Estimation of Intercepted Solar Radiation and Stem Water Potential in a Table Grape Vineyard Covered by Plastic Film Using Sentinel-2 Data: A Comparison of OLS-, MLR-, and ML-Based Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Data
2.3. Satellite Data
2.4. Relating ISR and Ψstem with Spectral and Meteorological Features
2.4.1. Polynomial Regression
2.4.2. Multiple Linear Regression
2.4.3. Machine Learning Algorithms
2.4.4. Model Performance Evaluation
3. Results
3.1. Ground Data Variability
3.2. Temporal Trends of Vineyard Reflectance and Spectral Indices
3.3. Relating ISR and Ψstem with Spectral and Meteorological Features: Linear Regression Analysis
3.3.1. ISR Estimation
3.3.2. Ψstem Estimation
3.4. Relating ISR and Ψstem with Spectral and Meteorological Features: Multivariate Approach
3.5. Relating ISR and Ψstem with Spectral and Meteorological Features: Machine Learning Approach
3.6. ISR and Ψstem Estimation Maps
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Grape Production in 2022 Reached the Second Highest Peak of the Last Twenty Years—Wine Industry Advisor. Available online: https://winetitles.com.au/global-grape-production-in-2022-reached-the-second-highest-peak-of-the-last-twenty-years/ (accessed on 27 February 2024).
- Marín, D.; Armengol, J.; Carbonell-Bejerano, P.; Escalona, J.M.; Gramaje, D.; Hernández-Montes, E.; Intrigliolo, D.S.; Martínez-Zapater, J.M.; Medrano, H.; Mirás-Avalos, J.M.; et al. Challenges of Viticulture Adaptation to Global Change: Tackling the Issue from the Roots. Aust. J. Grape Wine Res. 2021, 27, 8–25. [Google Scholar] [CrossRef]
- Matese, A.; Filippo Di Gennaro, S. Technology in Precision Viticulture: A State of the Art Review. Int. J. Wine Res. 2015, 7, 69–81. [Google Scholar] [CrossRef]
- Šimanský, V.; Wójcik-Gront, E.; Jonczak, J.; Horák, J. Optimizing Soil Management for Sustainable Viticulture: Insights from a Rendzic Leptosol Vineyard in the Nitra Wine Region, Slovakia. Agronomy 2023, 13, 3042. [Google Scholar] [CrossRef]
- Ferro, M.V.; Catania, P. Technologies and Innovative Methods for Precision Viticulture: A Comprehensive Review. Horticulturae 2023, 9, 399. [Google Scholar] [CrossRef]
- Laroche-Pinel, E.; Albughdadi, M.; Duthoit, S.; Chéret, V.; Rousseau, J.; Clenet, H. Understanding Vine Hyperspectral Signature through Different Irrigation Plans: A First Step to Monitor Vineyard Water Status. Remote Sens. 2021, 13, 536. [Google Scholar] [CrossRef]
- Cohen, Y.; Gogumalla, P.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Lenski, I.; Michael, Y.; Helman, D. Can Time Series of Multispectral Satellite Images Be Used to Estimate Stem Water Potential in Vineyards? In Precision Agriculture ’19; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 445–451. ISBN 978-90-8686-337-2. [Google Scholar]
- Ali, A.; Imran, M. Evaluating the Potential of Red Edge Position (REP) of Hyperspectral Remote Sensing Data for Real Time Estimation of LAI & Chlorophyll Content of Kinnow Mandarin (Citrus Reticulata) Fruit Orchards. Sci. Hortic. 2020, 267, 109326. [Google Scholar] [CrossRef]
- Kalisperakis, I.; Stentoumis, C.; Grammatikopoulos, L.; Karantzalos, K. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2D Image Mosaics and 3D Canopy Surface Models. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Toronto, ON, Canada, 30 August–2 September 2015; Volume XL-1-W4, pp. 299–303. [Google Scholar] [CrossRef]
- Rozenstein, O.; Haymann, N.; Kaplan, G.; Tanny, J. Estimating Cotton Water Consumption Using a Time Series of Sentinel-2 Imagery. Agric. Water Manag. 2018, 207, 44–52. [Google Scholar] [CrossRef]
- Rozenstein, O.; Haymann, N.; Kaplan, G.; Tanny, J. Validation of the Cotton Crop Coefficient Estimation Model Based on Sentinel-2 Imagery and Eddy Covariance Measurements. Agric. Water Manag. 2019, 223, 105715. [Google Scholar] [CrossRef]
- Ramoelo, A.; Cho, M.A. Explaining Leaf Nitrogen Distribution in a Semi-Arid Environment Predicted on Sentinel-2 Imagery Using a Field Spectroscopy Derived Model. Remote Sens. 2018, 10, 269. [Google Scholar] [CrossRef]
- Peng, X.; Chen, D.; Zhou, Z.; Zhang, Z.; Xu, C.; Zha, Q.; Wang, F.; Hu, X. Prediction of the Nitrogen, Phosphorus and Potassium Contents in Grape Leaves at Different Growth Stages Based on UAV Multispectral Remote Sensing. Remote Sens. 2022, 14, 2659. [Google Scholar] [CrossRef]
- Jesus, J.; Santos, F.; Gomes, A.; Teodoro, A.C. Temporal Analysis of the Vineyard Phenology from Remote Sensing Data Using Google Earth Engine. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XXII, Online, 20 September 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11528, pp. 39–50. [Google Scholar]
- Fraga, H.; Amraoui, M.; Malheiro, A.C.; Moutinho-Pereira, J.; Eiras-Dias, J.; Silvestre, J.; Santos, J.A. Examining the Relationship between the Enhanced Vegetation Index and Grapevine Phenology. Eur. J. Remote Sens. 2014, 47, 753–771. [Google Scholar] [CrossRef]
- Laroche-Pinel, E.; Duthoit, S.; Albughdadi, M.; Costard, A.D.; Rousseau, J.; Chéret, V.; Clenet, H. Towards Vine Water Status Monitoring on a Large Scale Using Sentinel-2 Images. Remote Sens. 2021, 13, 1837. [Google Scholar] [CrossRef]
- Ilniyaz, O.; Du, Q.; Shen, H.; He, W.; Feng, L.; Azadi, H.; Kurban, A.; Chen, X. Leaf Area Index Estimation of Pergola-Trained Vineyards in Arid Regions Using Classical and Deep Learning Methods Based on UAV-Based RGB Images. Comput. Electron. Agric. 2023, 207, 107723. [Google Scholar] [CrossRef]
- Orusa, T.; Borgogno Mondino, E. Exploring Short-Term Climate Change Effects on Rangelands and Broad-Leaved Forests by Free Satellite Data in Aosta Valley (Northwest Italy). Climate 2021, 9, 47. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Jia, X.; Wu, J. Impact of Collinearity on Linear and Nonlinear Spectral Mixture Analysis. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar]
- Lopez-Fornieles, E.; Brunel, G.; Rancon, F.; Gaci, B.; Metz, M.; Devaux, N.; Taylor, J.; Tisseyre, B.; Roger, J.-M. Potential of Multiway PLS (N-PLS) Regression Method to Analyse Time-Series of Multispectral Images: A Case Study in Agriculture. Remote Sens. 2022, 14, 216. [Google Scholar] [CrossRef]
- Yu, S.; Fan, J.; Lu, X.; Wen, W.; Shao, S.; Liang, D.; Yang, X.; Guo, X.; Zhao, C. Deep Learning Models Based on Hyperspectral Data and Time-Series Phenotypes for Predicting Quality Attributes in Lettuces under Water Stress. Comput. Electron. Agric. 2023, 211, 108034. [Google Scholar] [CrossRef]
- Loggenberg, K.; Strever, A.; Greyling, B.; Poona, N. Modelling Water Stress in a Shiraz Vineyard Using Hyperspectral Imaging and Machine Learning. Remote Sens. 2018, 10, 202. [Google Scholar] [CrossRef]
- Doktor, D.; Lausch, A.; Spengler, D.; Thurner, M. Extraction of Plant Physiological Status from Hyperspectral Signatures Using Machine Learning Methods. Remote Sens. 2014, 6, 12247–12274. [Google Scholar] [CrossRef]
- Ilniyaz, O.; Kurban, A.; Du, Q. Leaf Area Index Estimation of Pergola-Trained Vineyards in Arid Regions Based on UAV RGB and Multispectral Data Using Machine Learning Methods. Remote Sens. 2022, 14, 415. [Google Scholar] [CrossRef]
- Suwanlee, S.R.; Pinasu, D.; Som-ard, J.; Borgogno-Mondino, E.; Sarvia, F. Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms. Remote Sens. 2024, 16, 750. [Google Scholar] [CrossRef]
- Novello, V.; de Palma, L. Growing Grapes under Cover. Acta Hortic. 2008, 785, 353–362. [Google Scholar] [CrossRef]
- Novello, V.; de Palma, L.; Tarricone, L.; Vox, G. Effects of Different Plastic Sheet Coverings on Microclimate and Berry Ripening of Table Grape Cv “Matilde”. OENO One 2000, 34, 49–55. [Google Scholar] [CrossRef]
- Fidelibus, M.W.; Vasquez, S.J.; Kurtural, S.K. Late-Season Plastic Canopy Covers Affect Canopy Microclimate and Fruit Quality of ‘Autumn King’ and ‘Redglobe’ Table Grapes. HortTechnology 2016, 26, 141–147. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; de Palma, L.; Novello, V. Investigating Sentinel 2 Multispectral Imagery Efficiency in Describing Spectral Response of Vineyards Covered with Plastic Sheets. Agronomy 2020, 10, 1909. [Google Scholar] [CrossRef]
- Vox, G.; Schettini, E.; Scarascia Mugnozza, G.; Tarricone, L.; de Palma, L. Covering Plastic Films for Vineyard Protected Cultivation. Acta Hortic. 2014, 1037, 897–904. [Google Scholar] [CrossRef]
- Kittas, C.; Rigakis, N.; Katsoulas, N.; Bartzanas, T. Influence of Shading Screens on Microclimate, Growth and Productivity of Tomato. Acta Hortic. 2009, 807, 97–102. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Lessio, A.; Tarricone, L.; Novello, V.; de Palma, L. A Comparison between Multispectral Aerial and Satellite Imagery in Precision Viticulture. Precis. Agric. 2018, 19, 195–217. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Mcmaster, G. Growing Degree-Days: One Equation, Two Interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef]
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture, 2nd ed.; Cerruti, L., Ed.; University of California Press: Berkeley, CA, USA, 1974; ISBN 978-0-520-02591-2. [Google Scholar]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological Growth Stages of the Grapevine (Vitis vinifera L. ssp. Vinifera)—Codes and Descriptions According to the Extended BBCH Scale†. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Villagra, P.; García de Cortázar, V.; Ferreyra, R.; Aspillaga, C.; Zúñiga, C.; Ortega-Farias, S.; Sellés, G. Estimation of Water Requirements and Kc Values of ’Thompson Seedless’ Table Grapes Grown in the Overhead Trellis System, Using the Eddy Covariance Method. Chil. J. Agric. Res. 2014, 74, 213–218. [Google Scholar] [CrossRef]
- Choné, X.; Van Leeuwen, C.; Dubourdieu, D.; Gaudillère, J.P. Stem Water Potential Is a Sensitive Indicator of Grapevine Water Status. Ann. Bot. 2001, 87, 477–483. [Google Scholar] [CrossRef]
- Dardanelli, G.; Maltese, A.; Pipitone, C.; Pisciotta, A.; Lo Brutto, M. NRTK, PPP or Static, That Is the Question. Testing Different Positioning Solutions for GNSS Survey. Remote Sens. 2021, 13, 1406. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Sentinel-2-Missions-Sentinel. Available online: https://copernicus.eu/missions/sentinel-2 (accessed on 14 February 2024).
- David, R.M.; Rosser, N.J.; Donoghue, D.N.M. Improving above Ground Biomass Estimates of Southern Africa Dryland Forests by Combining Sentinel-1 SAR and Sentinel-2 Multispectral Imagery. Remote Sens. Environ. 2022, 282, 113232. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Farbo, A.; Novello, V.; Palma, L. de A Fast Regression-Based Approach to Map Water Status of Pomegranate Orchards with Sentinel 2 Data. Horticulturae 2022, 8, 759. [Google Scholar] [CrossRef]
- Petersen, L.K. Real-Time Prediction of Crop Yields From MODIS Relative Vegetation Health: A Continent-Wide Analysis of Africa. Remote Sens. 2018, 10, 1726. [Google Scholar] [CrossRef]
- Farbo, A.; Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. Preliminary Concerns about Agronomic Interpretation of Ndvi Time Series from Sentinel-2 Data: Phenology and Thermal Efficiency of Winter Wheat in Piemonte (Nw Italy). In Proceedings of the The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Nice, France, 6–11 June 2022; Volume XLIII-B3-2022, pp. 863–870. [Google Scholar] [CrossRef]
- Torgbor, B.A.; Rahman, M.M.; Robson, A.; Brinkhoff, J.; Khan, A. Assessing the Potential of Sentinel-2 Derived Vegetation Indices to Retrieve Phenological Stages of Mango in Ghana. Horticulturae 2022, 8, 11. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Szabó, S.; Gácsi, Z.; Balázs, B. Specific Features of NDVI, NDWI and MNDWI as Reflected in Land Cover Categories. Acta Geogr. Debrecina Landsc. Environ. Ser. 2016, 10, 194–202. [Google Scholar] [CrossRef]
- Masina, M.; Lambertini, A.; Daprà, I.; Mandanici, E.; Lamberti, A. Remote Sensing Analysis of Surface Temperature from Heterogeneous Data in a Maize Field and Related Water Stress. Remote Sens. 2020, 12, 2506. [Google Scholar] [CrossRef]
- Pan, Z.; Hu, Y.; Cao, B. Construction of Smooth Daily Remote Sensing Time Series Data: A Higher Spatiotemporal Resolution Perspective. Open Geospat. Data Softw. Stand. 2017, 2, 25. [Google Scholar] [CrossRef]
- Rybski, D.; Neumann, J. A Review on the Pettitt Test Pettitt-Test. In Extremis: Disruptive Events and Trends in Climate and Hydrology; Kropp, J., Schellnhuber, H.-J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 202–213. ISBN 978-3-642-14863-7. [Google Scholar]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard Water Status Estimation Using Multispectral Imagery from an UAV Platform and Machine Learning Algorithms for Irrigation Scheduling Management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Nikolenko, S.I. Synthetic Data for Deep Learning; Springer Optimization and Its Applications; Springer International Publishing: Cham, Germany, 2021; Volume 174, ISBN 978-3-030-75177-7. [Google Scholar]
- Bejani, M.M.; Ghatee, M. A Systematic Review on Overfitting Control in Shallow and Deep Neural Networks. Artif. Intell. Rev. 2021, 54, 6391–6438. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Feature Engineering and Selection: A Practical Approach for Predictive Models; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019; ISBN 978-1-315-10823-0. [Google Scholar]
- Bargagli Stoffi, F.J.; Cevolani, G.; Gnecco, G. Simple Models in Complex Worlds: Occam’s Razor and Statistical Learning Theory. Minds Mach. 2022, 32, 13–42. [Google Scholar] [CrossRef]
- Everitt, B. Book Reviews: Chambers JM, Hastie TJ Eds 1992: Statisti Cal Models in S. California: Wadsworth and Brooks/Cole. Stat. Methods Med. Res. 1992, 1, 220–221. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. LAI and Chlorophyll Estimation for a Heterogeneous Grassland Using Hyperspectral Measurements. ISPRS J. Photogramm. Remote Sens. 2008, 63, 409–426. [Google Scholar] [CrossRef]
- Aho, K.; Derryberry, D.; Peterson, T. Model Selection for Ecologists: The Worldviews of AIC and BIC. Ecology 2014, 95, 631–636. [Google Scholar] [CrossRef]
- Otgonbayar, M.; Atzberger, C.; Chambers, J.; Damdinsuren, A. Mapping Pasture Biomass in Mongolia Using Partial Least Squares, Random Forest Regression and Landsat 8 Imagery. Int. J. Remote Sens. 2019, 40, 3204–3226. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Willmott, C.J. On the Validation of Models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 17 February 2024).
- van Leeuwen, C.; Trégoat, O.; Choné, X.; Bois, B.; Pernet, D.; Gaudillère, J.-P. Vine Water Status Is a Key Factor in Grape Ripening and Vintage Quality for Red Bordeaux Wine. How Can It Be Assessed for Vineyard Management Purposes? OENO One 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Giovos, R.; Tassopoulos, D.; Kalivas, D.; Lougkos, N.; Priovolou, A. Remote Sensing Vegetation Indices in Viticulture: A Critical Review. Agriculture 2021, 11, 457. [Google Scholar] [CrossRef]
- Stolarski, O.; Fraga, H.; Sousa, J.J.; Pádua, L. Synergistic Use of Sentinel-2 and UAV Multispectral Data to Improve and Optimize Viticulture Management. Drones 2022, 6, 366. [Google Scholar] [CrossRef]
- Tassopoulos, D.; Kalivas, D.; Giovos, R.; Lougkos, N.; Priovolou, A. Sentinel-2 Imagery Monitoring Vine Growth Related to Topography in a Protected Designation of Origin Region. Agriculture 2021, 11, 785. [Google Scholar] [CrossRef]
- Nonni, F.; Malacarne, D.; Pappalardo, S.E.; Codato, D.; Meggio, F.; Marchi, M.D. Sentinel-2 Data Analysis and Comparison with UAV Multispectral Images for Precision Viticulture. GI_Forum 2018 2018, 6, 105–116. [Google Scholar] [CrossRef]
- Comparetti, A.; Marques da Silva, J.R. Use of Sentinel-2 Satellite for Spatially Variable Rate Fertiliser Management in a Sicilian Vineyard. Sustainability 2022, 14, 1688. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Araujo, E.S. Optimization of Vineyard Water Management: Challenges, Strategies, and Perspectives. Water 2021, 13, 746. [Google Scholar] [CrossRef]
- López-Lozano, R.; Casterad, M.A. Comparison of Different Protocols for Indirect Measurement of Leaf Area Index with Ceptometers in Vertically Trained Vineyards. Aust. J. Grape Wine Res. 2013, 19, 116–122. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Smith, G.J.; Jonckheere, I.; Coppin, P. Review of Methods for in Situ Leaf Area Index (LAI) Determination: Part II. Estimation of LAI, Errors and Sampling. Agric. For. Meteorol. 2004, 121, 37–53. [Google Scholar] [CrossRef]
- de Palma, L.; Vox, G.; Schettini, E.; Novello, V. Reduction of Evapotranspiration in Microenvironment Conditions of Table Grape Vineyards Protected by Different Types of Plastic Covers. Agronomy 2022, 12, 600. [Google Scholar] [CrossRef]
- Vox, G.; Scarascia Mugnozza, G.; Schettini, E.; de Palma, L.; Tarricone, L.; Gentilesco, G.; Vitali, M. Radiometric Properties of Plastic Films for Vineyard Covering and Their Influence on Vine Physiology and Production. Acta Hortic. 2012, 956, 465–472. [Google Scholar] [CrossRef]
- Kang, Y.; Gao, F.; Anderson, M.; Kustas, W.; Nieto, H.; Knipper, K.; Yang, Y.; White, W.; Alfieri, J.; Torres-Rua, A.; et al. Evaluation of Satellite Leaf Area Index in California Vineyards for Improving Water Use Estimation. Irrig. Sci. 2022, 40, 531–551. [Google Scholar] [CrossRef]
- Vélez, S.; Barajas, E.; Rubio, J.A.; Vacas, R.; Poblete-Echeverría, C. Effect of Missing Vines on Total Leaf Area Determined by NDVI Calculated from Sentinel Satellite Data: Progressive Vine Removal Experiments. Appl. Sci. 2020, 10, 3612. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Giannico, V.; Costanza, L.; Alhajj Ali, S.; Camposeo, S.; Lopriore, G.; Pedrero Salcedo, F.; Vivaldi, G.A. Prediction of Stem Water Potential in Olive Orchards Using High-Resolution Planet Satellite Images and Machine Learning Techniques. Agronomy 2024, 14, 1. [Google Scholar] [CrossRef]
- Rapaport, T.; Hochberg, U.; Shoshany, M.; Karnieli, A.; Rachmilevitch, S. Combining Leaf Physiology, Hyperspectral Imaging and Partial Least Squares-Regression (PLS-R) for Grapevine Water Status Assessment. ISPRS J. Photogramm. Remote Sens. 2015, 109, 88–97. [Google Scholar] [CrossRef]
- Lin, Y.; Zhu, Z.; Guo, W.; Sun, Y.; Yang, X.; Kovalskyy, V. Continuous Monitoring of Cotton Stem Water Potential Using Sentinel-2 Imagery. Remote Sens. 2020, 12, 1176. [Google Scholar] [CrossRef]
- Caruso, G.; Palai, G. Assessing Grapevine Water Status Using Sentinel-2 Images. Italus Hortus 2023, 30, 70. [Google Scholar] [CrossRef]
- Pôças, I.; Gonçalves, J.; Costa, P.M.; Gonçalves, I.; Pereira, L.S.; Cunha, M. Hyperspectral-Based Predictive Modelling of Grapevine Water Status in the Portuguese Douro Wine Region. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 177–190. [Google Scholar] [CrossRef]
- Vélez, S.; Rançon, F.; Barajas, E.; Brunel, G.; Rubio, J.A.; Tisseyre, B. Potential of Functional Analysis Applied to Sentinel-2 Time-Series to Assess Relevant Agronomic Parameters at the within-Field Level in Viticulture. Comput. Electron. Agric. 2022, 194, 106726. [Google Scholar] [CrossRef]
- Ayars, J.E.; Johnson, R.S.; Phene, C.J.; Trout, T.J.; Clark, D.A.; Mead, R.M. Water Use by Drip-Irrigated Late-Season Peaches. Irrig. Sci. 2003, 22, 187–194. [Google Scholar] [CrossRef]
- Picón-Toro, J.; González-Dugo, V.; Uriarte, D.; Mancha, L.A.; Testi, L. Effects of Canopy Size and Water Stress over the Crop Coefficient of a “Tempranillo” Vineyard in South-Western Spain. Irrig. Sci. 2012, 30, 419–432. [Google Scholar] [CrossRef]
- Farbo, A.; Sarvia, F.; De Petris, S.; Basile, V.; Borgogno-Mondino, E. Forecasting Corn NDVI through AI-Based Approaches Using Sentinel 2 Image Time Series. ISPRS J. Photogramm. Remote Sens. 2024, 211, 244–261. [Google Scholar] [CrossRef]
- Cavalli, S.; Penzotti, G.; Amoretti, M.; Caselli, S. A Machine Learning Approach for NDVI Forecasting Based on Sentinel-2 Data; SciTePress: Setúbal, Portugal, 2023; pp. 473–480. [Google Scholar]
Principal Growth Stage | Description | BBCH Code | DOY | GDD |
---|---|---|---|---|
Sprouting | Bud burst: green shoot tips are clearly visible | 09 | 100 | 24 |
Leaf development | Six leaves have unfolded | 16 | 119 | 132 |
Inflorescence emergence | Inflorescence swelling, flowers closely pressed together | 55 | 134 | 267 |
Flowering | 80% of flowerhoods have fallen | 68 | 141 | 360 |
Development of fruits | Fruit is set: fruits beginning to swell, remains of flowers are lost | 71 | 145 | 425 |
Berries are groat-sized, bunches beginning to hang | 73 | 151 | 513 | |
Berries beginning to touch | 77 | 162 | 668 | |
All berries are touching | 79 | 181 | 998 | |
Ripening of berries | Beginning of ripening: berries beginning to brighten in color | 81 | 190 | 1153 |
Berries brightening in color | 83 | 207 | 1437 | |
Berries ripe for harvest | 89 | 216 | 1593 | |
Senescence | After harvest: end of wood maturation | 91 | 234 | 1880 |
Spectral Band | Central Wavelength (nm) | Band Width (nm) | GSD |
---|---|---|---|
B1 (Aerosol) | 443 | 20 | 60 |
B2 (Blue) | 490 | 65 | 10 |
B3 (Green) | 560 | 35 | 10 |
B4 (Red) | 665 | 30 | 10 |
B5 (Red Edge 5) | 705 | 15 | 20 |
B6 (Red Edge 6) | 740 | 15 | 20 |
B7 (Red Edge 7) | 783 | 20 | 20 |
B8 (Near Infrared) | 842 | 115 | 10 |
(B8A Near Infrared Plateau) | 885 | 20 | 20 |
B9 (Water Vapor) | 945 | 20 | 60 |
B10 (Cirrus) | 1380 | 30 | 60 |
B11 (Short Wave Infrared 1) | 1610 | 90 | 20 |
B12 (Short Wave Infrared 2) | 2019 | 180 | 20 |
Radiometric resolution | 12 bit | ||
Temporal resolution | 5 days |
Closest Sentinel-2 Image | Sentinel-2 Image Used | ISR | Ψstem | |
---|---|---|---|---|
DOY | 117 | 119 * | 119 | - |
134 | 134 | 134 | - | |
142 | 141 * | 141 | - | |
142 | 145 * | 145 | 145 | |
152 | 151 * | 151 | 151 | |
164 | 162 * | 162 | 162 | |
184 | 181 * | 181 | 181 | |
192 | 190 * | 190 | 190 | |
202 | 201 * | 201 | 201 | |
207 | 207 | 207 | 207 | |
217 | 216 * | 216 | 216 | |
239 | 234 * | 234 | 234 |
Ecophysiological Parameters | Meteorological Feature | Spectral Features |
---|---|---|
ISR (%) Ψstem (Mpa) | GDD | B2-B3-B4-B5-B6-B7-B8-B8A-B11-B12 |
NDVI-GNDVI-NDRE-EVI | ||
NDMI-NDWI-NDWI2-NDWI3 |
ML Algorithm | Hyperparameters | |||
---|---|---|---|---|
RFR | Trees: {50, 100, 200} | Maximum Depth: {None, 10, 20} | Minimum Sample Leaf: {1, 2, 4} | Maximum Features: {sqrt, log2, 1} |
SVR | Kernel: {RBF} | C: {0.01, 0.1, 1, 10, 50, 100} | ε: {0.1, 0.2, 0.3, 0.5, 1, 2, 4} | γ: {scale, auto, 0.1, 0.5, 1, 2, 4, 10} |
DOY | ISR (%) | Ψstem (MPa) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Min | Max | SD | Mean | Min | Max | SD | |
119 | 24.86 | 18.78 | 30.32 | 4.15 | - | - | - | - |
134 | 38.86 | 33.27 | 43.54 | 3.73 | - | - | - | - |
141 | 44.16 | 38.33 | 49.37 | 3.70 | - | - | - | - |
145 | 52.05 | 44.65 | 59.13 | 4.01 | −0.515 | −0.605 | −0.425 | 0.058 |
151 | 60.44 | 53.23 | 67.40 | 4.39 | −0.569 | −0.625 | −0.485 | 0.039 |
162 | 72.94 | 57.55 | 80.78 | 7.35 | −0.494 | −0.550 | −0.435 | 0.036 |
181 | 84.51 | 66.29 | 93.98 | 7.89 | −0.617 | −0.710 | −0.490 | 0.066 |
190 | 87.11 | 74.39 | 93.57 | 5.11 | −0.635 | −0.740 | −0.465 | 0.097 |
201 | 85.94 | 72.60 | 93.98 | 6.06 | −1.031 | −1.240 | −0.875 | 0.120 |
207 | 83.40 | 72.13 | 90.95 | 6.12 | −1.094 | −1.335 | −0.895 | 0.127 |
216 | 83.58 | 73.72 | 89.54 | 5.83 | −0.837 | −1.030 | −0.700 | 0.112 |
234 | 87.48 | 78.14 | 93.70 | 4.87 | −0.818 | −1.090 | −0.625 | 0.156 |
Satellite Feature | Intercept | Slope | p-Value | R2 | RMSE (%) | O-P Intercept | O-P Slope |
---|---|---|---|---|---|---|---|
B2 | 269 | −1042 | 9.24 × 10−23 | 0.477 | 15.82 | 33.99 | 0.49 |
B3 | 278.8 | −963 | 2.35 × 10−20 | 0.437 | 16.41 | 36.70 | 0.45 |
B4 | 203.5 | −708.6 | 7.50 × 10−41 | 0.706 | 11.86 | 18.90 | 0.72 |
B5 | 281.9 | −863.2 | 1.31 × 10−27 | 0.554 | 14.60 | 28.97 | 0.57 |
B6 | −116.1 | 453.4 | 2.98 × 10−66 | 0.874 | 7.77 | 8.34 | 0.88 |
B7 | −75.6 | 309.6 | 4.86 × 10−72 | 0.897 | 7.06 | 6.99 | 0.90 |
B8 | −83.22 | 324.43 | 5.36 × 10−66 | 0.873 | 7.78 | 8.46 | 0.87 |
B8A | −82.07 | 311.56 | 2.20 × 10−72 | 0.897 | 7.02 | 6.90 | 0.90 |
B11 | 292.7 | −740 | 3.63 × 10−32 | 0.614 | 13.59 | 25.16 | 0.62 |
B12 | 163.6 | −568.2 | 5.53 × 10−44 | 0.737 | 11.21 | 17.32 | 0.74 |
NDRE | 3.66 | 214.91 | 2.27 × 10−65 | 0.868 | 7.94 | 8.70 | 0.87 |
GNDVI | −14.59 | 233.37 | 2.18 × 10−63 | 0.857 | 8.25 | 9.27 | 0.86 |
NDVI | −5.79 | 179.19 | 1.30 × 10−63 | 0.860 | 8.19 | 9.18 | 0.86 |
NDMI | 24.06 | 199.14 | 1.67 × 10−67 | 0.878 | 7.62 | 8.14 | 0.88 |
NDWI | −3.326 | 153.89 | 2.93 × 10−61 | 0.870 | 7.89 | 8.70 | 0.87 |
NDWI2 | 109.1 | 259.7 | 7.48 × 10−4 | 0.062 | 21.20 | 62.50 | 0.07 |
NDWI3 | −84.24 | 82.38 | 5.73 × 10−39 | 0.756 | 10.81 | 16.27 | 0.76 |
EVI | 4.01 | 108.30 | 1.45 × 10−62 | 0.856 | 8.29 | 9.47 | 0.86 |
GDD | 13.85 | a: −4 × 10−7 b: +0.001 | 3.4 × 10−77 | 0.917 | 6.31 | 5.53 | 0.91 |
Satellite Feature | Intercept | Slope | p-Value | R2 | RSME (MPa) | O-P Intercept | O-P Slope |
---|---|---|---|---|---|---|---|
B2 | −2.675 | 10.250 | 2.01 × 10−12 | 0.357 | 0.183 | −0.46 | 0.37 |
B3 | −2.931 | 10.180 | 1.05 × 10−14 | 0.418 | 0.174 | −0.41 | 0.43 |
B4 | −1.760 | 5.617 | 2.45 × 10−9 | 0.270 | 0.195 | −0.52 | 0.29 |
B5 | −2.617 | 7.739 | 1.90 × 10−12 | 0.355 | 0.184 | −0.46 | 0.38 |
B6 | 0.201 | −2.193 | 1.67 × 10−2 | 0.041 | 0.224 | −0.70 | 0.05 |
B7 | 0.227 | −1.948 | 6.43 × 10−4 | 0.099 | 0.217 | −0.66 | 0.10 |
B8 | −0.069 | −1.350 | 1.90 × 10−2 | 0.040 | 0.224 | −0.70 | 0.04 |
B8A | 0.413 | −2.243 | 1.64 × 10−4 | 0.120 | 0.215 | −0.64 | 0.12 |
B11 | −2.526 | 6.051 | 6.88 × 10−9 | 0.255 | 0.197 | −0.53 | 0.27 |
B12 | −1.459 | 4.657 | 3.30 × 10−8 | 0.238 | 0.199 | −0.55 | 0.25 |
NDRE | −0.202 | −1.577 | 1.24 × 10−6 | 0.191 | 0.206 | −0.59 | 0.20 |
GNDVI | 0.012 | −1.916 | 1.17 × 10−7 | 0.223 | 0.202 | −0.56 | 0.23 |
NDVI | −0.134 | −1.313 | 2.23 × 10−6 | 0.181 | 0.207 | −0.59 | 0.19 |
NDMI | −0.264 | −1.774 | 2.37 × 10−7 | 0.211 | 0.203 | −0.57 | 0.22 |
NDWI | −0.092 | −1.237 | 1.47 × 10−6 | 0.150 | 0.211 | −0.61 | 0.16 |
NDWI2 | −0.408 | 2.082 | 2.39 × 10−2 | 0.031 | 0.225 | −0.70 | 0.04 |
NDWI3 | 0.452 | −0.615 | 3.29 × 10−7 | 0.079 | 0.219 | −0.67 | 0.08 |
EVI | −0.358 | −0.565 | 7.94 × 10−4 | 0.093 | 0.218 | −0.66 | 0.10 |
GDD | −0.371 | −0.0003 | 8.81 × 10−16 | 0.435 | 0.172 | −0.40 | 0.46 |
Method | Ecophysiological Parameter | GDD | Selected Features | RMSE | R2 | O-P Intercept | O-P Slope |
---|---|---|---|---|---|---|---|
MLR | ISR | No | All | 7.26% | 0.885 | 5.951 | 0.911 |
Yes | All | 5.487% | 0.932 | 4.633 | 0.932 | ||
MLRS | ISR | No | B8A, GNDVI | 6.653% | 0.898 | 6.564 | 0.902 |
Yes | GDD, NDWI3, B7, NDWI, NDMI, NDVI | 5.132% | 0.944 | 3.049 | 0.953 | ||
MLR | Ψstem | No | All | 0.134 MPa | 0.555 | −0.246 | 0.655 |
Yes | All | 0.136 MPa | 0.527 | −0.275 | 0.628 | ||
MLRS | Ψstem | No | B3, B8, NDRE, B4, GNDVI, B6, B7, B8A, NDVI | 0.118 MPa | 0.621 | −0.254 | 0.660 |
Yes | GDD, NDWI2, B8, NDMI, B4, NDRE, B7, B11 | 0.117 MPa | 0.625 | −0.251 | 0.657 |
ML Algorithm | GDD | Best Hyperparameters | Selected Features | RMSE (%) | R2 | O-P Intercept | O-P Slope |
---|---|---|---|---|---|---|---|
RFR | No | Trees: 50 Max Depth: 20 Min Leaves: 1 Max Features: log2 | B2, B3, B4, B6, B7, B8, B8A, EVI, GNDVI, NDMI, NDWI2 | 5.1 | 0.95 | 4.72 | 0.94 |
SVR | No | Kernel: RBF C: 1 ε: 0.1 γ: scale | B6, B7 | 6.4 | 0.91 | 6.72 | 0.89 |
PLSR | No | — | B5, B8A | 6.6 | 0.91 | 6.28 | 0.90 |
RFR | Yes | Trees: 100 Max Depth: 20 Min Leaves: 1 Max Features: log2 | GDD, B2, B3, B4, B6, B8A, B12, NDMI, NDWI2 | 4.7 | 0.96 | 1.8 | 0.96 |
SVR | Yes | Kernel: RBF C: 100 ε: 0.1 γ: 0.1 | GDD, B3, B7, B8, B11, B12, NDWI2 | 5.2 | 0.96 | 7.25 | 0.88 |
PLSR | Yes | — | GDD, B3, B7, B8A, B11, B12, EVI, GNDVI | 5.0 | 0.95 | 4.20 | 0.94 |
ML Algorithm | GDD | Best Hyperparameters | Selected Features | RMSE (MPa) | R2 | O-P Intercept | O-P Slope |
---|---|---|---|---|---|---|---|
RFR | No | Trees: 50 Max Depth: 10 Min Leaves: 1 Max Features: SQRT | B3, B5, B8, NDWI | 0.148 | 0.58 | −0.30 | 0.58 |
SVR | No | Kernel: RBF C: 100 ε: 0.5 γ: 0.5 | B3, B4, B5, B6, B7, B8A, NDRE, NDVI, NDWI2 | 0.125 | 0.71 | −0.25 | 0.64 |
PLSR | No | — | B3, B4, B7, B8, B8A, NDRE | 0.147 | 0.59 | −0.28 | 0.62 |
RFR | Yes | Trees: 100 Max Depth: 10 Min Leaves: 1 Max Features: sqrt | GDD, B4, B8A, EVI | 0.101 | 0.81 | −0.17 | 0.76 |
SVR | Yes | Kernel: RBF C: 50 ε: 0.1 γ: 4 | GDD, B4, B6, B12, NDMI | 0.122 | 0.72 | −0.22 | 0.69 |
PLSR | Yes | — | GDD, B8, B8A, EVI, NDRE | 0.136 | 0.65 | −0.25 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farbo, A.; Trombetta, N.G.; de Palma, L.; Borgogno-Mondino, E. Estimation of Intercepted Solar Radiation and Stem Water Potential in a Table Grape Vineyard Covered by Plastic Film Using Sentinel-2 Data: A Comparison of OLS-, MLR-, and ML-Based Methods. Plants 2024, 13, 1203. https://doi.org/10.3390/plants13091203
Farbo A, Trombetta NG, de Palma L, Borgogno-Mondino E. Estimation of Intercepted Solar Radiation and Stem Water Potential in a Table Grape Vineyard Covered by Plastic Film Using Sentinel-2 Data: A Comparison of OLS-, MLR-, and ML-Based Methods. Plants. 2024; 13(9):1203. https://doi.org/10.3390/plants13091203
Chicago/Turabian StyleFarbo, Alessandro, Nicola Gerardo Trombetta, Laura de Palma, and Enrico Borgogno-Mondino. 2024. "Estimation of Intercepted Solar Radiation and Stem Water Potential in a Table Grape Vineyard Covered by Plastic Film Using Sentinel-2 Data: A Comparison of OLS-, MLR-, and ML-Based Methods" Plants 13, no. 9: 1203. https://doi.org/10.3390/plants13091203
APA StyleFarbo, A., Trombetta, N. G., de Palma, L., & Borgogno-Mondino, E. (2024). Estimation of Intercepted Solar Radiation and Stem Water Potential in a Table Grape Vineyard Covered by Plastic Film Using Sentinel-2 Data: A Comparison of OLS-, MLR-, and ML-Based Methods. Plants, 13(9), 1203. https://doi.org/10.3390/plants13091203