Roles and Regulations of Acid Invertases in Plants: Current Knowledge and Future Perspectives
Abstract
:1. Introduction
2. Physicochemical Characteristics of Ac-Invs
3. Identification and Expression of Acid Invertases in Plants
3.1. Acid Invertase Gene Families in Plant Species
3.2. Expression and Regulation of Acid Invertase Genes in Plants
3.2.1. Temporal–Spatial and Specific Expression
3.2.2. Regulation by Plant Hormones
3.2.3. Regulation by Environmental Stress
4. Functions of Acid Invertase Genes in Plants
4.1. Participation in Sucrose Unloading and Transport Regulation
4.2. Participation in Plant Growth and Development
4.3. Participation in Osmotic Regulation
4.4. Influence on Sugar Accumulation
4.5. Defective or Nonfunctional Invertases
5. Concluding Remarks and Future Perspectives
- –
- Elucidating Hormonal Signaling Pathways: Developing comprehensive models to explain how plant hormones interact with Ac-Invs to regulate plant growth, development, and responses to stress. This could involve transcriptomic and proteomic approaches to identify the hormone-responsive elements and post-translational modifications of Ac-Invs.
- –
- Investigating the Role of Defective Invertases: Exploring the functions of defective invertases and their interactions with other cellular proteins. This could be achieved through the generation of knockout or knockdown mutants, followed by phenotype analysis to understand the biological implications of nonfunctional invertases.
- –
- Characterizing Stress Response Mechanisms: Investigating the molecular mechanisms by which Ac-Invs mediate plant responses to environmental stresses. Research should focus on how Ac-Invs help maintain cellular homeostasis under stress conditions. This may involve studying the expression and activity of Ac-Invs in plants subjected to various stress factors such as drought, salinity, and temperature extremes.
- –
- Comparative Genomics and Evolutionary Studies: Conducting comparative genomic analyses to explore the evolutionary relationships between Ac-Invs in different plant species. This could provide insights into the conservation and divergence of Ac-Invs and their roles in plant adaptation and speciation.
- –
- Translational Research for Crop Improvement: Applying the findings from fundamental research to develop crops with improved yields, stress tolerance, and nutritional quality. This could involve genetic engineering strategies to modulate Ac-Invs expression or activity in economically important crops, thereby enhancing agricultural productivity and sustainability.
Author Contributions
Funding
Conflicts of Interest
References
- Vargas, W.A.; Salerno, G.L. The Cinderella story of sucrose hydrolysis: Alkaline/neutral invertases, from cyanobacteria to unforeseen roles in plant cytosol and organelles. Plant Sci. 2010, 178, 1–8. [Google Scholar] [CrossRef]
- Avigad, G.; Dey, P.M. Carbohydrate metabolism: Storage carbohydrates. In Plant Biochemistry; Dey, P.M., Harborne, J.B., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 143–204. [Google Scholar]
- Vargas, W.; Cumino, A.; Salerno, G.L. Cyanobacterial alkaline/neutral invertases: Origin of sucrose hydrolysis in the plant cytosol? Planta 2003, 216, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.L. Signalling role of sucrose metabolism in development. Mol. Plant 2012, 5, 763–765. [Google Scholar] [CrossRef]
- Roitsch, T.; González, M.C. Function and regulation of plant invertases: Sweet sensations. Trends Plant Sci. 2004, 9, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef]
- Ruan, Y.L.; Llewellyn, D.J.; Furbank, R.T. Suppression of sucrose synthase expression represses cotton fibre cell initiation, elongation and seed development. Plant Cell 2003, 15, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Chourey, P.S.; Taliercio, E.W.; Carlson, S.J.; Ruan, Y.L. Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol. Gen. Genet. 1998, 259, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Zrenner, R.; Salanoubat, M.; Willimitzer, L.; Sonnewald, U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 1995, 7, 97–107. [Google Scholar] [CrossRef]
- Coleman, H.D.; Yan, J.; Mansfield, S.D. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc. Natl. Acad. Sci. USA 2009, 106, 13118–13123. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Gou, J.Y.; Xue, H.W. PIP5K9, An Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic invertase to negatively regulate sugar mediated root growth. Plant Cell 2007, 19, 163–181. [Google Scholar] [CrossRef]
- Welham, T.; Pike, J.; Horst, I.; Flemetakis, E.; Katinakis, P.; Kaneko, T.; Sato, S.; Tabata, S.; Perry, J.; Parniske, M.; et al. A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus. J. Exp. Bot. 2009, 60, 3353–3365. [Google Scholar] [CrossRef]
- Ruan, Y.L.; Jin, Y.; Yang, Y.J.; Li, G.J.; Boyer, J.S. Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat. Mol. Plant 2010, 3, 942–955. [Google Scholar] [CrossRef] [PubMed]
- Rausch, T.; Greiner, S. Plant protein inhibitors of invertases. Biochim. Biophys. Acta 2004, 1696, 253–261. [Google Scholar] [CrossRef]
- Masuda, H.; Takahashi, T.; Sugawara, S. The occurrence and properties of alkaline invertase in mature roots of sugar beets. Agric. Biol. Chem. 1987, 51, 2309–2314. [Google Scholar] [CrossRef]
- Lammens, W.; Leroy, K.; Schroeven, L.; Van Laere, A.; Rabijns, A.; Van den Ende, W. Structural insights into glycoside hydrolase family 32 and 68 enzymes: Functional implications. J. Exp. Bot. 2009, 60, 727–740. [Google Scholar] [CrossRef]
- Salerno, G.L.; Curatti, L. Origin of sucrose metabolism in higher plants: When, how and why? Trends Plant Sci. 2003, 8, 63–69. [Google Scholar] [CrossRef]
- Sturm, A.; Chrispeels, M.J. cDNA cloning of carrot extracellular (beta)-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell 1990, 2, 1107–1119. [Google Scholar] [CrossRef]
- Sturm, A. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol. 1999, 121, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Stitt, M.; von Schaewen, A.; Willmitzer, L. “Sink” regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the calvin-cycle enzymes and an increase of glycolytic enzymes. Planta 1991, 183, 40–50. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, C.; Tompson, F.W. LX.—Invertase: A contribution to the history of an enzyme or unorganised ferment. J. Chem. Soc. Trans. 1890, 57, 834–931. [Google Scholar] [CrossRef]
- Kiyosue, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Kamada, H.; Harada, H. cDNA Cloning of ECP40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Mol. Biol. 1993, 21, 1053–1068. [Google Scholar] [CrossRef] [PubMed]
- Alberto, F.; Bignon, C.; Sulzenbacher, G.; Henrissat, B.; Czjzek, M. The Three-dimensional structure of invertase (β-Fructosidase) from thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. J. Biol. Chem. 2004, 279, 18903–18910. [Google Scholar] [CrossRef]
- Hashizume, H.; Tanase, K.; Shiratake, K.; Mori, H.; Yamaki, S. Purification and characterization of two soluble acid invertase isozymes from Japanese pear fruit. Phytochemistry 2003, 63, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.H.; Zou, K.Q.; Peng, C.C.; Wang, X.L.; Zhang, D.P. Purification, biochemical and immunological characterization of acid invertases from apple fruit. J. Integr. Plant Biol. 2005, 47, 50–59. [Google Scholar] [CrossRef]
- Tymowska, L.Z.; Kreis, M. Expression of the Arabidopsis thaliana invertase gene family. Planta 1998, 207, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Elliott, K.J.; Butler, W.O.; Dickinson, C.D.; Konno, Y.; Vedvick, T.S.; Fitzmaurice, L.; Mirkov, T.E. Isolation and characteration of fruit vacuolar invertase genes from two tomato species and temporal differences in m RNA levels duing fruit ripening. Plant Mol. Biol. 1993, 21, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Ramloch, L.K.; Knudsen, S.; Sturm, A. Molecular characterization of the gene for carrot cell wall β-fructosadase. Plant J. 1993, 4, 545–554. [Google Scholar] [CrossRef]
- Juárez-Colunga, S.; López-González, C.; Morales-Elías, N.C.; Massange-Sánchez, J.A.; Trachsel, S.; Tiessen, A. Genome-wide analysis of the invertase gene family from maize. Plant Mol. Biol. 2018, 97, 385–406. [Google Scholar] [CrossRef] [PubMed]
- Tymowska-Lakanne, Z.; Kreis, M. The plant invertase: Physiology, biochemistry and molecular biology. Adv. Bot. Res. 1998, 28, 71–117. [Google Scholar]
- Qian, W.; Yue, C.; Wang, Y.; Cao, H.; Li, N.; Wang, L.; Hao, X.; Wang, X.; Xiao, B.; Yang, Y. Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress. Plant Cell Rep. 2016, 35, 2269–2283. [Google Scholar] [CrossRef]
- Sherson, S.M.; Alford, H.L.; Forbes, S.M.; Wallace, G.; Smith, S.M. Roles of Cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J. Exp. Bot. 2003, 54, 525–53135. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Van den Ende, W.; Van Laere, A.; Cheng, S.; Bennett, J. Structure, evolution, and expression of the two invertase gene families of rice. J. Mol. Evol. 2005, 60, 615–634. [Google Scholar] [CrossRef]
- Song, C.; Zhang, Y.; Zhang, W.; Manzoor, M.A.; Deng, H.; Han, B. The potential roles of acid invertase family in Dendrobium huoshanense: Identification, evolution, and expression analyses under abiotic stress. Int. J. Biol. Macromol. 2023, 253, 127599. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, B.; Luo, K.; Yu, B.; Li, X.; Zeng, J.; Chen, J.; Xia, R.; Xu, J.; Liu, Y. Genomic identification and expression analysis of acid invertase (AINV) gene family in Dendrobium officinale Kimura et Migo. BMC Plant Biol. 2024, 24, 396. [Google Scholar] [CrossRef] [PubMed]
- Bocock, P.N.; Morse, A.M.; Dervinis, C.; Davis, J.M. Evolution and diversity of invertase genes in Populus trichocarpa. Planta 2008, 227, 565–576. [Google Scholar] [CrossRef]
- Ruan, Y.L. Sucrose metabolism: Gateway to diversecarbon use and sugar signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Robinson, S.P. Sugar accumulation in grape berries (Cloning of Two Putative Vacuolar Invertase cDNAs and Their Expression in Grapevine Tissues). Plant Physiol. 1996, 111, 275–283. [Google Scholar] [CrossRef]
- Ranwala, A.P.; Baird, W.V.; Miller, W.E. Organspecific localization and molecular properties of three soluble invertase from Lilium longiflorum flower buds. Physiol. Plant. 1998, 103, 551–559. [Google Scholar] [CrossRef]
- Lorenz, K.; Lienhard, S.; Strum, A. Structural organization and differential expression of carrot bfructofuranosidase genes identification of a gene coding for a flower bud-specific isozyme. Plant Mol. Biol. 1995, 28, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Ruan, Y.L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiol. 2012, 160, 777–787. [Google Scholar]
- Weber, H.; Borisjuk, L.; Wobus, U. Controlling seed development and seed size in Vicia faba: A role for seed coat-associated invertases and carbohydrate state. Plant J. 1996, 10, 823–834. [Google Scholar] [CrossRef]
- Miller, M.E.; Chourey, P.S. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell 1992, 4, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, K.P.; Mari, C.G.; Thomas, R. Gibberellin-dependent in- duction of tomato extracellular invertase Lin7 is required for pollen development. Funct. Plant Biol. 2006, 33, 547–554. [Google Scholar]
- Jacques, T.; Sophie, C.-J.; Claudine, T.; Marie, P.J.; Jean, L.P. Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta 2004, 219, 5. [Google Scholar]
- Maria, E.B.L.; Maria-Cruz, G.G.; Tahira, F.; Rainer, E.; Taek, K.L.; Reinhard, P.; Widmar, T.; Thomas, R. Extracellular invertase is an essential component of cytokinnin-mediated delay of senescence. Plant Cell 2004, 16, 1276–1278. [Google Scholar]
- Zinselmeier, C.; Westgate, M.E.; Schussler, J.R.; Jones, R.J. Low water potential disrupts carbohydrate metabolism (Zea mays L.) ovaries. Plant Physiol. 1995, 107, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zheng, F.; Feng, Z.; Li, Y.; Ma, M.; Wang, G.; Zhao, H. A vacuolar invertase CsVI2 regulates sucrose metabolism and increases drought tolerance in Cucumis sativus L. Int. J. Mol. Sci. 2021, 23, 176. [Google Scholar] [CrossRef]
- Cheng, L.; Jin, J.; He, X.; Luo, Z.; Wang, Z.; Yang, J.; Xu, X. Genome-wide identification and analysis of the invertase gene family in tobacco (Nicotiana tabacum) reveals NtNINV10 participating the sugar metabolism. Front. Plant Sci. 2023, 14, 1164296. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, E.C.; Kobayashi, A.; Noda, T.; Takigawa, S.; Yamauchi, H.; Mori, M. Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. J. Plant Res. 2004, 117, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Picha, D.H.; Kilili, A.W.; Johnson, C.E. Changes in invertase activities and reducing sugar content in sweetpotato stored at different temperatures. J. Agric. Food Chem. 1999, 47, 4927–4931. [Google Scholar] [CrossRef]
- Cheikh, N.; Jones, R.J. Heat stress effects on sink activity of developing maize kernels grown in vitro. Physiol. Plant. 1995, 95, 59–66. [Google Scholar] [CrossRef]
- Li, Z.; Palmer, W.M.; Martin, A.P.; Wang, R.Q.; Rainsford, F.; Jin, Y.; Patrick, J.W.; Yang, Y.; Ruan, Y.-L. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J. Exp. Bot. 2012, 63, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, A.; Butler, N.M.; Zeng, Z.; Xin, H.; Wang, L.; Lv, Z.; Eshel, D.; Douches, D.S.; Jiang, J. Molecular dissection of an intronic enhancer governing cold-induced expression of the vacuolar invertase gene in potato. Plant Cell 2024, 36, 1985–1999. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhu, L.; Tian, R.; Wang, L.; Su, J.; Yuan, Y.; Ma, F.; Li, M.; Ma, B. Genome-wide identification, characterization and evolutionary dynamic of invertase gene family in apple, and revealing its roles in cold tolerance. Int. J. Biol. Macromol. 2023, 229, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Teper-Bamnolker, P.; Roitman, M.; Katar, O.; Peleg, N.; Aruchamy, K.; Suher, S.; Doron-Faigenboim, A.; Leibman, D.; Omid, A.; Belausov, E.; et al. An alternative pathway to plant cold tolerance in the absence of vacuolar invertase activity. Plant J. 2023, 113, 327–341. [Google Scholar] [CrossRef]
- Matsushita, K.; Uritani, I. Change in invertase activity of sweet potato in response to wounding and purification and properties of its invertases. Plant Physiol. 1974, 54, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.M.; Arraba, M.C.; Carvalho, L.M.M. Sucrose metabolism in Lupinusalbus L. Under salt stress. Biol. Plant. 2004, 48, 317–319. [Google Scholar] [CrossRef]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-L.; Zhang, X.-Y.; Zhang, L.-Y.; Pan, Q.-H.; Shen, Y.-Y.; Zhang, D.-P. Phloem unloading in developing walnut fruit is symplasmic in the seed pericarp and apoplasmic in the fleshy pericarp. Plant Cell Physiol. 2004, 45, 1461–1470. [Google Scholar] [CrossRef]
- Estruch, J.J.; Beltran, J.P. Changes in invertase activities precede ovary growth induced by gibberellic acid in pisum sativum. Physiol. Plant. 1991, 81, 319–326. [Google Scholar] [CrossRef]
- Xu, D.P.; Sung, S.J.S.; Black, C.C. Sucrose met abolism in lima bean seeds. Plant Physiol. 1989, 89, 1106–1116. [Google Scholar] [CrossRef]
- Barratt, D.H.P.; Derbyshire, P.; Findlay, K.; Pike, M.; Wellner, N.; Lunn, J.; Feil, R.; Simpson, C.; Maule, A.J.; Smith, A.M. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc. Natl. Acad. Sci. USA 2009, 106, 13124–13129. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Zhang, B.; Mao, C.; Li, J.; Wu, Y.; Wu, P.; Wu, Z. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta 2008, 228, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Wang, J.; Zhu, X.; Hao, W.; Wang, L.; Li, Q.; Zhang, L.; He, W.; Lu, B.; Lin, H.; et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 2008, 40, 1370–1374. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ren, Y.; Wang, C.; Zhang, H.; Wang, F.; Chen, J.; Liu, X.; Zheng, T.; Cai, M.; Zeng, Z.; et al. OsVIN2 encodes a vacuolar acid invertase that affects grain size by altering sugar metabolism in rice. Plant Cell Rep. 2019, 38, 1273–1290. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Cao, J.-S.; Li, G.-J.; Wu, X.-H.; Wang, B.-G.; Xu, P.; Hu, T.-T.; Lu, Z.-F.; Patrick, J.W.; Ruan, Y.-L. Genotypic differences in pod wall and seedgrowth relate to invertase activities and assimilate transport pathways in Asparagus Bean. Ann. Bot. 2012, 109, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Goetz, M.; Godt, D.E.; Guivarc’h, A.; Kahmann, U.; Chriqui, D.; Roitsch, T. Induction of male sterility in plants by metabolicengineering of the carbohydrate supply. Proc. Natl. Acad. Sci. USA 2001, 98, 6522–6527. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.N.; Van Dongen, J.T.; Alfred, S.C.; Mamun, E.A.; Zhao, X.; Saini, H.S.; Fernandes, S.F.; Blanchard, C.L.; Sutton, B.G.; Geigenberger, P.; et al. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ. 2005, 28, 1534–1551. [Google Scholar] [CrossRef]
- Sato, S.; Kamiyama, M.; Iwata, N.; Makita, H.; Furukawa, H.I. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann. Bot. 2006, 97, 731–738. [Google Scholar] [CrossRef]
- Sergeeva, L.I.; Keurentjes, J.J.; Bentsink, L.; Vonk, J.; van der Plas, L.H.; Koornneef, M.; Vreugdenhil, D. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc. Natl. Acad. Sci. USA 2006, 103, 2994–2999. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, I.; Kutschera, V. Sucrose metabolism and cell elongation indeveloping sunflower hypocotyls. J. Exp. Bot. 1995, 46, 631–638. [Google Scholar] [CrossRef]
- Echeverria, E.; Valich, J. Carbohydrate and enzyme distribution in protoplasts from Valencia orange juice sacs. Phytochemistry 1988, 27, 73–76. [Google Scholar] [CrossRef]
- Yamaki, S. Isolati on of vacuoles from immature apple fruit flesh and compartmentation of sugars, organic acids, phenolic compounds and amino acids. Plant Cell Physiol. 1984, 25, 151–166. [Google Scholar]
- Schaffer, A.A.; Aloni, B.; Fogelman, E. Sucrose metabolism and accumulation in developing fruit of Cucumis. Phytochemistry 1987, 26, 1883–1887. [Google Scholar] [CrossRef]
- Klann, E.M.; Chetelat, R.T.; Bennett, A.B. Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit. Plant Physiol. 1993, 103, 863–870. [Google Scholar] [CrossRef]
- Klann, E.M.; Hall, B.; Bennett, A.B. Antisense acid invertase( TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol. 1996, 112, 1321–1330. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Wang, T.D.; Wang, H.C.; Huang, X.; Qin, Y.; Hu, G. Patterns of enzyme activities and gene expressions in sucrose metabolism in relation to sugar accumulation and composition in the aril of Lichi chinensis Sonn. Plant Physiol. 2013, 170, 731–740. [Google Scholar] [CrossRef]
- Zhang, H.L.; Liu, J.; Hou, J.; Yao, Y.; Lin, Y.; Ou, Y.; Song, B.; Xie, C. The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity. Plant Biotech. J. 2014, 12, 984–993. [Google Scholar] [CrossRef]
- Wan, H.; Wu, L.; Yang, Y.; Zhou, G.; Ruan, Y.-L. Evolution of sucrose metabolism: The dichotomy of invertases and beyond. Trends Plant Sci. 2018, 23, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, K.; Vergauwen, R.; Struyf, T.; Yuan, S.; Lammens, W.; Mátrai, J.; De Maeyer, M.; Van den Ende, W. Understanding the role of defective invertases in plants: Tobacco Nin88 fails to degrade sucrose. Plant Physiol. 2013, 161, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Cheng, Y.; Ruan, M.; Ye, Q.; Wang, R.; Yao, Z.; Zhou, G.; Li, Z.; Liu, C.; Wan, H. Roles and Regulations of Acid Invertases in Plants: Current Knowledge and Future Perspectives. Plants 2025, 14, 320. https://doi.org/10.3390/plants14030320
Liu J, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Zhou G, Li Z, Liu C, Wan H. Roles and Regulations of Acid Invertases in Plants: Current Knowledge and Future Perspectives. Plants. 2025; 14(3):320. https://doi.org/10.3390/plants14030320
Chicago/Turabian StyleLiu, Jia, Yuan Cheng, Meiying Ruan, Qingjing Ye, Rongqing Wang, Zhuping Yao, Guozhi Zhou, Zhimiao Li, Chenxu Liu, and Hongjian Wan. 2025. "Roles and Regulations of Acid Invertases in Plants: Current Knowledge and Future Perspectives" Plants 14, no. 3: 320. https://doi.org/10.3390/plants14030320
APA StyleLiu, J., Cheng, Y., Ruan, M., Ye, Q., Wang, R., Yao, Z., Zhou, G., Li, Z., Liu, C., & Wan, H. (2025). Roles and Regulations of Acid Invertases in Plants: Current Knowledge and Future Perspectives. Plants, 14(3), 320. https://doi.org/10.3390/plants14030320