Optimizing Sowing Time and Density Can Synergistically Improve the Productivity and Quality of Strong-Gluten Wheat in Different Ecological Regions of Shandong Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design and Field Management
2.3. Sampling and Measurements
2.3.1. Leaf Area Index, Photosynthetic Potential, and Net Assimilation Rate
2.3.2. Yield and Related Indicators
2.3.3. Quality Parameters
2.4. Statistical Analysis
3. Results
3.1. Leaf Assimilation Capacity
3.1.1. Leaf Area Index
3.1.2. Photosynthetic Potential
3.1.3. Net Assimilation Rate
3.2. Biomass and Harvest Index
3.3. Grain Yield and Composition Factors
3.3.1. Grain Yield Components
3.3.2. Grain Yield
3.4. Quality Characteristics
3.4.1. Quality
3.4.2. Comprehensive Quality Compliance Rate
3.5. Correlation Analysis
4. Discussion
4.1. The Influence of Sowing Date and Density on Leaf Assimilation Ability
4.2. The Effect of Sowing Date and Density on Grain Yield and Related Indicators
4.3. The Effect of Sowing Date and Density on Wheat Grain Quality
4.4. Limitations and Areas for Further Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kastner, T.; Rivas, M.J.I.; Koch, W.; Nonhebel, S. Global changes in diets and the consequences for land requirements for food. Proc. Natl. Acad. Sci. USA 2012, 109, 6868–6872. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Tao, F. Optimizing genotype-environment-management interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain. Sci. Total Environ. 2019, 654, 480–492. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, H.; Cai, J.; Zhou, Q.; Wang, X.; Samo, A.; Huang, M.; Dai, T.B.; Jahan, M.S.; Jiang, D. Optimizing nitrogen and seed rate combination for improving grain yield and nitrogen uptake efficiency in winter wheat. Plants 2022, 11, 1745. [Google Scholar] [CrossRef]
- Knox, J.; Daccache, A.; Hess, T.; Haro, D. Meta-analysis of climate impacts and uncertainty on crop yields in Europe. Environ. Res. Lett. 2016, 11, 113004. [Google Scholar] [CrossRef]
- Hu, Y.; Su, M.; Wang, Y.; Cui, S.H.; Meng, F.X.; Yue, W.C.; Liu, Y.F.; Xu, C.; Yang, Z.F. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nat. Food 2020, 1, 572–582. [Google Scholar] [CrossRef]
- Wang, X.B.; Yamauchi, F.; Otsuka, K.; Huang, J.K. Wage growth, landholding, and mechanization in Chinese agriculture. World Dev. 2016, 86, 30–45. [Google Scholar] [CrossRef]
- Li, H.W.; Li, S.X.; Wang, Z.S.; Liu, S.Q.; Zhou, R.; Li, X.N. Abscisic acid-mimicking ligand AMF4 induced cold tolerance in wheat by altering the activities of key carbohydrate metabolism enzymes. Plant Physiol. Biochem. 2020, 157, 284–290. [Google Scholar] [CrossRef]
- Schmitz, P.K.; Ransom, J.K. Seeding rate effects on hybrid spring wheat yield, yield components, and quality. Agronomy 2021, 11, 1240. [Google Scholar] [CrossRef]
- Anjum, M.M.; Arif, M. Perspectives of wheat hybrid yield and quality under limited irrigation supply and sowing windows. Gesunde Pflanz. 2022, 74, 761–770. [Google Scholar] [CrossRef]
- Cann, D.J.; Schillinger, W.F.; Hunt, J.R.; Porker, K.D.; Harris, F.A.J. Agroecological advantages of early-sown winter wheat in semi-arid environments: A comparative case study from southern Australia and pacific northwest United States. Front. Plant Sci. 2020, 11, 568. [Google Scholar] [CrossRef]
- Lutman, P.J.W.; Moss, S.R.; Cook, S.; Welham, S.J. A review of the effects of crop agronomy on the management of Alopecurus myosuroides. Weed Res. 2013, 53, 299–313. [Google Scholar] [CrossRef]
- Tokatlidis, I.S. Addressing the yield by density interaction is a prerequisite to bridge the yield gap of rain-fed wheat. Ann. Appl. Biol. 2014, 165, 27–42. [Google Scholar] [CrossRef]
- Zhang, G.X.; Liu, S.J.; Dong, Y.J.; Liao, Y.C.; Han, J. A nitrogen fertilizer strategy for simultaneously increasing wheat grain yield and protein content: Mixed application of controlled-release urea and normal urea. Field Crops Res. 2022, 277, 108405. [Google Scholar] [CrossRef]
- Wolfe, D.W.; Henderson, D.W.; Hsiao, T.C.; Alvino, A. Interactive water and nitrogen effects on senescence of maize. II. Photosynthetic decline and longevity of individual leaves. Agron. J. 1988, 80, 865–870. [Google Scholar] [CrossRef]
- Jeremy, J.J.; Rebecca, E.D. A basis for relative growth rate differences between native and invasive forb seedlings. Rangel. Ecol. Manag. 2007, 60, 395–400. [Google Scholar] [CrossRef]
- Chen, G.Z.; Wu, P.; Wang, J.Y.; Zhang, P.; Jia, Z.K. Ridge–furrow rainfall harvesting system helps to improve stability, benefits and precipitation utilization efficiency of maize production in Loess Plateau region of China. Agric. Water Manag. 2022, 261, 107360. [Google Scholar] [CrossRef]
- GB/T 5498-2013; Inspection of Grain and Oils—Determination of Test Weight. General Administration of Quality Supervision, Inspection and quarantine of the People’s Republic of China, China National Standardization Administration: Beijing, China, 2013.
- GB/T 5506.2-2008; Wheat and Wheat Flour—Gluten Content—Part 2: Determination of Wet Gluten by Mechanical Means. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China; China National Standardization Administration: Beijing, China, 2008.
- GB/T 14614-2019; Inspection of Grain and Oils—Doughs Rheological Properties Determination of Wheat Flour—Farinograph test. State Administration for Market Regulation: Beijing, China; China National Standardization Administration: Beijing, China, 2019.
- GB/T17892-1999; High Quality Wheat-Strong Gluten Wheat. China State Bureau of Quality and Technical Supervision: Beijing, China, 1999.
- GB/T17320-2013; Quality Classification of Wheat Varieties. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration: Beijing, China, 2013.
- Chen, S.Y.; Zhang, X.Y.; Mao, R.Z.; Wang, Y.M.; Sun, H.Y. Effect of sowing date and rate on canopy intercepted photo-synthetically active radiation and yield of winter wheat. Chin. J. Eco-Agric. 2009, 17, 681–685. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, N.; Pan, F.F.; Pan, X.B.; Wang, X.X.; Yang, P.Y. Adjusting sowing dates improved potato adaptation to climate change in semiarid region, China. Sustainability 2017, 9, 615. [Google Scholar] [CrossRef]
- Condon, A.G.; Richards, R.A.; Rebetzke, G.J.; Farquhar, G.D. Breeding for high water-use efficiency. J. Exp. Bot. 2004, 55, 2447–2460. [Google Scholar] [CrossRef]
- Kalogeropoulos, G.; Elli, E.F.; Trifunovic, S.T.; Archontoulis, S.V. Historical increases of maize leaf area index in the US Corn Belt due primarily to plant density increases. Field Crops Res. 2024, 318, 109615. [Google Scholar] [CrossRef]
- O’Donovan, J.T.; Turkington, T.K.; Edney, M.J.; Juskiw, P.E.; McKenzie, R.H.; Harker, K.N.; Clayton, G.W.; Lafond, G.P.; Grant, C.A.; Brandt, S.; et al. Effect of seeding date and seeding rate on malting barley production in western Canada. Can. J. Plant Sci. 2012, 92, 321–330. [Google Scholar] [CrossRef]
- Gaju, O.; Desilva, J.; Carvalho, P.; Hawkesford, M.J.; Griffiths, S.; Greenland, A.; Foulkes, M.J. Leaf photosynthesis and associations with grain yield, biomass and nitrogen-use efficiency in landraces, synthetic-derived lines and cultivars in wheat. Field Crops Res. 2016, 193, 1–15. [Google Scholar] [CrossRef]
- Shao, Q.Q.; Yan, S.H.; Zhang, C.Y.; Ren, L.T.; Xu, F.; Li, W.Y. Effect of planting density on yield and quality of later-sown winter wheat along Huaihe River. Chin. J. Eco-Agric. 2018, 26, 1366–1377. [Google Scholar] [CrossRef]
- Herrera, J.; Calderini, D.F. Pericarp growth dynamics associate with final grain weight in wheat under contrasting plant densities and increased night temperature. Ann. Bot. 2020, 126, 1063–1076. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.C.; Sheng, K.; Feng, W.; Xu, L.N.; Wang, C.Y. Effects of plant density on physiological characteristics of different stems during tillering stage in two spike-types winter wheat cultivars. Acta Bot. Boreali-Occident. Sin. 2009, 29, 350–355. [Google Scholar]
- Dai, X.L.; Wang, Y.C.; Dong, X.C.; Qian, T.F.; Yin, L.J.; Dong, S.X.; Chu, J.P.; He, M.R. Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. Crop J. 2017, 5, 541–552. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Chen, H.; Zhao, Z.; Li, W.; Du, S.Z.; Qiao, Y.Q.; Cao, C.F. Effect of planting density and row spacing on growth, photosynthesis and yield of wheat under early sowing. J. Triticeae Crops 2015, 35, 86–92. [Google Scholar]
- Geleta, B.; Atak, M.; Baenziger, P.S.; Nelson, L.A.; Baltenesperger, D.D.; Eskridge, K.M.; Shipman, M.J.; Shelton, D.R. Seeding rate and genotype effect on agronomic performance and end–use quality of winter wheat. Crop Sci. 2002, 42, 827–832. [Google Scholar] [CrossRef]
- Chen, A.D.; Cai, J.H.; Wen, M.X.; Li, D.S.; Qu, C.X. Effects of sowing dates and planting densities on grain yield and quality of wheat cultivar Zhenmai 168. Jiangsu J. Agric. Sci. 2014, 30, 9–13. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Zhang, L.; Sun, H.B.; Zheng, A.X.; Harrison, M.T.; Li, W.J.; Zou, J.; Zhang, D.T.; Chen, F.; Yin, X.G. Optimal sowing time to adapt soybean production to global warming with different cultivars in the Huanghuaihai Farming Region of China. Field Crops Res. 2024, 312, 109386. [Google Scholar] [CrossRef]
- Wen, P.F.; Wei, Q.R.; Zheng, L.; Rui, Z.X.; Niu, M.J.; Gao, C.K.; Guan, X.K.; Wang, T.C.; Xiong, S.P. Adaptability of wheat to future climate change: Effects of sowing date and sowing rate on wheat yield in three wheat production regions in the North China Plain. Sci. Total Environ. 2023, 901, 165906. [Google Scholar] [CrossRef] [PubMed]
- Pequeno, D.N.L.; Ferreira, T.B.; Fernandes, J.M.C.; Singh, P.K.; Pavan, W.; Sonder , K.; Robertson, R.; Krupnik, T.J.; Erenstein, O.; Asseng, S. Production vulnerability to wheat blast disease under climate change. Nat. Clim. Change 2024, 14, 178–183. [Google Scholar] [CrossRef]
- Feng, X.J.; Huai, Y.B.; Kang, S.Q.; Yang, L.; Li, Y.H.; Feng, J.R.; Zhang, Z.; Michael, J.W.; Cui, Z.L.; Ning, P. Reproductive resilience of growth and nitrogen uptake underpins yield improvement in winter wheat with forced delay of sowing. Sci. Total Environ. 2024, 949, 175108. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.P.; Zhang, K.; Zhang, J.; Zhang, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Optimizing nitrogen application and sowing date can improve environmental sustainability and economic benefit in wheat-rice rotation. Agric. Syst. 2023, 204, 103536. [Google Scholar] [CrossRef]
Site | Total Nitrogen | Available Nitrogen | Available Phosphorus | Available Potassium | Organic Matter |
---|---|---|---|---|---|
(g·kg−1) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | (g·kg−1) | |
Jining | 1.46 | 89.1 | 54.2 | 117.8 | 11.1 |
Dezhou | 1.38 | 81.2 | 50.1 | 127.4 | 10.6 |
Yantai | 1.3 | 75.8 | 62.5 | 102.3 | 11.8 |
Sowing Date | Density (D, 104 plants ha−1) | ||||||
---|---|---|---|---|---|---|---|
135 (D1) | 180 (D2) | 225 (D3) | 270 (D4) | 315 (D5) | 360 (D6) | 405 (D7) | |
October 5 (T1) | T1D1 | T1D2 | T1D3 | T1D4 | |||
October 15 (T2) | T2D2 | T2D3 | T2D4 | T2D5 | |||
October 25 (T3) | T3D3 | T3D4 | T3D5 | T3D6 | |||
November 5 (T4) | T4D4 | T4D5 | T4D6 | T4D7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Yu, W.; Zheng, Y.; Zhang, L.; Si, J.; Zhao, K.; Li, R.; Zhao, D.; Wen, Y.; Qu, L.; et al. Optimizing Sowing Time and Density Can Synergistically Improve the Productivity and Quality of Strong-Gluten Wheat in Different Ecological Regions of Shandong Province. Plants 2025, 14, 372. https://doi.org/10.3390/plants14030372
Chen G, Yu W, Zheng Y, Zhang L, Si J, Zhao K, Li R, Zhao D, Wen Y, Qu L, et al. Optimizing Sowing Time and Density Can Synergistically Improve the Productivity and Quality of Strong-Gluten Wheat in Different Ecological Regions of Shandong Province. Plants. 2025; 14(3):372. https://doi.org/10.3390/plants14030372
Chicago/Turabian StyleChen, Guangzhou, Weibao Yu, Yushen Zheng, Le Zhang, Jisheng Si, Kainan Zhao, Ruochen Li, Deqiang Zhao, Yuan Wen, Lei Qu, and et al. 2025. "Optimizing Sowing Time and Density Can Synergistically Improve the Productivity and Quality of Strong-Gluten Wheat in Different Ecological Regions of Shandong Province" Plants 14, no. 3: 372. https://doi.org/10.3390/plants14030372
APA StyleChen, G., Yu, W., Zheng, Y., Zhang, L., Si, J., Zhao, K., Li, R., Zhao, D., Wen, Y., Qu, L., Zhang, B., Li, S., Kong, L., Yang, Z., & Li, H. (2025). Optimizing Sowing Time and Density Can Synergistically Improve the Productivity and Quality of Strong-Gluten Wheat in Different Ecological Regions of Shandong Province. Plants, 14(3), 372. https://doi.org/10.3390/plants14030372