Identification of R2R3-MYB Transcription Factor Family Based on Amaranthus tricolor Genome and AtrMYB72 Promoting Betalain Biosynthesis by Directly Activating AtrCYP76AD1 Expression
Abstract
:1. Introduction
2. Results
2.1. Identification and Physical Parameters of R2R3-MYB Transcription Factor in Amaranth
2.2. Multiple Sequence Alignment
2.3. Collinearity Analysis of the R2R3-MYB Gene Family
2.4. Phylogenetic Analysis and Structural Classification of R2R3-MYB Genes
2.5. Cis-Regulatory Elements Analysis of the R2R3-MYB Promotors in Amaranth
2.6. Expression Pattern of AtrMYB Genes
2.7. Gene Expression Validation (qRT-PCR)
2.8. Functional Analysis of AtrMYB72 Gene
2.8.1. Overexpression of AtrMYB72 in Amaranth
2.8.2. VIGS Analysis of AtrMYB72
2.9. AtrMYB72 Binds to the Promoter Regions of the AtrCYP76AD1
2.10. AtrMYB72 Promoted the AtrCYP76AD1 Transcription
3. Discussion
4. Materials and Methods
4.1. Material and Treatment
4.2. Identification of R2R3-MYB Gene Family Members in Amaranth
4.2.1. Data Sources, Gene Identification and Physicochemical Properties Analysis
4.2.2. Chromosomal Locations and Gene Synteny Analyses
4.2.3. Analysis of Conserved Motifs and Conserved Domains of R2R3-MYB Proteins
4.2.4. Phylogenetic Analysis of AtrMYBs
4.2.5. Prediction of Cis-Regulatory Elements in Promoter Sequences of AtrMYBs
4.2.6. Analysis of Expression Patterns of R2R3-MYB Gene Family
4.2.7. qRT-PCR Analyses
4.3. Functional Analysis of AtrMYB72
4.4. Yeast One-Hybrid Assay
4.5. Dual-Luciferase Transient Expression Assay
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parveen, M.; Ray, S.; Chatterjee, N.C. Detection and diversity pattern of amaranth Cultivars originated in diverse region of Indian subcontinent. Int. J. Pharma Bio Sci. 2018, 9. [Google Scholar] [CrossRef]
- Nazeer, S.; Zubair Akram, M.; Ali, M. Amaranth as Nutrition-Rich and Climatic Resilient Crop: A Review. ACS Agric. Conspec. Sci. 2022, 87, 281. [Google Scholar]
- Liu, S.; Wang, X.; Peng, L. Comparative Transcriptomic Analysis of the Metabolism of Betalains and Flavonoids in Red Amaranth Hypocotyl under Blue Light and Dark Conditions. Molecules 2023, 28, 5627. [Google Scholar] [CrossRef]
- Silva, A.D.; Ávila, S.; Küster, R.T.; dos Santos, M.P.; Grassi, M.T.; Pinto, C.d.Q.P.; Miguel, O.G.; Ferreira, S.M.R. In vitro Bioaccessibility of Proteins, Phenolics, Flavonoids and Antioxidant Activity of Amaranthus viridis. Plant Food Hum. Nutr. 2021, 76, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Y.; Feng, W.; Lai, Z.; Liu, S. Effects of aromatic amino acids on callus growth and accumulation of secondary metabolites in amaranth. Trop. Plants 2024, 3, e032. [Google Scholar] [CrossRef]
- Xuan, Y.; Liu, S.; Xie, L.; Pan, J. Establishment of Amaranthus spp. calluses and cell suspension culture, and the effect of plant growth regulators on total flavonoid content. Trop. Plants 2023, 2, 15. [Google Scholar] [CrossRef]
- Polturak, G.; Aharoni, A. Advances and future directions in betalain metabolic engineering. New Phytol. 2019, 224, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, D.; Khatri-Chhetri, U.; Tymm, F.J.M.; Murch, S.J.; Deyholos, M.K. A virus-induced gene-silencing system for functional genetics in a betalainic species, Amaranthus tricolor (Amaranthaceae). Appl. Plant Sci. 2019, 7, e1221. [Google Scholar] [CrossRef]
- Murthy, H.N.; Joseph, K.S.; Paek, K.Y.; Park, S.-Y. Correction to: Production of betalains in plant cell and organ cultures: A review. Plant Cell Tissue Organ Cult. 2024, 158, 57. [Google Scholar] [CrossRef]
- Gómez-Maqueo, A.; Welti-Chanes, J.; Cano, M.P. Release mechanisms of bioactive compounds in fruits submitted to high hydrostatic pressure: A dynamic microstructural analysis based on prickly pear cells. Food Res. Int. 2020, 130, 108909. [Google Scholar] [CrossRef]
- Babaei, M.; Thomsen, P.T.; Dyekjær, J.D.; Glitz, C.U.; Pastor, M.C.; Gockel, P.; Körner, J.D.; Rago, D.; Borodina, I. Combinatorial engineering of betalain biosynthesis pathway in yeast Saccharomyces cerevisiae. Biotechnol. Biofuels Bioprod. 2023, 16, 128. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Martínez, A.J.; Rodríguez-Párraga, J.; Solivella-Poveda, A.M.; Fernández-López, J.A.; -Martos, M.V.; Pérez-Alvarez, J.A. Beetroot juices as colorant in plant-based minced meat analogues: Color, betalain composition and antioxidant activity as affected by juice type. Food Biosci. 2023, 56, 103156. [Google Scholar] [CrossRef]
- Imamura, T.; Isozumi, N.; Higashimura, Y.; Koga, H.; Segawa, T.; Desaka, N.; Takagi, H.; Matsumoto, K.; Ohki, S.; Mori, M. Red-Beet Betalain Pigments Inhibit Amyloid-β Aggregation and Toxicity in Amyloid-β Expressing Caenorhabditis elegans. Plant Food Hum. Nutr. 2022, 77, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liang, X.; Tian, Z.; Ma, Y.; Sun, C. Betalain exerts cardioprotective and anti-inflammatory effects against the experimental model of heart failure. Hum. Exp. Toxicol. 2021, 40, S16–S28. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Chung, I.-M.; Samynathan, R.; Chandar, S.R.H.; Venkidasamy, B.; Sarkar, T.; Rebezov, M.; Gorelik, O.; Shariati, M.A.; Simal-Gandara, J. A comprehensive review of beetroot (Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit. Rev. Food Sci. 2024, 64, 708–739. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Meng, X.; Zhu, M.; Li, Z. Research Progress of Betalain in Response to Adverse Stresses and Evolutionary Relationship Compared with Anthocyanin. Molecules 2019, 24, 3078. [Google Scholar] [CrossRef] [PubMed]
- Gliszczyńska-Šwigło, A.; Szymusiak, H.; Malinowska, P. Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Addit. Contam. 2006, 23, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Nieves, S.; Yang, Y.; Timoneda, A.; Wang, M.; Feng, T.; Smith, S.A.; Brockington, S.F.; Maeda, H.A. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales. New Phytol. 2018, 217, 896–908. [Google Scholar] [CrossRef]
- Teng, X.-L.; Chen, N.; Xiao, X.-G. Identification of a Catalase-Phenol Oxidase in Betalain Biosynthesis in Red Amaranth (Amaranthus cruentus). Front. Plant Sci. 2016, 6, 1228. [Google Scholar] [CrossRef] [PubMed]
- Polturak, G.; Breitel, D.; Grossman, N.; Sarrion-Perdigones, A.; Weithorn, E.; Pliner, M.; Orzaez, D.; Granell, A.; Rogachev, I.; Aharoni, A. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytol. 2016, 210, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Sunnadeniya, R.; Bean, A.; Brown, M.; Akhavan, N.; Hatlestad, G.; Gonzalez, A.; Symonds, V.V.; Lloyd, A. Tyrosine Hydroxylation in Betalain Pigment Biosynthesis Is Performed by Cytochrome P450 Enzymes in Beets (Beta vulgaris). PLoS ONE 2016, 11, e149417. [Google Scholar] [CrossRef]
- Brockington, S.F.; Yang, Y.; Gandia-Herrero, F.; Covshoff, S.; Hibberd, J.M.; Sage, R.F.; Wong, G.K.S.; Moore, M.J.; Smith, S.A. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytol. 2015, 207, 1170–1180. [Google Scholar] [CrossRef]
- Polturak, G.; Aharoni, A. “La Vie en Rose”: Biosynthesis, Sources, and Applications of Betalain Pigments. Mol. Plant 2018, 11, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, S.; Cheng, C.; Guo, R.; Chen, Y.; Xie, L.; Mao, Y.; Lin, Y.; Zhang, Z.; Lai, Z. Cloning and expression analysis of betalain biosynthesis genes in Amaranthus tricolor. Biotechnol. Lett. 2016, 38, 723–729. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chiu, Y.-C.; Tsao, N.-W.; Chou, Y.-L.; Tan, C.-M.; Chiang, Y.-H.; Liao, P.-C.; Lee, Y.-C.; Hsieh, L.-C.; Wang, S.-Y.; et al. Elucidation of the core betalain biosynthesis pathway in Amaranthus tricolor. Sci Rep-Uk 2021, 11, 6086. [Google Scholar] [CrossRef] [PubMed]
- Tossi, V.E.; Tosar, L.M.; Pitta-Álvarez, S.I.; Causin, H.F. Casting light on the pathway to betalain biosynthesis: A review. Environ. Exp. Bot. 2021, 186, 104464. [Google Scholar] [CrossRef]
- Xie, F.; Chen, C.; Chen, J.; Chen, J.; Hua, Q.; Shah, K.; Zhang, Z.; Zhao, J.; Hu, G.; Chen, J.; et al. Betalain biosynthesis in red pulp pitaya is regulated via HuMYB132: A R-R type MYB transcription factor. BMC Plant Biol. 2023, 23, 28. [Google Scholar] [CrossRef]
- Hatlestad, G.J.; A Akhavan, N.; Sunnadeniya, R.M.; Elam, L.; Cargile, S.; Hembd, A.; Gonzalez, A.; McGrath, J.M.; Lloyd, A.M. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway. Nat. Genet. 2015, 47, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xie, F.; Shah, K.; Hua, Q.; Chen, J.; Zhang, Z.; Zhao, J.; Hu, G.; Qin, Y. Genome-Wide Identification of WRKY Gene Family in Pitaya Reveals the Involvement of HmoWRKY42 in Betalain Biosynthesis. Int. J. Mol. Sci. 2022, 23, 10568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, C.; Xie, F.; Hua, Q.; Zhang, Z.; Zhang, R.; Chen, J.; Zhao, J.; Hu, G.; Qin, Y. A Novel WRKY Transcription Factor HmoWRKY40 Associated with Betalain Biosynthesis in Pitaya (Hylocereus monacanthus) through Regulating HmoCYP76AD1. Int. J. Mol. Sci. 2021, 22, 2171. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, J.; Shah, K.; Xie, F.; Chen, C.; Chen, J.; Zhao, J.; Hu, G.; Zhang, Z.; Qin, Y. Identification ofHuSPL family and key role ofHuSPL12in regulation of betalain biosynthesis in pitaya. Physiol. Plant. 2023, 175, e13923. [Google Scholar] [CrossRef]
- Chen, J.; Xie, F.; Shah, K.; Chen, C.; Zeng, J.; Chen, J.; Zhang, Z.; Zhao, J.; Hu, G.; Qin, Y. Identification of HubHLH family and key role of HubHLH159 in betalain biosynthesis by activating the transcription of HuADH1, HuCYP76AD1-1, and HuDODA1 in pitaya. Plant Sci. 2023, 328, 111595. [Google Scholar] [CrossRef]
- Yang, R.; Huang, T.; Song, W.; An, Z.; Lai, Z.; Liu, S. Identification of WRKY gene family members in amaranth based on a transcriptome database and functional analysis of AtrWRKY42-2 in betalain metabolism. Front. Plant Sci. 2023, 14, 1300522. [Google Scholar] [CrossRef] [PubMed]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef]
- Stracke, R.; Werber, M.; Weisshaar, B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 2001, 4, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, J.; Zhang, Y.; Cui, J.; Hu, H. Transcriptome-wide identification, characterization, and expression analysis of R2R3-MYB gene family during lignin biosynthesis in Chinese cedar (Cryptomeria fortunei Hooibrenk). Ind. Crop. Prod. 2022, 182, 114883. [Google Scholar] [CrossRef]
- Millard, P.S.; Kragelund, B.B.; Burow, M. R2R3 MYB Transcription Factors–Functions outside the DNA-Binding Domain. Trends Plant Sci. 2019, 24, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xia, M.; Su, P.; Zhang, Y.; Tu, L.; Zhao, H.; Gao, W.; Huang, L.; Hu, Y. MYB transcription factors in plants: A comprehensive review of their discovery, structure, classification, functional diversity and regulatory mechanism. Int. J. Biol. Macromol. 2024, 282, 136652. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, K.; Khurshid, M.; Li, J.; He, M.; Georgiev, M.I.; Zhang, X.; Zhou, M. MYB Transcription Repressors Regulate Plant Secondary Metabolism. Crit. Rev. Plant Sci. 2019, 38, 159–170. [Google Scholar] [CrossRef]
- Hughes, C.L.; Harmer, S.L. Myb-like transcription factors have epistatic effects on circadian clock function but additive effects on plant growth. Plant Direct 2023, 7, e533. [Google Scholar] [CrossRef] [PubMed]
- Biswas, D.; Gain, H.; Mandal, A. MYB transcription factor: A new weapon for biotic stress tolerance in plants. Plant Stress 2023, 10, 100252. [Google Scholar] [CrossRef]
- Huang, X.; Yang, Q.; Gao, H. Research progress in the regulation of secondary metabolism in medicinal plants by MYB transcription factors. J. Holist. Integr. Pharm. 2023, 4, 287–292. [Google Scholar] [CrossRef]
- Lloyd, A.; Brockman, A.; Aguirre, L.; Campbell, A.; Bean, A.; Cantero, A.; Gonzalez, A. Advances in the MYB–bHLH–WD Repeat (MBW) Pigment Regulatory Model: Addition of a WRKY Factor and Co-option of an Anthocyanin MYB for Betalain Regulation. Plant Cell Physiol. 2017, 58, 1431–1441. [Google Scholar] [CrossRef]
- Xie, F.; Hua, Q.; Chen, C.; Zhang, Z.; Zhang, R.; Zhao, J.; Hu, G.; Chen, J.; Qin, Y. Genome-Wide Characterization of R2R3-MYB Transcription Factors in Pitaya Reveals a R2R3-MYB Repressor HuMYB1 Involved in Fruit Ripening through Regulation of Betalain Biosynthesis by Repressing Betalain Biosynthesis-Related Genes. Cells-Basel 2021, 10, 1949. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Shah, K.; Chen, C.; Sabir, I.A.; Chen, J.; Chen, J.; Chen, J.; Qin, Y. Unraveling betalain suppression in pitaya: Insights from co-activatorHuMYB9 binding atHuCYP76AD1-1, HuADH1, andHuDODA1 super-enhancers. Food Qual. Saf. 2024, 8, fyae016. [Google Scholar] [CrossRef]
- Xie, L.L.S.B. Acta Botanica Boreali-Occidentalia Sin., D.S.; Z. Cloning and expression analysis of betalain-related transcription factor gene AmMYB1 in Amaranthus tricolor L. Acta Bot. Boreali-Occident. Sin. 2016, 36, 1080–1090. [Google Scholar] [CrossRef]
- Peng, L.Y.; Wang, Y.; Sun, X.L.; Xiao, W.; Zhao, C.L.; Wang, C. Expression and Functional Analysis of AmMYB2 Related to Betalain Metabolism of Amaranthus tricolor L. Acta Hortic. Sin. 2019, 46, 473–485. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Zhang, H.; Dong, S.; Chen, J.; Sun, Y.; Zhang, Y.; Liu, Q. Genome-wide identification, expression analysis of the R2R3-MYB gene family and their potential roles under cold stress in Prunus sibirica. BMC Genom. 2024, 25, 953. [Google Scholar] [CrossRef]
- Wang, B.; Xiong, C.; Peng, Z.; Luo, Z.; Wang, X.; Peng, S.; Yu, Z. Genome-wide analysis of R2R3-MYB transcription factors in poplar and functional validation of PagMYB147 in defense against Melampsora magnusiana. Planta 2024, 260, 47. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xu, X.; Yang, L.; Zhu, X.; Du, Y.; Fang, Z. A R2R3-MYB transcription factor, FeR2R3-MYB, positively regulates anthocyanin biosynthesis and drought tolerance in common buckwheat (Fagopyrum esculentum). Plant Physiol. Biochem. 2024, 217, 109254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, Z.; Wu, H.; Xu, Z.; Zhang, H.; Qian, W.; Gao, W.; She, H. Genome-Wide Identification and Characterization of MYB Gene Family and Analysis of Its Sex-Biased Expression Pattern in Spinacia oleracea L. Int. J. Mol. Sci. 2024, 25, 795. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, M.; Huang, Y.; Zhu, P.; Qian, G.; Zhang, Y.; Li, L. Genome-Wide Identification and Analysis of R2R3-MYB Genes Response to Saline–Alkali Stress in Quinoa. Int. J. Mol. Sci. 2023, 24, 9132. [Google Scholar] [CrossRef]
- Stracke, R.; Holtgräwe, D.; Schneider, J.; Pucker, B.; Sörensen, T.R.; Weisshaar, B. Genome-wide identification and characterisation of R2R3-MYB genes in sugar beet (Beta vulgaris). BMC Plant Biol. 2014, 14, 249. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Tian, S.; Huang, S.; Wei, J.; Han, D.; Li, J.; Guo, D.; Zhou, Y. Genome-wide identification of the longan R2R3-MYB gene family and its role in primary and lateral root. BMC Plant Biol. 2023, 23, 448. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Li, G.; Jiang, D.; Yuan, F.; Zhou, X.; Zheng, Y.; Zhang, H.; Cao, B. The Genome-Wide Identification of the R2R3-MYB Gene Family in Chinese Flowering Cabbage and the Characterization of Its Response to Pectobacterium carotovorum Infection. Horticulturae 2024, 10, 325. [Google Scholar] [CrossRef]
- Díaz, V.M.; Viñas-Castells, R.; García De Herreros, A. Regulation of the protein stability of EMT transcription factors. Cell Adhes. Migr. 2014, 8, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.A.W.A.; Wong, G.R.; Rahim, A.N.; Teoh, S.H.; Tan, B.C.; Lum, W.S.; Ho, P.W.C.; Mazumdar, P. Genome-Wide Analysis of the R2R3-MYB Gene Family in Durian (Durio zibethinus) and Potential Role in Nutrient Stress Response. Trop. Plant Biol. 2024, 18, 18. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Q.; Liang, Y.; Lu, Z.; Liu, W.; Yuan, H.; Li, H. Genome-Wide Identification and Expression Analysis of ‘NanGuo’ Pear Revealed Key MYB Transcription Factor Family Genes Involved in Anthocyanin Accumulation. Horticulturae 2024, 10, 989. [Google Scholar] [CrossRef]
- Zhang, H.-C.; Gong, Y.-H.; Tao, T.; Lu, S.; Zhou, W.-Y.; Xia, H.; Zhang, X.-Y.; Yang, Q.-Q.; Zhang, M.-Q.; Hong, L.-M.; et al. Genome-wide identification of R2R3-MYB transcription factor subfamily genes involved in salt stress in rice (Oryza sativa L.). BMC Genom. 2024, 25, 797. [Google Scholar] [CrossRef] [PubMed]
- Jintao, F.; Chenxi, J.; Jihong, X.; Jingao, D. Structure and function of the 22nd subfamily in Arabidopsis R2R3-MYB family. Yíchuán 2014, 36, 985–994. [Google Scholar]
- Chen, Y.; Chen, Z.; Kang, J.; Kang, D.; Gu, H.; Qin, G. AtMYB14 Regulates Cold Tolerance in Arabidopsis. Plant Mol. Biol. Rep. 2013, 31, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Xin, P.; Wang, Y.; Han, C.; Lei, C.; Huang, W.; Zhang, Y.; Zhang, X.; Cheng, K.; Zhang, X. A negative feedback regulatory module comprising R3-MYB repressor MYBL2 and R2R3-MYB activator PAP1 fine-tunes high light-induced anthocyanin biosynthesis in Arabidopsis. J. Exp. Bot. 2024, 75, 7381–7400. [Google Scholar] [CrossRef] [PubMed]
- Velten, J.; Cakir, C.; Cazzonelli, C.I. A Spontaneous Dominant-Negative Mutation within a 35S::AtMYB90 Transgene Inhibits Flower Pigment Production in Tobacco. PLoS ONE 2010, 5, e9917. [Google Scholar] [CrossRef]
- Muñoz-Gómez, S.; Suárez-Baron, H.; Alzate, J.F.; González, F.; Pabón-Mora, N. Evolution of the Subgroup 6 R2R3-MYB Genes and Their Contribution to Floral Color in the Perianth-Bearing Piperales. Front. Plant Sci. 2021, 12, 633227. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, D.; Wang, S.; Wang, A.; Lei, L.; Jiang, F.; Yang, B.; Yuan, L.; Chen, R.; Zhang, Y.; et al. Chromosome-scale Amaranthus tricolor genome provides insights into the evolution of the genus Amaranthus and the mechanism of betalain biosynthesis. DNA Res. 2023, 30, dsac050. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wang, Y.; Tao, Y.; Chen, L.; Lin, H.; Qi, Z.; Li, J. Genome-wide identification and analysis of anthocyanin synthesis-related R2R3-MYB genes in Fragaria pentaphylla. BMC Genom. 2024, 25, 952. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Zhou, X.H.; Bao, A.K. Genome-wide analysis of the R2R3-MYB gene family and identification of candidate genes that regulate isoflavone biosynthesis in red clover (Trifolium pratense). Int. J. Biol. Macromol. 2024, 282, 137182. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, X.; Pan, J.; Peng, L.; Cheng, C.; Wang, X.; Zhao, C.; Zhang, Z.; Lin, Y.; XuHan, X.; et al. RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. PLoS ONE 2019, 14, e216001. [Google Scholar] [CrossRef]
- Xiao, F.; Zheng, Y.; Chen, J.; Zhao, C.; Chen, H.; Wang, L.; Liu, S. Selection and validation of reference genes in all-red Amaranth (Amaranthus tricolor L.) seedlings under different culture conditions. J. Hortic. Sci. Biotechnol. 2021, 96, 604–613. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Li, K.; Feng, W.; Lai, Z.; Liu, S. Identification of R2R3-MYB Transcription Factor Family Based on Amaranthus tricolor Genome and AtrMYB72 Promoting Betalain Biosynthesis by Directly Activating AtrCYP76AD1 Expression. Plants 2025, 14, 324. https://doi.org/10.3390/plants14030324
Xue Y, Li K, Feng W, Lai Z, Liu S. Identification of R2R3-MYB Transcription Factor Family Based on Amaranthus tricolor Genome and AtrMYB72 Promoting Betalain Biosynthesis by Directly Activating AtrCYP76AD1 Expression. Plants. 2025; 14(3):324. https://doi.org/10.3390/plants14030324
Chicago/Turabian StyleXue, Yuwei, Kexuan Li, Wenli Feng, Zhongxiong Lai, and Shengcai Liu. 2025. "Identification of R2R3-MYB Transcription Factor Family Based on Amaranthus tricolor Genome and AtrMYB72 Promoting Betalain Biosynthesis by Directly Activating AtrCYP76AD1 Expression" Plants 14, no. 3: 324. https://doi.org/10.3390/plants14030324
APA StyleXue, Y., Li, K., Feng, W., Lai, Z., & Liu, S. (2025). Identification of R2R3-MYB Transcription Factor Family Based on Amaranthus tricolor Genome and AtrMYB72 Promoting Betalain Biosynthesis by Directly Activating AtrCYP76AD1 Expression. Plants, 14(3), 324. https://doi.org/10.3390/plants14030324