E.A.; Navarro-Villarroel, C.; Ginocchio, R.; Peñaloza, P. Root Elongation Method for the Quality Assessment of Metal-Polluted Soils: Whole Soil or Soil-Water Extract? J. Soil Sci. Plant Nutr. 2020, 20, 2294–2303. [Google Scholar] [CrossRef]
- Pozolotina, V.N.; Antonova, E.V. Temporal Variability of the Quality of Taraxacum officinale Seed Progeny from the East-Ural Radioactive Trace: Is There an Interaction between Low Level Radiation and Weather Conditions? Int. J. Radiat. Biol. 2017, 93, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Lloret, F.; Casanovas, C.; Peñuelas, J. Seedling Survival of Mediterranean Shrubland Species in Relation to Root:Shoot Ratio, Seed Size and Water and Nitrogen Use. Funct. Ecol. 1999, 13, 210–216. [Google Scholar] [CrossRef]
- Mašková, T.; Herben, T. Root:Shoot Ratio in Developing Seedlings: How Seedlings Change Their Allocation in Response to Seed Mass and Ambient Nutrient Supply. Ecol. Evol. 2018, 8, 7143–7150. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, R.; Jia, X.; Tang, X.; Guo, Y.; Yang, H.; Zheng, X.; Qian, Q.; Qi, Y.; Zhang, Y. Crispr-Cas9 Mediated Osmir168a Knockout Reveals Its Pleiotropy in Rice. Plant Biotechnol. J. 2022, 20, 310–322. [Google Scholar] [CrossRef]
- Kieu, N.P.; Lenman, M.; Wang, E.S.; Petersen, B.L.; Andreasson, E. Mutations Introduced in Susceptibility Genes through Crispr/Cas9 Genome Editing Confer Increased Late Blight Resistance in Potatoes. Sci. Rep. 2021, 11, 4487. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C. The Great Diversity in Kinds of Seed Dormancy: A Revision of the Nikolaeva–Baskin Classification System for Primary Seed Dormancy. Seed Sci. Res. 2021, 31, 249–277. [Google Scholar] [CrossRef]
- Ågren, G.I.; Ingestad, T. Root: Shoot Ratio as a Balance between Nitrogen Productivity and Photosynthesis. Plant Cell Environ. 1987, 10, 579–586. [Google Scholar] [CrossRef]
- Forster, B.P. Mutation Genetics of Salt Tolerance in Barley: An Assessment of Golden Promise and Other Semi-Dwarf Mutants. Euphytica 2001, 120, 317–328. [Google Scholar] [CrossRef]
- Adem, G.D.; Roy, S.J.; Zhou, M.; Bowman, J.P.; Shabala, S. Evaluating Contribution of Ionic, Osmotic and Oxidative Stress Components Towards Salinity Tolerance in Barley. BMC Plant Biol. 2014, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Kuang, L.; Li, X.; Wu, L.; Wu, D.; Zhang, G. Metabolomic and Transcriptomic Analyses Reveal the Reasons Why Hordeum Marinum Has Higher Salt Tolerance than Hordeum vulgare. Environ. Exp. Bot. 2018, 156, 48–61. [Google Scholar] [CrossRef]
- Wei, W.; Bilsborrow, P.E.; Hooley, P.; Fincham, D.A.; Lombi, E.; Forster, B.P. Salinity Induced Differences in Growth, Ion Distribution and Partitioning in Barley between the Cultivar Maythorpe and Its Derived Mutant Golden Promise. Plant Soil 2003, 250, 183–191. [Google Scholar] [CrossRef]
- Torun, H. Time-Course Analysis of Salicylic Acid Effects on Ros Regulation and Antioxidant Defense in Roots of Hulled and Hulless Barley under Combined Stress of Drought, Heat and Salinity. Physiol. Plant. 2019, 165, 169–182. [Google Scholar] [CrossRef]
- Forster, B.P.; Pakniyat, H.; Macaulay, M.; Matheson, W.; Phillips, M.S.; Thomas, W.T.B.; Powell, W. Variation in the Leaf Sodium Content of the Hordeum vulgare (Barley) Cultivar Maythorpe and Its Derived Mutant Cv. Golden Promise. Heredity 1994, 73, 249–253. [Google Scholar] [CrossRef]
- Pakniyat, H.J. Genetic Studies on Salt Tolerance in Barley (Hordeum vulgare L.). Ph.D. Thesis, The University of Reading, Reading, UK, 1996. [Google Scholar]
- Shelden, M.C.; Roessner, U.; Sharp, R.E.; Tester, M.; Bacic, A. Genetic Variation in the Root Growth Response of Barley Genotypes to Salinity Stress. Funct. Plant Biol. 2013, 40, 516–530. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.H.; Morrison, J.I.; Baldwin, B.S. Preliminary Screening of Domestic Barley and Wild Barley Genotypes for Salt Tolerance. Agrosyst. Geosci. Environ. 2021, 4, e20151. [Google Scholar] [CrossRef]
- Kuang, L.; Yu, J.; Shen, Q.; Fu, L.; Wu, L. Identification of Micrornas Responding to Aluminium, Cadmium and Salt Stresses in Barley Roots. Plants 2021, 10, 2754. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, P.; Chen, Z.; Gu, Z.; Yang, R. Nacl Stress on Physio-Biochemical Metabolism and Antioxidant Capacity in Germinated Hulless Barley (Hordeum vulgare L.). J. Sci. Food Agric. 2019, 99, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Feng, L.; Chen, F.; Li, Q.; Pang, Y.; Zhao, Y. Differential Physiological Responses of Hulless Barley and Barley to Nacl Stress. Genom. Appl. Biol. 2012, 31, 609–616. [Google Scholar]
- Ma, Y.; Wang, P.; Gu, Z.; Tao, Y.; Shen, C.; Zhou, Y.; Han, Y.; Yang, R. Ca2+ Involved in Gaba Signal Transduction for Phenolics Accumulation in Germinated Hulless Barley under Nacl Stress. Food Chem. X 2019, 2, 100023. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Xu, J.; He, X.; Yang, Z.; Fang, W.; Tao, J. Role of Exogenous Melatonin Involved in Phenolic Acid Metabolism of Germinated Hulless Barley under Nacl Stress. Plant Physiol. Biochem. 2022, 170, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, P.; Wang, M.; Sun, M.; Gu, Z.; Yang, R. Gaba Mediates Phenolic Compounds Accumulation and the Antioxidant System Enhancement in Germinated Hulless Barley under Nacl Stress. Food Chem. 2019, 270, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Zhang, D.; Wang, J.; Wang, J.; Ren, P.; Yao, L.; Si, E.; Kong, Y.; Wang, H. Integrative Transcriptomic and Proteomic Analyses of Molecular Mechanism Responding to Salt Stress During Seed Germination in Hulless Barley. Int. J. Mol. Sci. 2020, 21, 359. [Google Scholar] [CrossRef]
- Liu, N.; Chen, J.; Wang, T.; Li, Q.; Cui, P.; Jia, C.; Hong, Y. Overexpression of Wax Inducer1/Shine1 Gene Enhances Wax Accumulation under Osmotic Stress and Oil Synthesis in Brassica Napus. Int. J. Mol. Sci. 2019, 20, 4435. [Google Scholar] [CrossRef]
- Djemal, R.; Khoudi, H. Tdshn1, a Win1/Shn1-Type Transcription Factor, Imparts Multiple Abiotic Stress Tolerance in Transgenic Tobacco. Environ. Exp. Bot. 2016, 131, 89–100. [Google Scholar] [CrossRef]
- Djemal, R.; Khoudi, H. The Barley Shn1-Type Transcription Factor Hvshn1 Imparts Heat, Drought and Salt Tolerances in Transgenic Tobacco. Plant Physiol. Biochem. 2021, 164, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Capo-chichi, L.; Kenward, K.; Nyachiro, J.; Anyia, A. Nud Locus and the Effects on Seedling Vigour Related Traits for Genetic Improvement of Hulless Barley. J. Plant Sci. Mol. Breed. 2012, 1, 2. [Google Scholar] [CrossRef]
- Atabayeva, S.; Nurmahanova, A.; Minocha, S.; Ahmetova, A.; Kenzhebayeva, S.; Aidosova, S.; Nurzhanova, A.; Zhardamalieva, A.; Asr, S.; Alybayeva, R. The Effect of Salinity on Growth and Anatomical Attributes of Barley Seedling (Hordeum vulgare L.). Afr. J. Biotechnol. 2013, 12, 2366–2377. [Google Scholar]
- Chen, J.; Wang, W.-H.; Wu, F.-H.; He, E.-M.; Liu, X.; Shangguan, Z.-P.; Zheng, H.-L. Hydrogen Sulfide Enhances Salt Tolerance through Nitric Oxide-Mediated Maintenance of Ion Homeostasis in Barley Seedling Roots. Sci. Rep. 2015, 5, 12516. [Google Scholar] [CrossRef] [PubMed]
- Nefissi Ouertani, R.; Arasappan, D.; Ruhlman, T.A.; Chikha, M.B.; Abid, G.; Mejri, S.; Ghorbel, A.; Jansen, R.K. Effects of Salt Stress on Transcriptional and Physiological Responses in Barley Leaves with Contrasting Salt Tolerance. Int. J. Mol. Sci. 2022, 23, 5006. [Google Scholar] [CrossRef]
- Widodo, J.H.P.; Newbigin, E.; Tester, M.; Bacic, A.; Roessner, U. Metabolic Responses to Salt Stress of Barley (Hordeum vulgare L.) Cultivars, Sahara and Clipper, Which Differ in Salinity Tolerance. J. Exp. Bot. 2009, 60, 4089–4103. [Google Scholar] [CrossRef]
- Long, N.V.; Dolstra, O.; Malosetti, M.; Kilian, B.; Graner, A.; Visser, R.G.F.; van der Linden, C.G. Association Mapping of Salt Tolerance in Barley (Hordeum vulgare L.). Theor. Appl. Genet. 2013, 126, 2335–2351. [Google Scholar] [CrossRef]
- Derakhshani, Z.; Bhave, M.; Shah, R.M. Metabolic Contribution to Salinity Stress Response in Grains of Two Barley Cultivars with Contrasting Salt Tolerance. Environ. Exp. Bot. 2020, 179, 104229. [Google Scholar] [CrossRef]
- Shavrukov, Y. Salt Stress or Salt Shock: Which Genes Are We Studying? J. Exp. Bot. 2012, 64, 119–127. [Google Scholar] [CrossRef]
- Skorupa, M.; Gołębiewski, M.; Kurnik, K.; Niedojadło, J.; Kęsy, J.; Klamkowski, K.; Wójcik, K.; Treder, W.; Tretyn, A.; Tyburski, J. Salt Stress Vs. Salt Shock—The Case of Sugar Beet and Its Halophytic Ancestor. BMC Plant Biol. 2019, 19, 57. [Google Scholar] [CrossRef] [PubMed]
- Rubio, M.C.; Bustos-Sanmamed, P.; Clemente, M.R.; Becana, M. Effects of Salt Stress on the Expression of Antioxidant Genes and Proteins in the Model Legume Lotus Japonicus. New Phytol. 2009, 181, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Luckey, T.D. Physiological Benefits from Low Levels of Ionizing Radiation. Health Phys 1982, 43, 771–789. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J. Hormesis: Why It Is Important to Toxicology and Toxicologists. Environ. Toxicol. Chem. 2008, 27, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Erofeeva, E.A. Environmental Hormesis: From Cell to Ecosystem. Curr. Opin. Environ. Sci. Health 2022, 29, 100378. [Google Scholar] [CrossRef]
- Volkova, P.Y.; Bondarenko, E.V.; Kazakova, E.A. Radiation Hormesis in Plants. Curr. Opin. Toxicol. 2022, 30, 100334. [Google Scholar] [CrossRef]
- Antonova, E.V.; Karimullina, E.M.; Pozolotina, V.N. Intraspecific Variation in Melandrium album along a Radioactive Contamination Gradient at the Eastern Ural Radioactive Trace. Russ. J. Ecol. 2013, 44, 18–27. [Google Scholar] [CrossRef]
- Antonova, E.V.; Pozolotina, V.N.; Karimullina, E.M. Variation in the Seed Progeny of Smooth Brome Grass, Bromus inermis Leyss., under Conditions of Chronic Irradiation in the Zone of the Eastern Ural Radioactive Trace. Russ. J. Ecol. 2014, 45, 508–516. [Google Scholar] [CrossRef]
- Ågren, G.I.; Franklin, O. Root : Shoot Ratios, Optimization and Nitrogen Productivity. Ann. Bot. 2003, 92, 795–800. [Google Scholar] [CrossRef]
- Junchao, J.; Chaodong, L.; Zhangyue, C. Soil Texture Rather Than Water Potential Determines the Root:Shoot Ratio in Ryegrass and Alfalfa. J. Soil Sci. Plant Nutr. 2023, 23, 1297–1305. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Xu, L.-K. Sensitivity of Growth of Roots Versus Leaves to Water Stress: Biophysical Analysis and Relation to Water Transport. J. Exp. Bot. 2000, 51, 1595–1616. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, A.; Ziemann, M.; Bhave, M. Identification of Salt-Tolerant Barley Varieties by a Consolidated Physiological and Molecular Approach. Acta Physiol. Plant. 2015, 37, 1–12. [Google Scholar] [CrossRef]
- Cassaniti, C.; Leonardi, C.; Flowers, T.J. The Effects of Sodium Chloride on Ornamental Shrubs. Sci. Hortic. 2009, 122, 586–593. [Google Scholar] [CrossRef]
- Hniličková, H.; Hnilička, F.; Martinkova, J.; Kraus, K. Effects of Salt Stress on Water Status, Photosynthesis and Chlorophyll Fluorescence of Rocket. Plant Soil Environ. 2017, 63, 362–367. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Yuan, M. Salt Tolerance Requires Cortical Microtubule Reorganization in Arabidopsis. Plant Cell Physiol. 2007, 48, 1534–1547. [Google Scholar] [CrossRef]
- Shi, H.; Kim, Y.; Guo, Y.; Stevenson, B.; Zhu, J.-K. The Arabidopsis Sos5 Locus Encodes a Putative Cell Surface Adhesion Protein and Is Required for Normal Cell Expansion. Plant Cell 2003, 15, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Shikata, M.; Koyama, T.; Ohtsubo, N.; Mitsuda, N.; Ohme-Takagi, M. Mixta-Like Transcription Factors and Wax Inducer1/Shine1 Coordinately Regulate Cuticle Development in Arabidopsis and Torenia fournieri. Plant Cell 2013, 25, 1609–1624. [Google Scholar] [CrossRef]
- Shi, J.X.; Malitsky, S.; De Oliveira, S.; Branigan, C.; Franke, R.B.; Schreiber, L.; Aharoni, A. Shine Transcription Factors Act Redundantly to Pattern the Archetypal Surface of Arabidopsis Flower Organs. PLoS Genet. 2011, 7, e1001388. [Google Scholar] [CrossRef]
- Pozolotina, V.N.; Antonova, E.V.; Bezel, V.S. Intrapopulation Variation in the Quality of Dandelion Seed Progeny in Zones of Chemical and Radioactive Contamination. Russ. J. Ecol. 2009, 40, 361–367. [Google Scholar] [CrossRef]
- Cloutier, Y.; Siminovitch, D. Correlation between Cold- and Drought-Induced Frost Hardiness in Winter Wheat and Rye Varieties 1. Plant Physiol. 1982, 69, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of Pubmed, Scopus, Web of Science, and Google Scholar: Strengths and Weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Özmen, A.D.; Özdemír, F.; Türkan, I. Effects of Paclobutrazol on Response of Two Barley Cultivars to Salt Stress. Biol. Plant. 2003, 46, 263–268. [Google Scholar] [CrossRef]
- Shoeva, O.Y.; Khlestkina, E.K. Differently Expressed ‘Early’ Flavonoid Synthesis Genes in Wheat Seedlings Become to Be Co-Regulated under Salinity Stress. Cereal Res. Commun. 2015, 43, 537–543. [Google Scholar] [CrossRef]
- GOST. Measuring Metal Rules. Basic Parameters and Dimensions. Specifications; Standartinform: Moscow, Russia, 2007. [Google Scholar]
- Mamaev, S.A. Patterns of Intraspecific Variability of the Pinaceae Family in the Urals. Ph.D. Thesis, IPAE UB RAS, Sverdlovsk, Russia, 1970. [Google Scholar]
- Statistica (Data Analysis Software System), New Features and Enhancements Version V. 10; StatSoft Inc.: Tulsa, OK, USA, 2011.
Lines | NaCl Concentration, mM | Fold Increase in CV at 150 mM Compared to 0 mM | |||
---|---|---|---|---|---|
0 | 50 | 100 | 150 | ||
Average shoot length | |||||
WT | 22.81 | 30.00 | 37.75 | 69.15 | 3.0 ↑ |
nud 07-1 | 23.28 | 24.61 | 21.62 | 44.13 | 1.9 ↑ |
nud 05-4 | 28.36 | 27.46 | 36.50 | 50.07 | 1.8 ↑ |
nud 01-4 | 18.58 | 19.67 | 22.65 | 23.09 | 1.2 ↔ |
win1 25-2-18 | 21.52 | 19.08 | 18.65 | 26.87 | 1.2 ↔ |
win1 25-2-2 | 12.61 | 19.06 | 24.56 | 20.24 | 1.6 ↑ |
win1 17-4-14 | 21.56 | 17.60 | 27.23 | 30.68 | 1.4 ↑ |
Average root length | |||||
WT | 29.24 | 36.65 | 28.85 | 29.39 | 1.0 ↔ |
nud 07-1 | 43.87 | 25.34 | 20.68 | 22.65 | 0.5 ↓ |
nud 05-4 | 25.36 | 29.24 | 28.20 | 24.56 | 1.0 ↔ |
nud 01-4 | 30.52 | 26.35 | 23.98 | 27.07 | 0.9 ↔ |
win1 25-2-18 | 26.01 | 17.17 | 16.73 | 24.78 | 1.0 ↔ |
win1 25-2-2 | 25.83 | 21.52 | 27.61 | 22.65 | 0.9 ↔ |
win1 17-4-14 | 27.29 | 27.91 | 30.90 | 24.97 | 0.9 ↔ |
Shoot length/Average root length | |||||
WT | 27.52 | 26.74 | 33.45 | 81.90 | 3.0 ↑ |
nud 07-1 | 35.19 | 18.71 | 17.65 | 35.90 | 1.0 ↔ |
nud 05-4 | 37.21 | 14.89 | 26.42 | 36.46 | 1.0 ↔ |
nud 01-4 | 30.13 | 13.02 | 10.40 | 15.50 | 0.5 ↓ |
win1 25-2-18 | 15.26 | 12.32 | 16.14 | 21.62 | 1.4 ↑ |
win1 25-2-2 | 15.72 | 21.86 | 19.41 | 21.54 | 1.4 ↑ |
win1 17-4-14 | 24.63 | 15.42 | 25.21 | 23.74 | 1.0 ↔ |
Shoot length/Sum of root lengths | |||||
WT | 29.65 | 28.90 | 32.42 | 104.17 | 3.5 ↑ |
nud 07-1 | 39.58 | 22.37 | 19.30 | 38.37 | 1.0 ↔ |
nud 05-4 | 32.78 | 17.32 | 23.51 | 53.74 | 1.6 ↑ |
nud 01-4 | 32.36 | 15.29 | 14.52 | 15.10 | 0.5 ↓ |
win1 25-2-18 | 48.72 | 13.31 | 19.12 | 22.29 | 0.5 ↓ |
win1 25-2-2 | 17.25 | 28.16 | 18.13 | 23.11 | 1.3 ↑ |
win1 17-4-14 | 27.32 | 21.24 | 25.35 | 22.23 | 0.8 ↔ |
Seedling length (shoot + root) | |||||
WT | 27.39 | 40.45 | 40.41 | 43.71 | 1.6 ↑ |
nud 07-1 | 31.43 | 23.99 | 22.00 | 32.10 | 1.0 ↔ |
nud 05-4 | 27.94 | 29.70 | 34.69 | 38.35 | 1.4 ↑ |
nud 01-4 | 25.37 | 29.55 | 26.83 | 31.22 | 1.2 ↔ |
win1 25-2-18 | 24.18 | 16.87 | 16.61 | 25.96 | 1.1 ↔ |
win1 25-2-2 | 26.50 | 17.19 | 28.62 | 27.07 | 1.0 ↔ |
win1 17-4-14 | 25.01 | 29.39 | 35.67 | 28.80 | 1.2 ↔ |
From first to sixth root length * | |||||
WT | 31.3 (27.9–38.1) | 37.2 (33.8–39.3) | 30.8 (28.6–33.1) | 33.2 (27.2–39.0) | 0.9–1.2 ↔ |
nud 07-1 | 48.4 (33.8–51.9) | 27.8 (22.0–35.1) | 24.7 (18.2–32.7) | 28.5 (23.4–33.6) | 0.5–0.7 ↓ |
nud 05-4 | 29.5 (22.3–36.7) | 30.8 (29.1–35.0) | 29.7 (24.4–35.9) | 28.3 (25.9–32.7) | 0.7–1.3 ↓ ↑ ↔ ** |
nud 01-4 | 35.5 (29.9–38.6) | 26.1 (20.3–39.9) | 26.2 (21.6–34.9) | 24.6 (15.6–34.5) | 0.4–1.2 ↓ ↔ ** |
win1 25-2-18 | 27.6 (23.9–39.0) | 19.1 (16.3–24.9) | 20.0 (17.3–28.2) | 25.5 (21.7–32.5) | 0.8–1.1 ↔ |
win1 25-2-2 | 25.7 (21.7–34.0) | 25.4 (19.8–38.8) | 26.2 (23.4–31.6) | 24.8 (22.0–32.0) | 0.8–1.1 ↔ |
win1 17-4-14 | 31.0 (26.1–40.6) | 28.7 (24.9–36.8) | 27.7 (22.9–34.0) | 28.7 (23.5–37.1) | 0.9–1.1 ↔ |
Groups | Abnormalities |
---|---|
Present in all lines | Root hairiness |
Change in coleoptile shape | |
Change in leaf color | |
Absent in all lines | Change in coleoptile color |
Rarely found in WT | Change in shape of first root |
Present in nud KO and win1 KO lines | Change in leaf tip color |
Necrosis of one root | |
Dancer (multiple twists of roots) | |
Change in shape of second root | |
Change in shape of third root | |
Change in leaf shape | |
Present only in nud KO lines | Necrosis of two roots |
Necrosis of three roots | |
Necrosis of four roots | |
Necrosis of five roots | |
Necrosis of six roots | |
Necrosis of all roots | |
Present only in one win1 KO line (win1 25-2-18) | Twins |
Cultivars, Varieties | Grains | Organs | Endpoints | NaCl, mM | Exposure | Age | Effects | Salt Tolerance | Reference |
---|---|---|---|---|---|---|---|---|---|
GP, Maythorpe | Hd | Shoots | FW | 150 | 4 w | 7 w | ↓ | GP < PP Maythorpe | [44] |
GP, Maythorpe | Hd | Roots | FW | 150 | 4 w | 7 w | ↓ | GP > PP Maythorpe | [44] |
GP, Maythorpe | Hd | Grains | GW | 25 (control) 150 | 4 w | unspecified | ↓ | GP > PP Maythorpe | [45] quoted from [39] |
GP, Maythorpe | Hd | Plants | PW | 25 (control) 150 | 4 w | unspecified | ↓ | GP > PP Maythorpe | [45] quoted from [39] |
GP, Maythorpe | Hd | Plants | PH | 25 (control) 150 | 4 w | unspecified | ↓ | GP < PP Maythorpe | [45] quoted from [39] |
GP, Maythorpe | Hd | Plants | NS | 25 (control) 150 | 4 w | unspecified | ↓ | GP > PP Maythorpe | [45] quoted from [39] |
GP, Maythorpe | Hd | Plants | DW | 50 100 150 | 2–6 d | 52 d | ↔ ↓ ↓ | GP > PP Maythorpe GP > PP Maythorpe GP ≈ PP Maythorpe | [42] |
Clipper, Skiff, Keel, Barque, Mundah, ST: CM72, Sahara, PI71284-48 | Hd | Roots | RL | 100 150 | unspecified | unspecified | ↓ ↓ | – | [46] |
Clipper, Skiff, Keel, Barque, Mundah, ST: CM72, Sahara, PI71284-48 | Hd | Shoots | DW | 100 150 | unspecified | unspecified | ↓ ↓ | – | [46] |
GP, Numar, Naso | Hd | Shoots | FW, DW | 150 | 4 w | 5 w | ↓ | Numar < GP < Naso | [40] |
GP, XZ113, H559 | Hd | Shoots | FW, DW | 400 | 7 d | 17–27 d | ↓ | GP < XZ113 < H559 | [41] |
GP, XZ113, H559 | Hd | Roots | FW, DW | 400 | 7 d | 17–27 d | ↓ | GP < XZ113 < H559 | [41] |
PI 219796, PI 254894, PI 268243, PI 296843, PI 560558 | Hd | Roots | RL | 171, 257, 342 | 10 d | 10 d | ↓ | – | [47] |
PI 219796, PI 254894, PI 268243, PI 296843, PI 560558 | Hd | Shoots | SL | 171, 257, 342 | 10 d | 10 d | ↓ | – | [47] |
PI 219796, PI 254894, PI 268243, PI 296843, PI 560558 | Hd | Seeds | G | 342 | 10 d | unspecified | =0 | – | [47] |
GP | Hd | Roots | RL | 200 | 10 d | 22 d | ↓ | – | [48] |
Naked barley | Nd | Seedlings | PH | 30 60, 90, 120 | 4–6 d | 4–6 d | ↔ ↓ | – | [49] |
Naked barley | Nd | Roots | RL | 30 60, 90, 120 | 4–6 d | 4–6 d | ↔ ↓ | – | [49] |
Naked barley | Nd | Seedlings | FW | 30 60, 90, 120 | 6 d | 6 d | ↔ ↓ | – | [49] |
Naked and hulled barley | Nd, Hd | Grains | G | 171 342 | unspecified a | unspecified a | ↓ | Nd > Hd | [50] |
Naked and hulled barley | Nd, Hd | Roots | RL | 171 342 | unspecified a | unspecified a | a | Nd > Hd | [50] |
Naked and hulled barley | Nd, Hd | Shoots | SL | 171 342 | unspecified a | unspecified a | a | Nd > Hd | [50] |
Özen, Tarm | Nd, Hd | Roots | RL | DHS (−0.05 MPa, PEG 6000 + 150 mM NaCl + 35 °C) | 24–72 h | 2 w | ↓ | Nd < Hd | [43] |
Parameters | Salt Tolerance Range | Resume |
---|---|---|
Seedling survival and root and shoot parameters | ||
Seed germination | win1 < WT < nud | win1 KO is more sensitive |
Survival rate | win1 < nud < WT | win1 KO is more sensitive |
Seedlings with leaves | WT < nud < win1 | WT is more sensitive |
Shoot length | WT < nud < win1 | WT is more sensitive |
Mean root length | win1 < WT < nud | win1 KO is more sensitive |
Total root length | WT ≈ win1 < nud | nud KO is more tolerant |
Seedling length | WT < win1 < nud | WT is more sensitive |
Root number | WT < nud < win1 | WT is more sensitive |
First root length | WT ≈ win1 < nud | nud KO is more tolerant |
Second root length | WT ≈ win1 < nud | nud KO is more tolerant |
Third root length | win1 < WT < nud | win1 KO is more sensitive |
Fourth root length | win1 < WT < nud | win1 KO is more sensitive |
Fifth root length | WT ≈ win1 < nud | nud KO is more tolerant |
Sixth root length | WT ≈ win1 < nud | nud KO is more tolerant |
Seventh root length | WT < win1 < nud | WT is more sensitive |
Shoot/Mean root length | nud < win1 ≈ WT | nud KO is more sensitive * |
Shoot/Total root length | nud < win1 < WT | nud KO is more sensitive * |
Root weight | win1 < WT < nud | win1 KO is more sensitive |
Shoot weight | WT ≈ nud < win1 | win1 KO is more tolerant |
Seedling weight | WT ≈ win1 < nud | nud KO is more tolerant |
Single-seedling weight | WT < nud < win1 | WT is more sensitive |
Morphological abnormalities | ||
Hairy roots | win1 < nud < WT | win1 KO is more sensitive |
Tolerance Range | Stressors | |
---|---|---|
Salt | γ-Irradiation | |
nud < win1 < WT | 4.55 | 9.09 |
nud < win1 ≈ WT | 4.55 | – |
win1 < nud < WT | 9.09 | 18.18 |
win1 < WT < nud | 22.73 | 45.45 |
win1 < WT ≈ nud | – | 4.55 |
win1 ≈ nud < WT | – | 9.09 |
WT < nud < win1 | 18.18 | 4.55 |
WT < win1 < nud | 9.09 | 9.09 |
WT ≈ nud < win1 | 4.55 | – |
WT ≈ win1 < nud | 27.27 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonova, E.V.; Shimalina, N.S.; Korotkova, A.M.; Kolosovskaya, E.V.; Gerasimova, S.V.; Khlestkina, E.K. Germination and Growth Characteristics of nud Knockout and win1 Knockout Barley Lines under Salt Stress. Plants 2024, 13, 1169. https://doi.org/10.3390/plants13091169
Antonova EV, Shimalina NS, Korotkova AM, Kolosovskaya EV, Gerasimova SV, Khlestkina EK. Germination and Growth Characteristics of nud Knockout and win1 Knockout Barley Lines under Salt Stress. Plants. 2024; 13(9):1169. https://doi.org/10.3390/plants13091169
Chicago/Turabian StyleAntonova, Elena V., Nadezhda S. Shimalina, Anna M. Korotkova, Ekaterina V. Kolosovskaya, Sophia V. Gerasimova, and Elena K. Khlestkina. 2024. "Germination and Growth Characteristics of nud Knockout and win1 Knockout Barley Lines under Salt Stress" Plants 13, no. 9: 1169. https://doi.org/10.3390/plants13091169
APA StyleAntonova, E. V., Shimalina, N. S., Korotkova, A. M., Kolosovskaya, E. V., Gerasimova, S. V., & Khlestkina, E. K. (2024). Germination and Growth Characteristics of nud Knockout and win1 Knockout Barley Lines under Salt Stress. Plants, 13(9), 1169. https://doi.org/10.3390/plants13091169