Pharmacognostic Study of the Leaves of Ptilostemon greuteri Raimondo & Domina, a Rare Sicilian Paleoendemic Species
Abstract
:1. Introduction
2. Results
2.1. Micro-Macro Morphological Analysis
2.2. Chemical Composition of Lipophilic Plant Complexes
2.3. Phytochemical Characterization of the Hydroalcoholic Extract
2.4. Antioxidant and Anti-Inflammatory Properties
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Light Microscope and Histochemical Analysis
4.3. Scanning Electron Microscopy
4.4. Extraction of the EO
4.5. GC/MS Analyses
4.6. Solvent Extraction of Non-Volatile Components
4.7. Determination of Fatty Acid Profile
4.8. Polyphenolic Profile Elucidation by LC-DAD-ESI-MS Analysis
4.9. Antioxidant and Anti-Inflammatory Activity
4.9.1. FRAP Assay
4.9.2. DPPH Assay
4.9.3. TEAC Assay
4.9.4. ORAC Assay
4.9.5. Albumin Denaturation Assay
4.9.6. Protease Inhibition Assay
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Susanna, A.; Garcia-Jacas, N. Cardueae (Carduoideae). In Systematics, Evolution and Biogeography of the Compositae; Funk, V.A., Susanna, A., Stuessy, T.F., Bayer, R.J., Eds.; IAPT: Vienna, Austria, 2009; pp. 293–313. [Google Scholar]
- Vilatersana, R.; Garcia-Jacas, N.; Garnatje, T.; Molero, J.; Sonnante, G.; Susanna, A. Molecular phylogeny of the genus Ptilostemon (Compositae: Cardueae) and its relationships with Cynara and Lamyropsis. Syst. Bot. 2010, 35, 907–917. [Google Scholar] [CrossRef]
- Ferrauto, G.; Costa, R.; Pavone, P. Pollen diversity in the genus Ptilostemon (Asteraceae, Cardueae) from Italy and its taxonomic and palynoecological implications. Plant Biosyst. 2017, 151, 276–290. [Google Scholar] [CrossRef]
- Raimondo, F.M.; Domina, G. Ptilostemon greuteri (Compositae), a new species from Sicily. Willdenowia 2006, 36, 169–175. [Google Scholar] [CrossRef]
- Gianguzzi, L.; Caldarella, O.; Pasta, S. A new association of relict maquis with Ptilostemon greuteri (Oleo-Ceratonion, Quercetea ilicis), located in a circumscribed area of north-western Sicily. Plant Sociol. 2022, 59, 67–83. [Google Scholar] [CrossRef]
- Di Gristina, E.; Bajona, E.; Raimondo, F.M. Misure urgenti per la conservazione di Ptilostemon greuteri (Asteraceae), specie minacciata della flora italiana. In Proceedings of the 115° Congresso della Società Botanica Italiana, Virtual Event, 9–11 September 2020. [Google Scholar]
- Rivers, M.C. Ptilostemon greuteri. The IUCN Red List of Threatened Species 2017: E.T103454421A103454429. 2017. Available online: https://www.iucnredlist.org/species/103454421/103454429 (accessed on 25 November 2024).
- Pasta, S.; Gristina, A.S.; Scuderi, L.; Fazan, L.; Marcenò, C.; Guarino, R.; Perraudin, V.; Kozlowski, G.; Garfì, G. Conservation of Ptilostemon greuteri (Asteraceae), an endemic climate relict from Sicily (Italy): State of knowledge after the discovery of a second population. GECCO 2022, 40, e02328. [Google Scholar] [CrossRef]
- Di Stefano, V.; Pitonzo, R. Phytochemical Studies on Ptilostemon greuteri Raimondo & Domina (Compositae). Rec. Nat. Prod. 2012, 6, 390–393. [Google Scholar]
- Marengo, A.; Maxia, A.; Sanna, C.; Mandrone, M.; Bertea, C.M.; Bicchi, C.; Sgorbini, B.; Cagliero, C.; Rubiolo, P. Intra-specific variation in the little-known Mediterranean plant Ptilostemon casabonae (L.) Greuter analysed through phytochemical and biomolecular markers. Phytochemistry 2019, 161, 21–27. [Google Scholar] [CrossRef]
- Sanna, C.; Fais, A.; Era, B.; Delogu, G.L.; Sanna, E.; Dazzi, L.; Rosa, A.; Marengo, A.; Rubiolo, P.; De Agostini, A.; et al. Promising inhibition of diabetes-related enzymes and antioxidant properties of Ptilostemon casabonae leaves extract. J. Enzyme Inhib. Med. Chem. 2023, 38, 2274798. [Google Scholar] [CrossRef]
- Pani, S.; Caddeo, C.; Dazzi, L.; Talani, G.; Sanna, E.; Marengo, A.; Rubiolo, P.; Pons, R.; Dupont, A.; Floris, S.; et al. In vivo antihyperglycemic effect of Ptilostemon casabonae (L.) Greuter leaf extract and its liposomal formulation. J. Drug Deliv. Sci. Technol. 2024, 100, 106078. [Google Scholar] [CrossRef]
- Karabourniotis, G.; Liakopoulos, G.; Nikolopoulos, D.; Bresta, P. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure–function coordination. J. For. Res. 2020, 31, 1–12. [Google Scholar] [CrossRef]
- Ribeiro, W.; Walter, B.M. As principais fitofisionomias do bioma Cerrado. In (Organisers), Cerrado: Ecologia e Flora. Empresa Brasileira de Pesquisa Agropecuaria; Sano, S.M., Almeida, S.P., Ribeiro, J.F., Eds.; Embrapa Cerrados: Planaltina, Brazil, 2008; pp. 151–199. [Google Scholar]
- Ozcan, M.; Demiralay, M.; Kahriman, A. Leaf anatomical notes on Cirsium Miller (Asteraceae, Carduoideae) from Turkey. Plant Syst. Evol. 2015, 301, 1995–2012. [Google Scholar] [CrossRef]
- Rivera, P.; Villaseñor, J.L.; Terrazas, T. Meso- or xeromorphic? Foliar characters of Asteraceae in a xeric scrub of Mexico. Bot Stud. 2017, 58, 12. [Google Scholar] [CrossRef] [PubMed]
- Papanatsiou, M.; Amtmann, A.; Blatt, M.R. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency. J. Exp. Bot. 2017, 68, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
- Kromer, K.; Kreitschitz, A.; Kleinteich, T.; Gorb, S.N.; Szumny, A. Oil Secretory System in Vegetative Organs of Three Arnica Taxa: Essential Oil Synthesis, Distribution and Accumulation. Plant Cell Physiol. 2016, 57, 1020–1037. [Google Scholar] [CrossRef]
- Budel, J.M.; Raman, V.; Monteiro, L.M.; Almeida, V.P.; Bobek, V.B.; Heiden, G.; Takeda, I.J.M.; Khan, I.A. Foliar anatomy and microscopy of six Brazilian species of Baccharis (Asteraceae). Microsc. Res. Technol. 2018, 81, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, L.D.A.; Mangabeira, P.A.O.; de Oliveira, R.A.; Costa, L.C.D.B.; Da Cunha, M. Leaf blade structure of Verbesina macrophylla (Cass.) F. S. Blake (Asteraceae): Ontogeny, duct secretion mechanism and essential oil composition. Plant Biol. 2018, 20, 433–443. [Google Scholar] [CrossRef]
- Janaćković, P.; Gavrilović, M.; Rančić, D.; Dajić-Stevanović, A.A.; Marin, P. Comparative anatomical investigation of five Artemisia, L. (Anthemideae, Asteraceae) species in view of taxonomy. Braz. J. Bot. 2019, 42, 135–147. [Google Scholar] [CrossRef]
- Inceer, H.; Ozcan, M. Leaf anatomy as an additional taxonomy tool for 18 taxa of Matricaria L. and Tripleurospermum Sch. Bip. (Anthemideae-Asteraceae) in Turkey. Plant Syst. Evol. 2011, 296, 205–221. [Google Scholar] [CrossRef]
- Ozcan, M.; Unver, M.C.; Eminagaoglu, O. Comparative anatomical and ecological investigations on some Centaurea (Asteraceae) taxa from Turkey and its taxonomic significance. Pak. J. Bot. 2014, 4, 1287–1301. [Google Scholar]
- Sidhu, M.C.; Saini, P. Anatomical investigations in Silybum marianum (L.) Gaertn. J. Biol. Res. 2011, 8, 603–608. [Google Scholar]
- Benning, U.F.; Tamot, B.; Guelette, B.S.; Hoffmann-Benning, S. New aspects of phloem-mediated long-distance lipid signaling in plants. Front. Plant Sci. 2012, 3, 53. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.L.; Hayashi, M.; Hara-Nishimura, I. Membrane Dynamics and Multiple Functions of Oil Bodies in Seeds and Leaves. Plant Physiol. 2018, 176, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Camarda, L.; Di Stefano, V.; Pitonzo, R.; Spadaro, V.; Attanzio, A. Composizione chimica dell’olio essenziale di Ptilostemon greuteri (Compositae). In Proceedings of the 104° Congresso della Società Botanica Italiana, Campobasso, Italy, 16–19 September 2009. [Google Scholar]
- Viskupicova, J.; Danihelova, M.; Majekova, M.; Liptaj, T.; Sturdik, E. Polyphenol fatty acid esters as serine protease inhibitors: A quantum-chemical QSAR analysis. J. Enzyme. Inhib Med. Chem. 2012, 27, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic acid antioxidants: An electrochemical overview. Biomed. Res. Int. 2013, 2013, 251754. [Google Scholar] [CrossRef]
- Hassanpour, S.H.; Doroudi, A. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna. J. Phytomed. 2023, 13, 354–376. [Google Scholar]
- González-Burgos, E.; Gómez-Serranillos, M.P. Terpene compounds in nature: A review of their potential antioxidant activity. Curr. Med. Chem. 2012, 19, 5319–5341. [Google Scholar] [CrossRef]
- Bazan, G.; Marino, P.; Guarino, R.; Domina, G.; Schicchi, R. Bioclimatology and vegetation series in Sicily: A geostatistical approach. Ann. Bot. Fenn. 2015, 52, 1–18. [Google Scholar] [CrossRef]
- Jackson, B.P.; Snowdon, D.W. Atlas of Microscopy of Medicinal Plants, Culinary Herbs and Spices; Belhaven Press: London, UK, 1990. [Google Scholar]
- O’Brien, T.P.; McCully, M.E. The Study of Plant Structure: Principles and Selected Methods; Termarcarphi Pty. Ltd.: Melbourne, Australia, 1981. [Google Scholar]
- Chieco, C.; Rotondi, A.; Morrone, L.; Rapparini, F.; Baraldi, R. An ethanol-based fixation method for anatomical and micro-501 morphological characterization of leaves of various tree species. Biotech. Histochem. 2013, 88, 109–119. [Google Scholar] [CrossRef]
- Ruzin, S.E. Plant Microtechnique and Microscopy; Oxford University Press: Oxford, NY, USA, 1999; pp. 57–64. [Google Scholar]
- Pathan, A.K.; Bond, J.; Gaskin, R.E. Sample preparation for scanning electron microscopy of plant surfaces--horses for courses. Micron 2008, 39, 1049–1061. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg Cedex, France, 2023. [Google Scholar]
- Jennings, W.; Shibamoto, T. Qualitative Analyisis of Flavour and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowas 20M phases. J. Chromatogr. 1980, 503, 1–24. [Google Scholar] [CrossRef]
- Goodner, K.I. Practical retention index models of OV-101, DB-1, DB-5, and DB-Wax for flavour and fragrance compounds. LWT Food Sci. Technol. 2008, 41, 951–958. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017. [Google Scholar]
- McLafferty, F.W. The Wiley Registry of Mass Spectral Data, with Nist Spectral Data CD Rom, 7th ed.; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- El Riachy, M.; Hamade, A.; Ayoub, R.; Dandachi, F.; Chalak, L. Oil content, fatty acid and phenolic profile of some olive varieties growing in Lebanon. Front. Nutr. 2019, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Danna, C.; Bazzicalupo, M.; Ingegneri, M.; Smeriglio, A.; Trombetta, D.; Burlando, B.; Cornara, L. Anti-Inflammatory and Wound Healing Properties of Leaf and Rhizome Extracts from the Medicinal Plant Peucedanum ostruthium (L.) W. D. J. Koch. Molecules 2022, 27, 4271. [Google Scholar] [CrossRef] [PubMed]
- Ingegneri, M.; Smeriglio, A.; Rando, R.; Gervasi, T.; Tamburello, M.P.; Ginestra, G.; La Camera, E.; Pennisi, R.; Sciortino, M.T.; Mandalari, G.; et al. Composition and Biological Properties of Blanched Skin and Blanch Water Belonging to Three Sicilian Almond Cultivars. Nutrients 2023, 15, 1545. [Google Scholar] [CrossRef]
- Cornara, L.; Sgrò, F.; Raimondo, F.M.; Ingegneri, M.; Mastracci, L.; D’Angelo, V.; Germanò, M.P.; Trombetta, D.; Smeriglio, A. Pedoclimatic Conditions Influence the Morphological, Phytochemical and Biological Features of Mentha pulegium L. Plants 2023, 12, 24. [Google Scholar] [CrossRef]
N. | Compound | RT | % | Ki a | Ki b | Identification c |
---|---|---|---|---|---|---|
1 | Eucalyptol | 20.07 | 0.61 | 952 | 1210 | 1, 2, 3 |
2 | Linalool | 25.608 | 6.07 | 1021 | 1543 | 1, 2, 3 |
3 | Nonanal | 25.844 | 2.24 | 1024 | 1392 | 1, 2 |
4 | Camphor | 28.198 | 0.76 | 1056 | 1491 | 1, 2, 3 |
5 | Borneol | 29.895 | 0.73 | 1079 | 1700 | 1, 2, 3 |
6 | Terpinen-4-ol | 30.762 | 0.72 | 1090 | 1601 | 1, 2, 3 |
7 | α-Terpineol | 31.816 | 1.34 | 1098 | 1662 | 1, 2, 3 |
8 | Verbenone | 32.931 | 1.19 | 1114 | 1720 | 1, 2 |
9 | cis-Geraniol | 36.524 | 0.54 | 1165 | 1839 | 1, 2 |
10 | Thymol | 39.373 | 7.96 | 1201 | 2164 | 1, 2, 3 |
11 | Carvacrol | 40.005 | 14.3 | 1210 | 2211 | 1, 2, 3 |
12 | γ-Elemene | 41.591 | 0.71 | 1234 | 1639 | 1, 2 |
13 | Eugenol | 43.264 | 12.93 | 1260 | 2163 | 1, 2, 3 |
14 | trans-β-Damascenone | 44.763 | 0.51 | 1282 | 1821 | 1, 2 |
15 | Dodecanal | 46.498 | 0.45 | 1303 | 1712 | 1, 2 |
16 | β-Caryophyllene | 46.696 | 2.6 | 1306 | 1598 | 1, 2 |
17 | β-Copaene | 47.328 | 0.53 | 1316 | 1580 | 1, 2 |
18 | α-Humulene | 48.79 | 1.01 | 1340 | 1667 | 1, 2 |
19 | Germacrene D | 50.661 | 29.94 | 1370 | 1708 | 1, 2 |
20 | Bicyclogermacrene | 51.478 | 4.24 | 1383 | 1734 | 1, 2 |
21 | δ-Cadinene | 53.176 | 0.31 | 1406 | 1756 | 1, 2 |
22 | Spathulenol | 56.199 | 0.41 | 1457 | 2127 | 1, 2 |
23 | Hexadecane | 57.847 | 0.3 | 1485 | 1, 2 | |
24 | τ-Cadinol | 59.841 | 1.15 | 1513 | 2151 | 1, 2 |
25 | α-Cadinol | 60.585 | 0.56 | 1526 | 2227 | 1, 2 |
26 | Diisobutyl phthalate | 71.872 | 0.85 | 1727 | 1, 2 | |
27 | Palmitoleic acid | 82.862 | 0.39 | 1945 | 2944 | 1, 2 |
28 | Eicosane | 99.365 | 0.36 | 2315 | 1, 2 | |
29 | Heneicosane | 106.737 | 2.92 | 2491 | 1, 2 | |
30 | Docosane | 113.601 | 3.35 | 2671 | 1, 2 | |
Total | 99.98 | |||||
Monoterpene hydrocarbons | - | |||||
Oxygenated monoterpenes | 47.66 | |||||
Sesquiterpene hydrocarbons | 39.34 | |||||
Oxygenated sesquiterpenes | 2.12 | |||||
Others | 10.86 |
N. | Compound | % |
---|---|---|
1 | Heneicosane | 2.23 |
2 | Docosane | 20.75 |
3 | Hexacosane | 4.19 |
4 | Hexadecanoic acid | 16.92 |
5 | Octadec-9-enoic acid | 19.19 |
6 | Octadecanoic acid | 9.24 |
7 | Nonadecanoic acid | 5.30 |
8 | Heicosanoic acid | 1.12 |
9 | Docosanoic acid | 1.17 |
10 | α-Tocopherol | 0.24 |
11 | β-Amyrin | 2.47 |
12 | Lupeol | 16.30 |
Total | 99.12 |
Compound Name | RT c (min) | Molecular Formula | Molecular Weight | [M−H]− (m/z) | [M+H]+ (m/z) | Relative Abundance (%) | Peak n. |
---|---|---|---|---|---|---|---|
Benzoic acid-3-sulfate | 3.4 | C7H6O6S | 218 | — | 219 | 1.84 | 1 |
Methoxyrosmarinic acid-sulfate | 3.9 | C19H18O11S | 454 | 453 | 455 | 0.28 | 2 |
Galloyl glucose a | 4.2 | C13H16O10 | 332 | 331 | — | 0.37 | 3 |
Quinic acid b | 5.0 | C7H12O6 | 192 | 191 | — | 2.27 | 4 |
1,3-Dicaffeoylquinic acid a | 5.1 | C25H24O12 | 516 | — | 517 | 2.40 | 5 |
Gallic acid 4-O-glucoside | 5.3 | C13H16O10 | 332 | 331 | — | 1.58 | 6 |
Coumaroylquinic acid | 5.5 | C16H18O8 | 338 | — | 339 | 3.74 | 7 |
Dihydroferulic acid-4′-sulfate | 5.7 | C10H12O7S | 276 | 275 | — | 0.27 | 8 |
Protocatechuic acid-4-O-sulfate | 6.1 | C7H6O7S | 234 | 233 | — | 0.22 | 9 |
Vanillic acid-4-O-sulfate | 6.3 | C8H8O7S | 248 | 247 | — | 0.29 | 10 |
5-O-Caffeoylquinic acid (Chlorogenic acid) b | 6.6 | C16H18O9 | 354 | 353 | 355 | 0.10 | 11 |
5-Feruloylquinic acid-4′-sulfate | 8.6 | C17H20O12S | 448 | 447 | — | 0.04 | 12 |
3,5-Dihydroxybenzoic acid sulfate | 14.2 | C7H6O7S | 234 | 233 | — | 0.03 | 13 |
3,4′-Dimethoxyrosmarinic acid-3′-sulfate | 16.1 | C20H20O11S | 468 | 467 | — | 0.03 | 14 |
Diferulic acid | 16.2 | C20H18O8 | 386 | — | 387 | 0.32 | 15 |
1,5-Dicaffeoylquinic acid | 17.0 | C25H24O12 | 516 | 515 | — | 0.03 | 16 |
1,3-Dicoumaroylquinic acid | 17.4 | C25H24O10 | 484 | 483 | — | 0.04 | 17 |
3,5-Dicaffeoylquinic acid b | 17.8 | C25H24O12 | 516 | 515 | — | 0.03 | 18 |
p-Coumaroyl-caffeoylquinic acid | 20.8 | C25H24O11 | 500 | 499 | — | 0.04 | 19 |
Caffeoyl-p-coumaroylquinic acid | 21.2 | C25H24O11 | 500 | 499 | — | 0.05 | 20 |
3,4′-Dimethoxyrosmarinic acid-4′-sulfate | 21.6 | C20H20O11S | 468 | — | 469 | 0.46 | 21 |
1,5-Dicoumaroylquinic acid | 22.4 | C25H24O10 | 484 | 483 | — | 0.04 | 22 |
Isorhamnetin 3-O-[b-D-glucopyranosyl-(1->2)-a-L-rhamnopyranoside] | 24.4 | C34H42O21 | 624 | 623 | — | 0.07 | 23 |
3,3′-Dimethoxyrosmarinic acid-4′-sulfate | 24.5 | C20H20O11S | 468 | — | 469 | 1.97 | 24 |
Succinyl caffeoyl-p-coumaroylquinic acid | 27.1 | C29H29O15 | 600 | — | 601 | 0.48 | 25 |
Apigenin 7-O-glucoside b | 27.5 | C21H20O10 | 432 | 431 | — | 0.07 | 26 |
Succinyl-dicaffeoylquinic acid isomer | 28.1 | C29H28O15 | 616 | 615 | 617 | 0.05 | 27 |
4,5-dicaffeoylquinic acid | 28.6 | C25H24O12 | 516 | 515 | — | 0.04 | 28 |
Digallic acid | 29.0 | C14H10O9 | 322 | — | 323 | 0.51 | 29 |
Scopoletin 7-glucoside (Scopolin) a | 31.0 | C21H26O9 | 354 | 353 | 355 | 0.55 | 30 |
Ellagic acid b | 31.3 | C14H6O8 | 302 | — | 303 | 0.92 | 31 |
Genistein-7-O-glucuronide-4′sulfate | 32.1 | C21H17O14S | 525 | 524 | 526 | 0.12 | 32 |
Succinyl-p-coumaroyl-caffeoylquinic acid | 32.4 | C29H29O15 | 600 | 599 | — | 0.07 | 33 |
Succinyl di-O-p-coumaroylquinic acid isomer | 32.9 | C36H39O20 | 584 | 583 | 585 | 0.11 | 34 |
Benzoic acid-3 glucuronide-4-sulfate | 33.8 | C13H14O13S | 410 | — | 411 | 3.69 | 35 |
Ellagic acid glucoside | 34.5 | C20H16O13 | 464 | — | 465 | 0.85 | 36 |
Succinyl di-O-p-coumaroylquinic acid isomer | 35.2 | C36H39O20 | 584 | 583 | 585 | 0.38 | 37 |
Ferulic acid-5-5-caffeic acid | 35.7 | C19H16O8 | 372 | 371 | 373 | 2.97 | 38 |
Tellimagrandin I | 36.0 | C34H26O22 | 787 | — | 788 | 1.64 | 39 |
6,8-Dihydrokaempferol b | 37.4 | C15H12O | 318 | — | 319 | 1.09 | 40 |
Kaempferol 3-O-rutinoside b | 37.5 | C27H30O15 | 594 | 593 | — | 0.11 | 41 |
Daidzein 4′-O-sulfate | 38.0 | C15H10O7S | 334 | — | 335 | 1.12 | 42 |
Apigenin 7-O-(6″-malonyl-apiosyl-glucoside) | 38.8 | C29H30O17 | 650 | 649 | — | 0.17 | 43 |
Chrysoeriol 7-O-(6″-malonyl-glucoside) | 39.2 | C25H24O14 | 548 | — | 549 | 3.42 | 44 |
Kaempferol 3-O-(6″-malonyl-glucoside) | 39.6 | C24H22O14 | 534 | 533 | 535 | 0.48 | 45 |
Quercetin 3-O-arabinoside | 39.9 | C20H18O11 | 434 | — | 435 | 1.10 | 46 |
Succinyl-succinyl-dicaffeoylquinic acid | 41.2 | C33H31O18 | 716 | 715 | 717 | 0.11 | 47 |
Quercetin-3-(6″-malonyl)-glucoside | 42.9 | C24H22O15 | 550 | 549 | 551 | 0.48 | 48 |
Quercetin 3-O-rutinoside (Rutin) b | 43.5 | C27H30O16 | 610 | 609 | 611 | 0.94 | 49 |
Quercetin 3-O-glucoside b | 45.1 | C21H20O12 | 464 | 463 | — | 0.75 | 50 |
Quercetin-3-O-galactoside (Hyperoside) b | 46.5 | C21H20O12 | 464 | 463 | — | 0.31 | 51 |
Quercetin 3-O-xylosyl-glucuronide | 46.8 | C26H26O17 | 610 | 609 | — | 0.11 | 52 |
Diosmetin b | 47.3 | C16H12O6 | 300 | — | 301 | 6.31 | 53 |
6″-O-Malonylgenistin | 47.8 | C24H22O13 | 518 | 517 | — | 0.38 | 54 |
Luteolin 7-O-malonyl-glucoside | 48.3 | C24H22O14 | 534 | 533 | 535 | 1.04 | 55 |
Luteolin-3′-sulfate | 49.0 | C24H22O14 | 366 | — | 367 | 4.47 | 56 |
Myricetin 3-O-glucuronide | 50.0 | C21H18O14 | 494 | 493 | 495 | 1.39 | 57 |
Myricetin 5-O-glucuronide | 50.4 | C21H18O14 | 494 | 493 | 495 | 1.45 | 58 |
Quercetin disulfate | 51.0 | C15H10O13S2 | 462 | — | 463 | 1.57 | 59 |
Myricetin 3-O-glucoside b | 51.7 | C21H20O13 | 480 | 479 | — | 0.23 | 60 |
Isorhamnetin 3-O-glucuronide | 53.8 | C22H20O13 | 492 | — | 493 | 7.75 | 61 |
Hesperetin-3′-sulfate-5,7-diglucuronide | 53.9 | C28H30O20S | 719 | 718 | — | 0.90 | 62 |
Hesperetin-3′-glucuronide-5,7-sulfate | 57.1 | C22H22O17S2 | 622 | 621 | — | 0.09 | 63 |
Quercetin 3-O-rhamnosyl-rhamnosyl-glucoside | 57.9 | C33H40O20 | 756 | 755 | — | 0.08 | 64 |
Kaempferol 3-O-glucosyl-rhamnosyl-glucoside | 60.6 | C33H40O20 | 756 | 755 | — | 0.10 | 65 |
Kaempferol 3-O-rhamnosideb | 63.3 | C21H19O10 | 431 | 430 | — | 0.11 | 66 |
Quercetin b | 64.8 | C15H10O7 | 302 | — | 303 | 4.55 | 67 |
Kaempferol 3-O-(2″-rhamnosyl-6″-acetyl-galactoside) 7-O-rhamnoside | 65.1 | C29H32O16 | 784 | — | — | 7.65 | 68 |
Lutein 7-O-glucuronide | 68.1 | C21H18O12 | 462 | — | 463 | 1.82 | 69 |
Luteolin b | 69.9 | C15H10O6 | 286 | — | 287 | 5.75 | 70 |
Kaempferol 3-O-glucuronide | 73.5 | C21H18O12 | 462 | — | 463 | 4.06 | 71 |
Genistein 7-O-sulfate | 81.8 | C21H18O14S | 350 | — | 351 | 4.96 | 72 |
Myricetin b | 82.7 | C15H10O8 | 318 | — | 319 | 6.19 | 73 |
Test | EO | HE | HAE | RS a |
---|---|---|---|---|
µg/mL | ||||
FRAP | 25.54 (13.43–48.56) bc | 969.42 (592.36–1586.48) b | 24.83 (20.06–30.74) bc | 3.22 (1.26–8.19) |
DPPH | 166.68 (133.68–207.83) bc | 449.40 (359.14–562.36) b | 59.65 (48.46–73.43) bcd | 9.76 (5.71–16.70) |
TEAC | 20.86 (10.65–40.86) bc | 1490.04 (1059.43–2095.67) b | 36.63 (29.55–45.40) bcd | 6.35 (5.28–7.64) |
ORAC | 0.76 (0.50–1.13) c | 12.17 (5.29–28.01) b | 1.03 (0.43–2.47) bcd | 0.67 (0.27–1.64) |
ADA | 646.33 (496.50–841.38) bc | 2008.87 (1161.72–3473.77) b | 998.44 (770.75–1293.38) bcd | 23.52 (18.84–29.36) |
PIA | 151.85 (72.67–317.30) bc | 26.22 (20.75–33.15) | 55.13 (31.29–97.14) bcd | 26.39 (15.26–45.63) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smeriglio, A.; Trombetta, D.; Cornara, L.; Malaspina, P.; Ingegneri, M.; Di Gristina, E.; Bajona, E.; Polito, F.; De Feo, V. Pharmacognostic Study of the Leaves of Ptilostemon greuteri Raimondo & Domina, a Rare Sicilian Paleoendemic Species. Plants 2025, 14, 370. https://doi.org/10.3390/plants14030370
Smeriglio A, Trombetta D, Cornara L, Malaspina P, Ingegneri M, Di Gristina E, Bajona E, Polito F, De Feo V. Pharmacognostic Study of the Leaves of Ptilostemon greuteri Raimondo & Domina, a Rare Sicilian Paleoendemic Species. Plants. 2025; 14(3):370. https://doi.org/10.3390/plants14030370
Chicago/Turabian StyleSmeriglio, Antonella, Domenico Trombetta, Laura Cornara, Paola Malaspina, Mariarosaria Ingegneri, Emilio Di Gristina, Enrico Bajona, Flavio Polito, and Vincenzo De Feo. 2025. "Pharmacognostic Study of the Leaves of Ptilostemon greuteri Raimondo & Domina, a Rare Sicilian Paleoendemic Species" Plants 14, no. 3: 370. https://doi.org/10.3390/plants14030370
APA StyleSmeriglio, A., Trombetta, D., Cornara, L., Malaspina, P., Ingegneri, M., Di Gristina, E., Bajona, E., Polito, F., & De Feo, V. (2025). Pharmacognostic Study of the Leaves of Ptilostemon greuteri Raimondo & Domina, a Rare Sicilian Paleoendemic Species. Plants, 14(3), 370. https://doi.org/10.3390/plants14030370