Theobroma mariae: Bioactive Compound-Rich Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Processing of Flower Samples
2.2. Analysis by NMR
2.3. Analysis by HRMS
2.4. Cytotoxicity and Antiproliferative Assay
2.5. Qualitative Chemical Description
2.6. Cytotoxic and Antiproliferative Assay of T. mariae Flowers
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mar, J.M.; da Silva, L.S.; Moreira, W.P.; Biondo, M.M.; Pontes, F.L.D.; Campos, F.R.; Kinupp, V.F.; Campelo, P.H.; Sanches, E.A.; Bezerra, J.d.A. Edible flowers from Theobroma speciosum: Aqueous extract rich in antioxidant compounds. Food Chem. 2021, 356, 129723. [Google Scholar] [CrossRef] [PubMed]
- Mar, J.M.; Fonseca Júnior, E.Q.; Corrêa, R.F.; Campelo, P.H.; Sanches, E.A.; Bezerra, J.d.A. Theobroma spp.: A review of it’s chemical and innovation potential for the food industry. Food Chem. Adv. 2024, 4, 100683. [Google Scholar] [CrossRef]
- Jacob, M.C.M.; Albuquerque, U.P. (Eds.) Local Food Plants of Brazil, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-030-69139-4. [Google Scholar]
- de Oliveira, T.B.; Rogero, M.M.; Genovese, M.I. Poliphenolic-rich extracts from cocoa (Theobroma cacao L.) and cupuassu (Theobroma grandiflorum Willd. Ex Spreng. K. Shum) Liquors: A comparison of metabolic effects in high-fat fed rats. PharmaNutrition 2015, 3, 20–28. [Google Scholar] [CrossRef]
- Kinupp, V.F.; Lorenzi, H.H. Plantas Alimenticias Não Convencionais (PANC) No Brasil: Guia de Identificação, Aspectos Nutricionais e Receitas Ilustradas, 1st ed.; Instituto Plantarum: São Paulo, Brasil, 2014; ISBN 978-85-86714-46-. [Google Scholar]
- Herrania in Flora e Funga do Brasil. Jardim Botânico do Rio Janeiro. Available online: http://floradobrasil.jbrj.gov.br/FB23553 (accessed on 14 January 2025).
- Theobroma in Flora e Funga do Brasil. Jardim Botânico do Rio Janeiro 2024. Available online: http://servicos.jbrj.gov.br/flora/search/Theobroma_mariae (accessed on 12 December 2024).
- Kinupp, V.F.; Coradin, L. Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial: Plantas Para o Futuro: Região Norte; Coradin, L., Camilo, J., Vieira, I.C.G., Eds.; Ministério do Meio Ambiente. Secretaria de Biodiversidade: Brasília, Brasil, 2022; pp. 334–338. ISBN 978-65-88265-16-1.
- Hammerstone, J.F., Jr.; Romanczyk, L.J., Jr.; Aitken, W.M. Purine Alkaloid Distribution Within Herrania and Theobroma. Phytochemistry 1994, 35, 1237–1240. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and Its by-products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749. [Google Scholar] [CrossRef]
- Lima, A.d.S.; Maltarollo, V.G.; do Carmo, M.A.V.; Pinheiro, L.C.; Cruz, T.M.; de Barros, F.A.R.; Pap, N.; Granato, D.; Azevedo, L. Blackcurrant press cake by-product: Increased chemical bioaccessibility and reduced antioxidant protection after in vitro simulation of gastrointestinal digestion. Food Res. Int. 2024, 182, 114099. [Google Scholar] [CrossRef]
- Geirnaert, A.; Calatayud, M.; Grootaert, C.; Laukens, D.; Devriese, S.; Smagghe, G.; De Vos, M.; Boon, N.; Van De Wiele, T. butyrate-producing bacteria supplemented in vitro to crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 2017, 7, 11450. [Google Scholar] [CrossRef] [PubMed]
- do Carmo, M.A.V.; Pressete, C.G.; Marques, M.J.; Granato, D.; Azevedo, L. Polyphenols as potential antiproliferative agents: Scientific trends. Curr. Opin. Food Sci. 2018, 24, 26–35. [Google Scholar] [CrossRef]
- do Carmo, M.A.V.; Fidelis, M.; Pressete, C.G.; Marques, M.J.; Castro-Gamero, A.M.; Myoda, T.; Granato, D.; Azevedo, L. Hydroalcoholic Myrciaria dubia (camu-camu) seed extracts prevent chromosome damage and act as antioxidant and cytotoxic agents. Food Res. Int. 2019, 125, 108551. [Google Scholar] [CrossRef]
- Oliveira, E.S.C.; Pontes, F.L.D.; Acho, L.D.R.; do Rosário, A.S.; da Silva, B.J.P.; Bezerra, J.d.A.; Campos, F.R.; Lima, E.S.; Machado, M.B. qNMR quantification of phenolic compounds in dry extract of Myrcia multiflora leaves and its antioxidant, anti-AGE, and enzymatic inhibition activities. J. Pharm. Biomed. Anal. 2021, 201, 114109. [Google Scholar] [CrossRef]
- Araujo-Padilla, X.; Ramón-Gallegos, E.; Díaz-Cedillo, F.; Silva-Torres, R. Astragalin identification in graviola pericarp indicates a possible participation in the anticancer activity of pericarp crude extracts: in vitro and in silico approaches. Arab. J. Chem. 2022, 15, 103720. [Google Scholar] [CrossRef]
- Ibrahim, L.F.; Elkhateeb, A.; Marzouk, M.M.; Hussein, S.R.; Abdel-Hameed, E.S.; Kassem, M.E.S. Flavonoid investigation, LC–ESI-MS profile and cytotoxic activity of Raphanus raphanistrum L. (Brassicaceae). J. Chem. Pharm. Res. 2016, 8, 786–793. [Google Scholar]
- Ren, G.; Hou, J.; Fang, Q.; Sun, H.; Liu, X.; Zhang, L.; Wang, P.G. Synthesis of flavonol 3-O-glycoside by UGT78D1. Glycoconj. J. 2012, 29, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Bastos, R.G.; Salles, B.C.C.; Bini, I.F.; Castaldini, L.P.; Silva, L.C.D.; Vilela, A.A.; Micheloni, A.L.C.; da Silva, G.M.; da Silva, P.H.C.; Maure, A.K.; et al. Phytochemical composition, antioxidant and in vivo antidiabetic activities of the hydroethanolic extract of Eugenia florida DC. (Myrtaceae) leaves. S. Afr. J. Bot. 2019, 123, 317–332. [Google Scholar] [CrossRef]
- Pugliese, A.G.; Tomas-barberan, F.A.; Truchado, P.; Genovese, M.I. Flavonoids, Proanthocyanidins, Vitamin C, and Antioxidant Activity of Theobroma grandifLorum (Cupuassu) Pulp and Seeds. J. Agric. Food Chem. 2013, 61, 2720–2728. [Google Scholar] [CrossRef]
- Mazzinghy, A.C.d.C.; Silva, V.D.M.; Ramos, A.L.C.C.; de Oliveira, C.P.; de Oliveira, G.B.; Augusti, R.; de Araújo, R.L.B.; Melo, J.O.F. Influence of the Different Maturation Conditions of Cocoa Beans on the Chemical Profile of Craft Chocolates. Foods 2024, 13, 1031. [Google Scholar] [CrossRef]
- Anywar, G.U.; Kakudidi, E.; Oryem-Origa, H.; Schubert, A.; Jassoy, C. Cytotoxicity of Medicinal Plant Species Used by Traditional Healers in Treating People Suffering From HIV/AIDS in Uganda. Front. Toxicol. 2022, 4, 832780. [Google Scholar] [CrossRef]
- Marques, A.E.F.; Monteiro, T.M.; Dos Santos, C.R.B.; Piuzevan, M.R.; De Souza, M.D.F.V.; Mororó, G.T.; Alves, M.M.d.M.; Carvalho, F.A.d.A.; Arcanjo, D.D.R.; Gonçalves, J.C.R.; et al. Flavonoides isolados de Sida santaremnensis H. Monteiro (“Guanxuma”) e avaliação das atividades biológicas. Ciência e Natura 2021, 43, e58. [Google Scholar] [CrossRef]
- Guo, H.; Ren, F.; Zhang, L.; Zhang, X.; Yang, R.; Xie, B.; Li, Z.; Hu, Z.; Duan, Z.; Zhang, J. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway. Mol. Med. Rep. 2016, 13, 2791–27800. [Google Scholar] [CrossRef]
- Huang, W.-W.; Tsai, S.-C.; Peng, S.-F.; Lin, M.-W.; Chiang, J.-H.; Chiu, Y.-J.; Fushiya, S.; Tseng, M.T.; Yang, J.S. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int. J. Oncol. 2013, 42, 2069–2077. [Google Scholar] [CrossRef]
- Wei, S.; Sun, Y.; Wang, L.; Zhang, T.; Hu, W.; Bao, W.; Mao, L.; Chen, J.; Li, H.; Wen, Y.; et al. Hyperoside suppresses BMP-7-dependent PI3K/AKT pathway in human hepatocellular carcinoma cells. Ann. Transl. Med. 2021, 9, 1233. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, T.; Zhu, X.; Yang, C.; Wang, Y.; Zhou, N.; Ju, B.; Zhou, T.; Deng, G.; Qiu, C. Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. Int. J. Mol. Sci. 2020, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ji, M.; Han, Y.; Guo, Y.; Zhu, W.; Gao, F.; Yang, X.; Zhang, C. PGRMC1-dependent autophagy by hyperoside induces apoptosis and sensitizes ovarian cancer cells to cisplatin treatment. Int. J. Oncol. 2017, 50, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-P.; Liao, X.-H.; Xiang, Y.; Yao, A.; Song, R.-H.; Zhang, Z.-J.; Huang, F.; Dai, Z.-T.; Zhang, T.-C. Hyperoside and let-7a-5p synergistically inhibits lung cancer cell proliferation via inducing G1/S phase arrest. Gene 2018, 679, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hao, J.; Zhang, L.; Cheng, Z.; Deng, X.; Shu, G. Astragalin Reduces Hexokinase 2 through Increasing miR-125b to Inhibit the Proliferation of Hepatocellular Carcinoma Cells in Vitro and in Vivo. J. Agric. Food Chem. 2017, 65, 5961–5972. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Zhang, W.; Wu, Q.; Yang, Q.; Gong, Z.; Shao, S.; Zhang, W. Astragalin protects the liver from oxidative damage by modulating the lnc XIST/miR-155-5p/Nrf2 axis. J. Funct. Foods 2023, 108, 105769. [Google Scholar] [CrossRef]
Noo | RT (Min) | Compounds Structure | [M−H]− Calculated | [M−H]− Observed (ion Formula, Error in ppm) | Fragmentation | 1H in ppm (* Multiplicity; J in Hz, H) | 13C in ppm | References |
---|---|---|---|---|---|---|---|---|
1 | 0.8 | α-glucopyranoside | 179.055563 | 179.0552 (C6H11O6, −2.03) | – | 5.08 (d; J = 3.7 Hz, H-1). | – | [1] |
2 | 0.9 | Malic acid | 133.014247 | 133.0134 (C4H5O5, −6.37) | – | – | – | [1] |
3 | 2.6 | Unknown | 188.034768 | 188.0340 (C10H6NO3, −4.08) | 144.0468 (100.0%) | – | – | |
4 | 9.6 | Quercetin-3-galactoside (Hyperoside) | 463.088200 | 463.0877 (C21H19O12, −1.08) | 300.0275 (100.0%) | 6.23 (d; J = 2.0 Hz, H-6), 6.42 (d; J = 2.0 Hz, H-8), 7.73 (d; J = 2.2 Hz, H-2′), 6.80 (d; J = 8.5 Hz, H-5′), 7.61 (dd; J = 8.5, 2.2 Hz, H-6′), 5.15 (d; J = 7.7 Hz, H-1″). | 157.6 (C-2), 134.4 (C-3), 161.3 (C-5) 98.6 (C-6), 164.5 (C-7), 93.4 (C-8), 104.4 (C-10), 116.1 (C-2′), 144.2 (C-3′), 148.5 (C-4′), 114.8 (C-5′), 121.8 (C-6′), 103.4 (C-1″). | [1,15] |
5 | 10.6 | Quercetin-3-O-arabinopyranoside (Guaijaverin) | 433.077635 | 433.0777 (C20H17O11, 0.15) | 300.0246 (100.0%) 301.0338 (35.6%) | 7.76 (d; J = 2.1 Hz, H-2′), 7.60 (dd; J = 8.4, 2.1 Hz, H-6′), 5.16 (d; J = 6.2 Hz, H-1″). | 157.6 (C-2), 116.1 (C-2′), 148.5 (C-4′), 121.8 (C-6′), 103.4 (C-1″). | [2,15] |
6 | 11.6 | Kaempferol-3-O-glucoside (Astragalin) | 447.092736 | 447.0927 (C20H19O11, −0.08) | 284.0293 (100.0%) 285.0395 (39.0%) | 6.23 (d; J = 2.0 Hz, H-6), 6.42 (d; J = 2.0 Hz, H-8), 8.07 (d; J = 8.9 Hz, H-2′, H-6′), 6.89 (d; J = 8.9 Hz, H-3′, H-5’), 5.27 (d, J = 7.5 Hz, H-1”). | 159.8 (C-2), 134.2 (C-3), 161.3 (C-5) 98.6 (C-6), 164.5 (C-7), 93.4 (C-8), 104.4 (C-10), 121.5 (C-1’), 130.8 (C-2’, C-6’), 114.8 (C-3’, C-5’), 103.7 (C-1”). | [16] |
7 | 12.1 | Kaempferol-3-O-arabinopyranoside (Juglalin) | 417.082720 | 417.0835 (C20H17O10, 1.87) | 284.0347 (100.0%) 285.0363 (36.6%) | 8.10 (d; J = 8.9 Hz, H-2′, H-6’), 6.89 (d; J = 8.9 Hz, H-3’, H-5’). | 159.8 (C-2), 121.5 (C-1’), 130.8 (C-2’, C-6’), 114.8 (C-3’, C-5’). | [17] |
8 | 20.6 | Kaempferol | 285.039364 | 285.0391 (C15H9O6, -0.93) | – | 8.08 (d; J = 8.8 Hz, H-2’, H-6’), 6.90 (d; J = 8.8 Hz, H-3’, H-5’). | 159.8 (C-2), 121.5 (C-1’), 114.8 (C-3’, C-5’), 130.8 (C-2’, C-6’), | [18,19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.Y.S.; Cavalcante, D.N.; Oliveira, E.S.C.; Salvador, A.M.; Pereira, Z.C.; Consentini, J.C.C.; Furlaneto, G.; Campelo, P.H.; Sanches, E.A.; Azevedo, L.; et al. Theobroma mariae: Bioactive Compound-Rich Flowers. Plants 2025, 14, 377. https://doi.org/10.3390/plants14030377
Silva LYS, Cavalcante DN, Oliveira ESC, Salvador AM, Pereira ZC, Consentini JCC, Furlaneto G, Campelo PH, Sanches EA, Azevedo L, et al. Theobroma mariae: Bioactive Compound-Rich Flowers. Plants. 2025; 14(3):377. https://doi.org/10.3390/plants14030377
Chicago/Turabian StyleSilva, Laila Y. S., Débora N. Cavalcante, Edinilze S. C. Oliveira, Andreia M. Salvador, Zilanir C. Pereira, Julia C. C. Consentini, Gabriela Furlaneto, Pedro H. Campelo, Edgar A. Sanches, Luciana Azevedo, and et al. 2025. "Theobroma mariae: Bioactive Compound-Rich Flowers" Plants 14, no. 3: 377. https://doi.org/10.3390/plants14030377
APA StyleSilva, L. Y. S., Cavalcante, D. N., Oliveira, E. S. C., Salvador, A. M., Pereira, Z. C., Consentini, J. C. C., Furlaneto, G., Campelo, P. H., Sanches, E. A., Azevedo, L., & Bezerra, J. d. A. (2025). Theobroma mariae: Bioactive Compound-Rich Flowers. Plants, 14(3), 377. https://doi.org/10.3390/plants14030377