Interplay Between Phytohormones and Sugar Metabolism in Dendrocalamus latiflorus
Abstract
:1. Introduction
2. Methods and Approach
3. Phytohormones in D. latiflorus
Phytohormone–Sugar Interplay in D. latiflorus
4. Biosynthesis, Transport, and Signaling Pathways of Phytohormones in D. latiflorus
4.1. Auxins
4.2. Cytokinins
4.3. Gibberellins
4.4. Abscisic Acid
4.5. Ethylene
4.6. Brassinosteroids
5. Introduction to Sugar Metabolism and Its Importance in Plants
6. Sugar Catabolism Processes Specific to D. latiflorus
6.1. Sucrose Metabolism
6.2. Starch Degradation
6.3. Integration of Sucrose and Starch Metabolism
7. Interplay Between Phytohormones and Sugar Catabolism
7.1. Auxins and Sugar Metabolism
7.2. Cytokinin and Sugar Metabolism
7.3. Gibberellins and Sugar Metabolism
7.4. Abscisic Acid and Sugar Metabolism
7.5. Ethylene and Sugar Metabolism
7.6. Brassinosteroids and Sugar Metabolism
7.7. The Interplay Between Phytohormones and Sugar Catabolism in D. latiflorus
8. Geographic Variation in Phytohormones and Sugar Catabolism
8.1. Recent Studies Investigating How Environmental Factors Influence Phytohormones and Sugar Metabolism in D. latiflorus
8.2. Biotic Interactions
8.3. Ecological Significance and Ecosystem Services
9. Conclusions
10. Future Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruokolainen, K.; Tuomisto, H.; Macia, M.J.; Higgins, M.A.; Yli-Halla, M. Are floristic and edaphic patterns in Amazonian rain forests congruent for trees, pteridophytes and Melastomataceae? J. Trop. Ecol. 2007, 23, 13–25. [Google Scholar] [CrossRef]
- Ahmad, Z.; Upadhyay, A.; Ding, Y.; Emamverdian, A.; Shahzad, A. Bamboo: Origin, habitat, distributions and global prospective. In Biotechnological Advances in Bamboo: The “Green Gold” on the Earth; Springer: Singapore, 2021; pp. 1–31. [Google Scholar]
- Chen, L.-J.; Xie, Y.-Q.; He, T.-Y.; Chen, L.-Y.; Rong, J.-D.; Chen, L.-G.; Zheng, Y.-S. Projecting the Impacts of Climate Change, Soil, and Landscape on the Geographic Distribution of Ma Bamboo (Dendrocalamus latiflorus Munro) in China. Forests 2024, 15, 1321. [Google Scholar] [CrossRef]
- Lemenih, M. Effects of Land Use Changes on Soil Quality and Native Flora Degradation and Restoration in the Highlands of Ethiopia: Implications for Sustainable Land Management. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2004. [Google Scholar]
- Zhaohua, Z.; Wei, J. Sustainable Bamboo Development; CABI: Wallingford, UK, 2018. [Google Scholar]
- Calderan-Rodrigues, M.J.; Caldana, C. Impact of the TOR pathway on plant growth via cell wall remodeling. J. Plant Physiol. 2024, 294, 154202. [Google Scholar] [CrossRef]
- Chaudhary, U.; Malik, S.; Rana, V.; Joshi, G. Bamboo in the pulp, paper and allied industries. Adv. Bamboo Sci. 2024, 7, 100069. [Google Scholar] [CrossRef]
- Pezo, D.; Ríos, N.; Ibrahim, M.; Gómez, M. Silvopastoral Systems for Intensifying Cattle Production and Enhancing Forest Cover: The Case of Costa Rica; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Nfornkah, B.N.; Nath, A.J.; Kaam, R.; Chimi, C.D.; Mezafack, K.L. Bamboo-Based Forest Landscape Restoration: Practical Lessons and Initiatives to Upscale in Africa. In Bamboo Science and Technology; Springer: Singapore, 2023; pp. 329–356. [Google Scholar]
- Kaya, C.; Uğurlar, F.; Adamakis, I.-D.S. Epigenetic Modifications of Hormonal Signaling Pathways in Plant Drought Response and Tolerance for Sustainable Food Security. Int. J. Mol. Sci. 2024, 25, 8229. [Google Scholar] [CrossRef]
- Deng, B.; Gu, X.; Chen, S.; Zhang, M.; Hao, S.; Wei, L.; Cao, Y.; Hu, S. Genome-wide analysis and characterization of Dendrocalamus farinosus SUT gene family reveal DfSUT4 involvement in sucrose transportation in plants. Front. Plant Sci. 2023, 13, 1118398. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Villamil, D.A.; Magnitskiy, S.; Balaguera-López, H.E. Physiological and molecular functions of brassinosteroids during fruit development, ripening, and postharvest damage of horticultural products: A review. Postharvest Biol. Technol. 2024, 214, 112984. [Google Scholar] [CrossRef]
- De Coninck, T.; Desmet, T.; Van Damme, E.J. Carbohydrate-active enzymes involved in rice cell wall metabolism. J. Exp. Bot. 2024, 75, 6206–6227. [Google Scholar] [CrossRef] [PubMed]
- Westhoff, P.; Weber, A.P. The role of metabolomics in informing strategies for improving photosynthesis. J. Exp. Bot. 2024, 75, 1696–1713. [Google Scholar] [CrossRef]
- Sakr, S.; Wang, M.; Dédaldéchamp, F.; Perez-Garcia, M.-D.; Ogé, L.; Hamama, L.; Atanassova, R. The sugar-signaling hub: Overview of regulators and interaction with the hormonal and metabolic network. Int. J. Mol. Sci. 2018, 19, 2506. [Google Scholar] [CrossRef]
- Zeng, M.-Y.; Zhu, P.-K.; Tang, Y.; Lin, Y.-H.; He, T.-Y.; Rong, J.-D.; Zheng, Y.-S.; Chen, L.-Y. Genome-Wide Identification and Role of the bHLH Gene Family in Dendrocalamus latiflorus Flowering Regulation. Int. J. Mol. Sci. 2024, 25, 10837. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Minghui, Y.; Wenjing, Y.; Yulong, D.; Shuyan, L. Research advance in growth and development of bamboo organs. Ind. Crops Prod. 2023, 205, 117428. [Google Scholar] [CrossRef]
- Lv, Z.; Yu, L.; Zhan, H.; Li, J.; Wang, C.; Huang, L.; Wang, S. Shoot differentiation from Dendrocalamus brandisii callus and the related physiological roles of sugar and hormones during shoot differentiation. Tree Physiol. 2023, 43, 1159–1186. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.; Liu, M.; Song, K.; Li, H.; Yang, H.; Yin, Y.; Zhuo, R. Phenotypic and comparative transcriptome analysis of different ploidy plants in Dendrocalamus latiflorus Munro. Front. Plant Sci. 2017, 8, 1371. [Google Scholar] [CrossRef] [PubMed]
- Jangra, A.; Chaturvedi, S.; Kumar, N.; Singh, H.; Sharma, V.; Thakur, M.; Tiwari, S.; Chhokar, V. Polyamines: The gleam of next-generation plant growth regulators for growth, development, stress mitigation, and hormonal crosstalk in plants—A systematic review. J. Plant Growth Regul. 2023, 42, 5167–5191. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Yang, G.; Zhao, L.; Zhang, X.; Li, D.; Guo, Z. Complementary transcriptome and proteome analyses provide insight into the floral transition in bamboo (Dendrocalamus latiflorus Munro). Int. J. Mol. Sci. 2020, 21, 8430. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, N.; Gill, S.S.; Trivedi, P.K.; Asif, M.H.; Nath, P. Plant growth regulators and their role in stress tolerance. Plant Stress 2010, 4, 1–18. [Google Scholar]
- Zhang, W.; Shi, M.; Yang, K.; Zhang, J.; Gao, Z.; El-Kassaby, Y.A.; Li, Q.; Cao, T.; Deng, S.; Qing, H. Regulatory networks of senescence-associated gene-transcription factors promote degradation in Moso bamboo shoots. Plant Cell Environ. 2024, 47, 3654–3667. [Google Scholar] [CrossRef]
- Li, T.; Lin, Z.; Zhu, C.; Yang, K.; Sun, H.; Li, H.; Wang, J.; Gao, Z. Identification and characterization of FBA genes in moso bamboo reveals PeFBA8 related to photosynthetic carbon metabolism. Int. J. Biol. Macromol. 2024, 275, 132885. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Li, B.; Han, Y.; Chen, L.; He, T.; Zheng, Y.; Rong, J. Lower light intensities increase shoot germination with improved leaf biosynthesis in Ma bamboo (Dendrocalamus latiflorus Munro). Forests 2022, 13, 1723. [Google Scholar] [CrossRef]
- Ahmad, Z.; Teixeira da Silva, J.A.; Shahzad, A.; Lin, S.; Ding, Y.; Ramakrishnan, M. Biotechnological interventions in bamboo plants. Plant Cell Tissue Organ Cult. (PCTOC) 2023, 153, 459–487. [Google Scholar] [CrossRef]
- Salam, U.; Ullah, S.; Tang, Z.-H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life 2023, 13, 706. [Google Scholar] [CrossRef]
- Gibson, S.I. Sugar and phytohormone response pathways: Navigating a signalling network. J. Exp. Bot. 2004, 55, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.-K.; Lin, M.-X.; Zeng, M.-Y.; Tang, Y.; Li, X.-R.; He, T.-Y.; Zheng, Y.-S.; Chen, L.-Y. Factors in Dendrocalamus latiflorus. Preprint 2024. [Google Scholar] [CrossRef]
- Basak, M.; Dutta, S.; Biswas, S.; Chakraborty, S.; Sarkar, A.; Rahaman, T.; Dey, S.; Biswas, P.; Das, M. Genomic insights into growth and development of bamboos: What have we learnt and what more to discover? Trees 2021, 35, 1771–1791. [Google Scholar] [CrossRef]
- Hogarth, N.; Belcher, B. The contribution of bamboo to household income and rural livelihoods in a poor and mountainous county in Guangxi, China. Int. For. Rev. 2013, 15, 71–81. [Google Scholar] [CrossRef]
- Davies, P.J. Plant Hormones and Their Role in Plant Growth and Development; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kou, X.; Zhao, X.; Wu, B.; Wang, C.; Wu, C.; Yang, S.; Zhou, J.; Xue, Z. Auxin response factors are ubiquitous in plant growth and development, and involved in crosstalk between plant hormones: A review. Appl. Sci. 2022, 12, 1360. [Google Scholar] [CrossRef]
- Li, L.; Cheng, Z.; Ma, Y.; Bai, Q.; Li, X.; Cao, Z.; Wu, Z.; Gao, J. The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth. Plant Biotechnol. J. 2018, 16, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Kurepa, J.; Smalle, J.A. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. Int. J. Mol. Sci. 2022, 23, 1933. [Google Scholar] [CrossRef]
- Li, J.; Bai, Y.; Xie, Y.; Gao, J. Ultrastructure change and transcriptome analysis of GA3 treatment on seed germination of moso bamboo (Phyllostachys edulis). Plant Signal. Behav. 2022, 17, 2091305. [Google Scholar] [CrossRef] [PubMed]
- Ganie, I.B.; Shahzad, A.; Ahmad, Z.; Bukhari, N.A.; Parveen, K. Transgenic approaches in bamboo. In Biotechnological Advances in Bamboo: The “Green Gold” on the Earth; Springer: Singapore, 2021; pp. 251–273. [Google Scholar]
- Li, X.; Sun, H. Bamboo Breeding Strategies in the Context of “Bamboo as a Substitute for Plastic Initiative”. Forests 2024, 15, 1180. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, X.; Li, X.; Ren, M.; Tong, Y.; Wu, X.; Sun, Y.; Wu, F.; Yang, A.; Chen, S. Transcriptomic Analysis of the Molecular Mechanism of Low-Temperature Resistance in a Red Flower Mutant of Tobacco. Genomics 2023, 115, 110728. [Google Scholar] [CrossRef]
- Ramasubramanian, S.; Singh, C.R.; Muralikrishna, R. Bioprospecting of bamboo: A review. Asian J. Biotechnol. Bioresour. Technol. 2023, 9, 7–19. [Google Scholar] [CrossRef]
- Kumari, A.; Ahlawat, P.; Kiran; Rani, B.; Goyal, A.; Pooja; Pazhany, A.S.; Kumar, A.; Devi, S.; Kumari, N. An Overview of Phytohormones Mediated Drought and Salinity Tolerance in Plants. In Salinity and Drought Tolerance in Plants: Physiological Perspectives; Springer: Singapore, 2023; pp. 387–417. [Google Scholar]
- Emamverdian, A.; Khalofah, A.; Pehlivan, N.; Zia-ur-Rehman, M.; Li, Y.; Zargar, M. Exogenous application of jasmonates and brassinosteroids alleviates lead toxicity in bamboo by altering biochemical and physiological attributes. Environ. Sci. Pollut. Res. 2024, 31, 7008–7026. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.S.; Sharma, M.; Laxmi, A. Role of sugar and auxin crosstalk in plant growth and development. Physiol. Plant. 2022, 174, e13546. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Liu, Q.; Wang, B.; Yuan, F. Roles of phytohormones and their signaling pathways in leaf development and stress responses. J. Agric. Food Chem. 2021, 69, 3566–3584. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Pandey, S.; Bhardwaj, R.; Zheng, B.; Tripathi, D.K. The Role of Growth Regulators and Phytohormones in Overcoming Environmental Stress; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Cao, X.; Yang, H.; Shang, C.; Ma, S.; Liu, L.; Cheng, J. The roles of auxin biosynthesis YUCCA gene family in plants. Int. J. Mol. Sci. 2019, 20, 6343. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhry, S.; Kepinski, S. Auxin in root development. Cold Spring Harb. Perspect. Biol. 2022, 14, a039933. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Hao, Z.-G.; Miao, S.; Zhang, X.; Li, J.-Q.; Guo, S.-X.; Lee, Y.-I. Profiles of cytokinins metabolic genes and endogenous cytokinins dynamics during shoot multiplication in vitro of Phalaenopsis. Int. J. Mol. Sci. 2022, 23, 3755. [Google Scholar] [CrossRef]
- Shah, S.H.; Islam, S.; Mohammad, F.; Siddiqui, M.H. Gibberellic acid: A versatile regulator of plant growth, development and stress responses. J. Plant Growth Regul. 2023, 42, 7352–7373. [Google Scholar] [CrossRef]
- Jia, K.-P.; Mi, J.; Ali, S.; Ohyanagi, H.; Moreno, J.C.; Ablazov, A.; Balakrishna, A.; Berqdar, L.; Fiore, A.; Diretto, G. An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Mol. Plant 2022, 15, 151–166. [Google Scholar] [CrossRef]
- Hu, X.; Liang, J.; Wang, W.; Cai, C.; Ye, S.; Wang, N.; Han, F.; Wu, Y.; Zhu, Q. Comprehensive genome-wide analysis of the DREB gene family in Moso bamboo (Phyllostachys edulis): Evidence for the role of PeDREB28 in plant abiotic stress response. Plant J. 2023, 116, 1248–1270. [Google Scholar] [CrossRef] [PubMed]
- Jha, C.K.; Sharma, P.; Shukla, A.; Parmar, P.; Patel, R.; Goswami, D.; Saraf, M. Microbial enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase: An elixir for plant under stress. Physiol. Mol. Plant Pathol. 2021, 115, 101664. [Google Scholar] [CrossRef]
- Mishra, B.; Bansal, S.; Tripathi, S.; Mishra, S.; Yadav, R.K.; Sangwan, N.S. Differential regulation of key triterpene synthase gene under abiotic stress in Withania somnifera L. Dunal and its co-relation to sterols and withanolides. Plant Physiol. Biochem. 2024, 208, 108419. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Wang, Y.; Zhuo, R.; Xu, J.; Lu, Z.; Fan, H.; Huang, B.; Qiao, G. TCP transcription factors involved in shoot development of ma bamboo (Dendrocalamus latiflorus munro). Front. Plant Sci. 2022, 13, 884443. [Google Scholar] [CrossRef] [PubMed]
- Khan, E.A.; Yadav, M.; Yadav, S.; Ahmed, H.M. Role of auxins in regulating physiological and molecular aspects of plants under abiotic stress. In The Role of Growth Regulators and Phytohormones in Overcoming Environmental Stress; Elsevier: Amsterdam, The Netherlands, 2023; pp. 39–65. [Google Scholar]
- Mughal, N.; Shoaib, N.; Chen, J.; He, Y.; Fu, M.; Li, X.; He, Y.; Guo, J.; Deng, J.; Yang, W. Adaptive roles of cytokinins in enhancing plant resilience and yield against environmental stressors. Chemosphere 2024, 364, 143189. [Google Scholar] [CrossRef]
- Mohapatra, P.K.; Sahu, B.B.; Mohapatra, P.K.; Sahu, B.B. Hormonal Regulation of Spikelet Development. In Panicle Architecture of Rice and Its Relationship with Grain Filling; Springer Nature: Dordrecht, The Netherlands, 2022; pp. 187–282. [Google Scholar]
- Mo, W.; Zheng, X.; Shi, Q.; Zhao, X.; Chen, X.; Yang, Z.; Zuo, Z. Unveiling the crucial roles of abscisic acid in plant physiology: Implications for enhancing stress tolerance and productivity. Front. Plant Sci. 2024, 15, 1437184. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, K.; Fröhlich, K.; García-Ramírez, G.X.; Trapp, M.A.; Hirt, H. Ethylene: A master regulator of plant–microbe interactions under abiotic stresses. Cells 2022, 12, 31. [Google Scholar] [CrossRef]
- Zhou, F.; Hu, B.; Li, J.; Yan, H.; Liu, Q.; Zeng, B.; Fan, C. Exogenous applications of brassinosteroids promote secondary xylem differentiation in Eucalyptus grandis. PeerJ 2024, 12, e16250. [Google Scholar] [CrossRef]
- Zheng, H.; Xie, Y.; Mu, C.; Cheng, W.; Bai, Y.; Gao, J. Deciphering the regulatory role of PheSnRK genes in Moso bamboo: Insights into hormonal, energy, and stress responses. BMC Genom. 2024, 25, 252. [Google Scholar] [CrossRef]
- Rolland, F.; Moore, B.; Sheen, J. Sugar sensing and signaling in plants. Plant Cell 2002, 14, S185–S205. [Google Scholar] [CrossRef]
- Ševčíková, H. Regulation of Morphogenic Processes in Potato—The Role of Sugar Metabolism; Univerzita Karlova, Přírodovědecká Fakulta: Prague, Czech Republic, 2018. [Google Scholar]
- Siddiqui, H.; Sami, F.; Bajguz, A.; Hayat, S. Glucose escalates PSII activity, dynamics between anabolic and catabolic pathways, redox and elemental status to promote the growth of Brassica juncea. S. Afr. J. Bot. 2021, 137, 68–84. [Google Scholar] [CrossRef]
- Afzal, S.; Chaudhary, N.; Singh, N.K. Role of soluble sugars in metabolism and sensing under abiotic stress. In Plant Growth Regulators: Signalling Under Stress Conditions; Springer: Cham, Switzerland, 2021; pp. 305–334. [Google Scholar]
- Chaudhry, R.; Varacallo, M. Biochemistry, glycolysis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Bolaños, J.P.; Almeida, A.; Moncada, S. Glycolysis: A bioenergetic or a survival pathway? Trends Biochem. Sci. 2010, 35, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Alabduladhem, T.O.; Bordoni, B. Physiology, krebs cycle. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Nesci, S.; Trombetti, F.; Pagliarani, A.; Ventrella, V.; Algieri, C.; Tioli, G.; Lenaz, G. Molecular and supramolecular structure of the mitochondrial oxidative phosphorylation system: Implications for pathology. Life 2021, 11, 242. [Google Scholar] [CrossRef]
- Patrick, J.W.; Botha, F.C.; Birch, R.G. Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnol. J. 2013, 11, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Granot, D.; David-Schwartz, R.; Kelly, G. Hexose kinases and their role in sugar-sensing and plant development. Front. Plant Sci. 2013, 4, 44. [Google Scholar] [CrossRef]
- Luo, K.; Huang, W.; Qiao, L.; Zhang, X.; Yan, D.; Ning, Z.; Ma, C.; Dang, H.; Wang, D.; Guo, H. Dendrocalamus latiflorus and its component rutin exhibit glucose-lowering activities by inhibiting hepatic glucose production via AKT activation. Acta Pharm. Sin. B 2022, 12, 2239–2251. [Google Scholar] [CrossRef]
- Xiang, M.; Ding, W.; Wu, C.; Wang, W.; Ye, S.; Cai, C.; Hu, X.; Wang, N.; Bai, W.; Tang, X. Production of purple Ma bamboo (Dendrocalamus latiflorus Munro) with enhanced drought and cold stress tolerance by engineering anthocyanin biosynthesis. Planta 2021, 254, 50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.S.; Ding, X.C.; Zhang, Z.Y.; Cai, H.J. Effects of pruning hormonal and single-sugar regulation by hooking shooting on the yield of Dendracalamus latiforus. Sci. Silvae Sin. 2018, 54, 31–39. [Google Scholar]
- Moreira, F.A. Seasonality of the Biological Potential of Extracts of Merostachys neesii Rupr. (Poaceae: Bambusoideae). Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2019. [Google Scholar]
- Yu, L.; Pei, J.; Zhao, Y.; Wang, S. Physiological changes of bamboo (Fargesia yunnanensis) shoots during storage and the related cold storage mechanisms. Front. Plant Sci. 2021, 12, 731977. [Google Scholar] [CrossRef]
- Lazarova, S. Investigating the Role of Sucrose Phosphate Synthase and Hexokinase in Carbon Sink Strength. Master’s Thesis, University of British Columbia, Vancouver, BC, USA, 2015. [Google Scholar]
- Sun, H.; Wang, J.; Li, H.; Li, T.; Gao, Z. Advancements and challenges in bamboo breeding for sustainable development. Tree Physiol. 2023, 43, 1705–1717. [Google Scholar] [CrossRef]
- Martínez, M.M.; Gómez, M. Starch-active debranching and α-glucanotransferase enzymes. In Microbial Enzyme Technology in Food Applications; CRC Press: Boca Raton, FL, USA, 2017; pp. 46–68. [Google Scholar]
- Zhu, C.; Yang, K.; Li, G.; Li, Y.; Gao, Z. Identification and expression analyses of invertase genes in moso bamboo reveal their potential drought stress functions. Front. Genet. 2021, 12, 696300. [Google Scholar] [CrossRef]
- Stein, O.; Granot, D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Barbier, F.F.; Cao, D.; Fichtner, F.; Weiste, C.; Perez-Garcia, M.-D.; Caradeuc, M.; Le Gourrierec, J.; Sakr, S.; Beveridge, C.A. HEXOKINASE1 interferes with cytokinin synthesis and strigolactone perception during sugar-induced shoot branching. bioRxiv 2020. [Google Scholar] [CrossRef]
- Saggi, S.K.; Dey, P. An overview of simultaneous saccharification and fermentation of starchy and lignocellulosic biomass for bio-ethanol production. Biofuels 2019, 10, 287–299. [Google Scholar] [CrossRef]
- Thalmann, M.; Meier, T.; Santelia, D. 4–Circadian gating of stress-induced starch degradation. In The Function and Regulation of Starch Degradation During Plant Responses to Abiotic Stress; University of Zurich: Zurich, Switzerland, 2017; Volume 92. [Google Scholar]
- Tetlow, I.J.; Bertoft, E. A review of starch biosynthesis in relation to the building block-backbone model. Int. J. Mol. Sci. 2020, 21, 7011. [Google Scholar] [CrossRef]
- Rajagopalan, G.; Krishnan, C. Functional oligosaccharides: Production and action. In Next Generation Biomanufacturing Technologies; ACS Publications: Washington, DC, USA, 2019; pp. 155–180. [Google Scholar]
- Fan, L.; Tarin, M.; Hu, W.; Han, Y.; Rong, J.; Chen, L.; He, T.; Zheng, Y. Changes in light intensity affect leaf gas exchange, chlorophyll fluorescence, and nonstructural carbohydrates of ma bamboo (Dendrocalamus latiflorus munro). Appl. Ecol. Environ. Res. 2022, 20, 1269–1284. [Google Scholar] [CrossRef]
- Wang, X.; Geng, X.; Yang, L.; Chen, Y.; Zhao, Z.; Shi, W.; Kang, L.; Wu, R.; Lu, C.; Gao, J. Total and mitochondrial transcriptomic and proteomic insights into regulation of bioenergetic processes for shoot fast-growth initiation in moso bamboo. Cells 2022, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.F.; Hou, D.; Hussain, Q.; Imran, M.; Pei, J.; Ali, M.; Shehzad, A.; Anwar, M.; Noman, A.; Waseem, M. Entailing the next-generation sequencing and metabolome for sustainable agriculture by improving plant tolerance. Int. J. Mol. Sci. 2022, 23, 651. [Google Scholar] [CrossRef]
- McCarthy, A. Defective ABA-Mediated Sugar Signalling Pathway in an Established Arabidopsis thaliana Cell Suspension Culture Explains Its Stay-Green Phenotype at High Sugar Concentrations. Ph.D. Thesis, The University of Western Ontario (Canada), London, ON, Canada, 2018. [Google Scholar]
- Delatte, T.L.; Sedijani, P.; Kondou, Y.; Matsui, M.; de Jong, G.J.; Somsen, G.W.; Wiese-Klinkenberg, A.; Primavesi, L.F.; Paul, M.J.; Schluepmann, H. Growth arrest by trehalose-6-phosphate: An astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. Plant Physiol. 2011, 157, 160–174. [Google Scholar] [CrossRef]
- Muhammed Jamsheer, K.; Jindal, S.; Sharma, M.; Sharma, M.; Singh, D.; Tiwari, A.; Saksena, H.B.; Mishra, B.; Kushwah, S.; Banday, Z.Z. A Tale of Sugars and Hormones: Perception and Responses. In Sensory Biology of Plants; Springer: Singapore, 2019; pp. 323–360. [Google Scholar]
- Choudhary, A.; Kumar, A.; Kaur, N.; Kaur, H. Molecular cues of sugar signaling in plants. Physiol. Plant. 2022, 174, e13630. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Zhang, S.; Lou, Y.; An, X.; Jiang, Z.; Gao, Z. Transcriptome and miRNAome analysis reveals components regulating tissue differentiation of bamboo shoots. Plant Physiol. 2022, 188, 2182–2198. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Wu, L.; Wu, M.; Liu, H.; Gao, Y.; Zhang, K.; Xiang, Y. Transcriptome analysis reveals key genes regulating signaling and metabolic pathways during the growth of moso bamboo (Phyllostachys edulis) shoots. Physiol. Plant. 2021, 172, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ma, J.; Tan, M.; Mao, J.; An, N.; Sha, G.; Zhang, D.; Zhao, C.; Han, M. Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple. BMC Genom. 2016, 7, 150. [Google Scholar] [CrossRef] [PubMed]
- Peleg, Z.; Reguera, M.; Tumimbang, E.; Walia, H.; Blumwald, E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol. J. 2011, 9, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-L.; An, Y.-H.; Wang, Y.-H.; Liu, J.-X.; Wang, J.-Z.; Sun, M.; Xiong, A.-S. Gibberellin-induced alterations to the expression of cell wall-related genes in the xylem of carrot root. J. Plant Growth Regul. 2021, 40, 787–797. [Google Scholar] [CrossRef]
- Matsoukas, I.G. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front. Genet. 2014, 5, 218. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Qanmber, G.; Li, F.; Wang, Z. Updated role of ABA in seed maturation, dormancy, and germination. J. Adv. Res. 2022, 35, 199–214. [Google Scholar] [CrossRef]
- Hafeez, M.B.; Raza, A.; Zahra, N.; Shaukat, K.; Akram, M.Z.; Iqbal, S.; Basra, S.M.A. Gene regulation in halophytes in conferring salt tolerance. In Handbook of Bioremediation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 341–370. [Google Scholar]
- Singh, A.L.; Thankappan, R.; Mishra, G.P.; Chakraborty, K. Proceedings Book National Conference of Plant Physiology-2013 on “Current Trends in Plant Biology Research”; Directorate of Groundnut Research: Junagadh, India, 2013. [Google Scholar]
- Sharma, A.; Ramakrishnan, M.; Khanna, K.; Landi, M.; Prasad, R.; Bhardwaj, R.; Zheng, B. Brassinosteroids and metalloids: Regulation of plant biology. J. Hazard. Mater. 2022, 424, 127518. [Google Scholar] [CrossRef]
- Wang, M.; Le Gourrierec, J.; Jiao, F.; Demotes-Mainard, S.; Perez-Garcia, M.-D.; Ogé, L.; Hamama, L.; Crespel, L.; Bertheloot, J.; Chen, J. Convergence and divergence of sugar and cytokinin signaling in plant development. Int. J. Mol. Sci. 2021, 22, 1282. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-C.; Lin, C.-S.; Wang, A.-Y.; Sung, H.-Y. Differential expression of genes encoding acid invertases in multiple shoots of bamboo in response to various phytohormones and environmental factors. J. Agric. Food Chem. 2013, 61, 4396–4405. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.; Bai, Y.; Xie, Y.; Li, L.; Mu, S.; Gao, J. Transcriptome analysis of energy supply process during seed germination in Phyllostachys edulis. Plant Mol. Biol. Rep. 2023, 41, 489–511. [Google Scholar] [CrossRef]
- Zheng, L.; Ma, J.; Zhang, L.; Gao, C.; Zhang, D.; Zhao, C.; Han, M. Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis. J. Proteom. 2018, 173, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yang, J.; Wan, J.; Xu, Y.; Li, L.; Rong, J.; Chen, L.; He, T.; Zheng, Y. Genome-Wide identification of MIKCc-Type MADS-Box family gene and floral organ transcriptome characterization in Ma Bamboo (Dendrocalamus latiflorus Munro). Genes 2022, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Zhang, C.; Zhang, Y.; Hu, T.; Mu, S.; Li, X.; Gao, J. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS ONE 2013, 8, e78944. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhuo, R.; Wang, H.; Xu, J.; Jin, K.; Huang, B.; Qiao, G. A comprehensive analysis of the floral transition in ma bamboo (Dendrocalamus latiflorus) reveals the roles of DlFT s involved in flowering. Tree Physiol. 2022, 42, 1899–1911. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Tian, S.; Huang, S.; Wei, J.; Han, D.; Li, J.; Guo, D.; Zhou, Y. Genome-wide identification of the longan R2R3-MYB gene family and its role in primary and lateral root. BMC Plant Biol. 2023, 23, 448. [Google Scholar] [CrossRef]
- Lili, F.; Fan, L.; Tarin, M.W.K.; Han, Y.; Hu, W.; Rong, J.; He, T.; Zheng, Y. Effects of Soil Exogenous Nitrogen on Bamboo Shoots, Photosynthetic Characteristics, and Nitrogen Metabolism in Dendrocalamus latiflorus Munro. Preprint 2021. [Google Scholar] [CrossRef]
- Hossain, M.A.; Khan, B.M.; Uddin, M.A.; Rahman, M.M. In vitro propagation of the Giant Bamboo Dendrocalamus giganteus Munro. J. Bamboo Ratt. 2018, 5, 117–226. [Google Scholar]
- Kleinhenz, V.; Midmore, D.J. Aspects of bamboo agronomy. Adv. Agron. 2001, 74, 99–153. [Google Scholar]
- Tao, G.-Y.; Ramakrishnan, M.; Vinod, K.K.; Yrjälä, K.; Satheesh, V.; Cho, J.; Fu, Y.; Zhou, M. Multi-omics analysis of cellular pathways involved in different rapid growth stages of moso bamboo. Tree Physiol. 2020, 40, 1487–1508. [Google Scholar] [CrossRef] [PubMed]
- Indira, A.; Joshi, B.; Oinam, S.; Koul, A.; Chongtham, N. Potential of bamboo in the prevention of diabetes-related disorders: Possible mechanisms for prevention. In Bamboo Science and Technology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 89–124. [Google Scholar]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Abd_Allah, E.F.; Hashem, A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front. Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef]
- Wingler, A.; Juvany, M.; Cuthbert, C.; Munné-Bosch, S. Adaptation to altitude affects the senescence response to chilling in the perennial plant Arabis alpina. J. Exp. Bot. 2015, 66, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Calleja-Cabrera, J.; Boter, M.; Oñate-Sánchez, L.; Pernas, M. Root growth adaptation to climate change in crops. Front. Plant Sci. 2020, 11, 544. [Google Scholar] [CrossRef] [PubMed]
- Muhammad Aslam, M.; Waseem, M.; Jakada, B.H.; Okal, E.J.; Lei, Z.; Saqib, H.S.A.; Yuan, W.; Xu, W.; Zhang, Q. Mechanisms of abscisic acid-mediated drought stress responses in plants. Int. J. Mol. Sci. 2022, 23, 1084. [Google Scholar] [CrossRef] [PubMed]
- Kleinert, A.; Benedito, V.; Morcillo, R.; Dames, J.; Cornejo-Rivas, P.; Zuniga-Feest, A.; Delgado, M.; Muñoz, G. Morphological and symbiotic root modifications for mineral acquisition from nutrient-poor soils. In Root Biology; Springer: Cham, Switzerland, 2018; pp. 85–142. [Google Scholar]
- Wahab, A.; Abdi, G.; Saleem, M.H.; Ali, B.; Ullah, S.; Shah, W.; Mumtaz, S.; Yasin, G.; Muresan, C.C.; Marc, R.A. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants 2022, 11, 1620. [Google Scholar] [CrossRef] [PubMed]
- Christmas, M.J. Assessing Genomic Variation in the Hopbush, Dodonaea viscosa, to Investigate Micro-Evolution and Adaptation. Ph.D. Thesis, University of Adelaide, School of Biological Sciences, Adelaide, Australia, 2016. [Google Scholar]
- Gulyás, Z.; Székely, A.; Kulman, K.; Kocsy, G. Light-dependent regulatory interactions between the redox system and miRNAs and their biochemical and physiological effects in plants. Int. J. Mol. Sci. 2023, 24, 8323. [Google Scholar] [CrossRef] [PubMed]
- Christmas, M.J.; Biffin, E.; Lowe, A.J. Transcriptome sequencing, annotation and polymorphism detection in the hop bush, Dodonaea viscosa. BMC Genom. 2015, 16, 803. [Google Scholar] [CrossRef]
- Zahn, F.E.; Jiang, H.; Lee, Y.-I.; Gebauer, G. Mode of carbon gain and fungal associations of Neuwiedia malipoensis within the evolutionarily early-diverging orchid subfamily Apostasioideae. Ann. Bot. 2024, 134, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Chongtham, N.; Bisht, M.S. Bamboo Shoot: Superfood for Nutrition, Health and Medicine; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
Phytohormone | Role in D. latiflorus | Biosynthesis | Key Functions | Recent Studies |
---|---|---|---|---|
Auxins | Cell elongation, root development, culm elongation | Shoot apices and young leaves | Promotes cell elongation, root initiation, stem growth, fruit development | [39] |
Cytokinins | Cell division, shoot development, delays senescence | Roots | Promotes cell division shoot formation, delays leaf senescence, nutrient mobilization | [40] |
Gibberellins | Stem elongation, seed germination, internode elongation | Plastids | Promotes stem elongation, seed germination, flowering | [24] |
Abscisic Acid (ABA) | Stress response, stomatal closure, seed dormancy | Carotenoid precursors in plastids | Regulates stress responses, stomatal closure, seed dormancy | [41] |
Ethylene | Fruit ripening, leaf senescence, stress responses | Methionine via SAM and ACC | Regulates fruit ripening, leaf abscission, and responses to biotic/abiotic stresses | [33] |
Brassinosteroids | Cell expansion, stress tolerance, vascular differentiation | Campestral | Enhances cell expansion, stress tolerance, and vascular differentiation | [42] |
Phytohormone | Biosynthesis Pathway | Transport Mechanism | Signaling Pathway | References |
---|---|---|---|---|
Auxins | Synthesized from tryptophan via the indole-3-pyruvic acid and tryptamine pathways | Polar auxin transport (PAT) using PIN and AUX/LAX proteins | Perceived by TIR1/AFB receptors, leading to AUX/IAA degradation and ARF activation | [55] |
Cytokinins | Synthesized in roots from adenine derivatives via the isopentenyl transferase (IPT) pathway | Transported via xylem | Binds to AHK2/AHK3 receptors, phosphorylates HPs, and activates RRs | [56] |
Gibberellins | Produced in plastids via the methylerythritol phosphate (MEP) pathway involving GA20-oxidase and GA3-oxidase | Transferred through phloem and xylem | Binds to GID1 receptors, leading to DELLA protein degradation and growth activation | [57] |
Abscisic Acid | Synthesized in plastids from carotenoid precursors via the 9-cis-epoxycarotenoid cleavage pathway | Transported through xylem and phloem | Interacts with PYR1/PYL/RCAR, inhibits PP2C, activates SnRK2, and phosphorylates ABA-responsive genes | [58] |
Ethylene | Derived from methionine through S-adenosylmethionine (SAM) and 1-aminocyclopropane-1-carboxylic acid (ACC) | Diffuses through plant tissues | Perceived by ETR1 receptors, activates EIN3 transcription factors | [59] |
Brassinosteroids | Derived from campesterol via BRASSINOSTEROID-6-OXIDASE (BR6OX) enzymatic transformations | Transported locally or short distances | Recognized by BRI1 and BAK1 receptors, activates BZR1 transcription factors | [60] |
Enzyme | Pathway | Function | Key Roles in D. latiflorus | Recent Studies |
---|---|---|---|---|
Invertase | Sucrose Metabolism | Hydrolyzes sucrose into glucose and fructose | Provides glucose and fructose for metabolic processes | [80] |
Sucrose Synthase (SuSy) | Sucrose Metabolism | Converts sucrose and UDP into UDP-glucose and fructose | Supports cellulose and callose synthesis during cell wall formation | [81] |
Hexokinase (HXK) | Glycolysis | Phosphorylates glucose to glucose-6-phosphate | Initiates glycolysis, glucose sensing | [82] |
Alpha-Amylase | Starch Degradation | Hydrolyzes alpha-1,4-glycosidic bonds in starch | Produces maltose and glucose from starch | [83] |
Beta-Amylase | Starch Degradation | Cleaves non-reducing end of starch | Produces maltose from starch | [84] |
Glucanotransferase | Starch Degradation | Transfers glucosyl units | Modifies starch structure | [85] |
Debranching Enzyme | Starch Degradation | Cleaves alpha-1,6-glycosidic bonds | Facilitates complete starch degradation | [86] |
Phytohormone | Influence on Sugar Metabolism | Sugar’s Influence on Phytohormones | Recent Studies |
---|---|---|---|
Auxins | Modulates sugar transport and metabolism | Sugars affect auxin biosynthesis and transport | Mishra, Sharma and Laxmi [43] |
Cytokinins | Influences sugar transporters and enzymes | Sucrose promotes cytokinin biosynthesis | Wang, et al. [104] |
Gibberellins | Regulates glycolysis and TCA cycle genes | High sugar levels suppress GA biosynthesis | Lan, et al. [95] |
Abscisic Acid | Enhances sucrose cleavage under stress | Glucose modulates ABA signaling pathways | Liao, et al. [105] |
Ethylene | Regulates glycolysis and TCA cycle genes | Sugars influence ethylene production and signaling | Li, et al. [106] |
Brassinosteroids | Enhances glycolysis and TCA cycle genes | Sugars modulate brassinosteroid signaling pathways | Zheng, et al. [107] |
Geographic Location | Phytohormone Variation | Sugar Metabolism Variation | Environmental Influence | Recent Studies |
---|---|---|---|---|
High Altitude | Enhanced cytokinin and gibberellin | Increased sucrose synthesis | Low-temperature adaptation | [118] |
Low Altitude | Higher auxin and ethylene levels | Increased starch degradation | Warmer climate adaptation | [119] |
Water-Limited | Elevated abscisic acid levels | Enhanced sucrose cleavage, altered starch metabolism | Drought stress adaptation | [120] |
Nutrient-Rich Soil | Balanced hormone levels | Efficient sugar transport and metabolism | Nutrient availability | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seerat, A.; Aslam, M.A.; Rafique, M.T.; Chen, L.; Zheng, Y. Interplay Between Phytohormones and Sugar Metabolism in Dendrocalamus latiflorus. Plants 2025, 14, 305. https://doi.org/10.3390/plants14030305
Seerat A, Aslam MA, Rafique MT, Chen L, Zheng Y. Interplay Between Phytohormones and Sugar Metabolism in Dendrocalamus latiflorus. Plants. 2025; 14(3):305. https://doi.org/10.3390/plants14030305
Chicago/Turabian StyleSeerat, Azra, Muhammad Ahtesham Aslam, Muhammad Talha Rafique, Lingyan Chen, and Yushan Zheng. 2025. "Interplay Between Phytohormones and Sugar Metabolism in Dendrocalamus latiflorus" Plants 14, no. 3: 305. https://doi.org/10.3390/plants14030305
APA StyleSeerat, A., Aslam, M. A., Rafique, M. T., Chen, L., & Zheng, Y. (2025). Interplay Between Phytohormones and Sugar Metabolism in Dendrocalamus latiflorus. Plants, 14(3), 305. https://doi.org/10.3390/plants14030305