Metabolic and Photosynthesis Analysis of Compound-Material-Mediated Saline and Alkaline Stress Tolerance in Cotton Leaves
Abstract
:1. Introduction
2. Results
2.1. Potassium and Sodium Ion Contents in New Cotton Leaves in Response to Saline Stress, Alkaline Stress, and Compound Material
2.2. The Chlorophyll Content, Photosynthetic Gas Exchange Parameters, and Chlorophyll Fluorescence Parameters of New Cotton Leaves in Response to Saline Stress, Alkaline Stress, and Compound Material
2.3. Metabolome Analysis of New Cotton Leaves
2.4. Key Metabolites Involved in the Response of Cotton Leaf Photosynthesis to Saline Stress, Alkaline Stress, and the Compound Material
2.5. Abundance Levels of Key Metabolites Betaine, D-Xylonic Acid, DL-Phenylalanine, and D-Saccharic Acid in New Cotton Leaves in Response to Saline Stress, Alkaline Stress, and Compound Material
2.6. Key Metabolic Pathways Involved in Cotton Leaf Photosynthesis Under Saline Stress, Alkaline Stress, and Compound Material Treatment
3. Discussion
4. Materials and Methods
4.1. Plant Growth
4.2. Determination of Na+ and K+ Content
4.3. Determination of Chlorophyll Pigments
4.4. Determination of Photosynthetic Gas Exchange Parameters
4.5. Determination of Chlorophyll Fluorescence Parameters
4.6. Untargeted Metabolomic Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EC | electrical conductivity |
Car | carotenoids |
Pn | net photosynthetic rate |
Gs | stomatal conductance |
Tr | transpiration rate |
Ci | intracellular CO2 concentration |
Fv | maximum variable fluorescence in darkness |
Fo | minimum fluorescence after dark adaptation |
Fm | maximum fluorescence after dark adaptation |
Fo′ | minimum fluorescence under light |
Fm′ | maximum fluorescence after light adaptation |
Fs | steady-state fluorescence after light adaptation |
Fv/Fo | potential activity |
Fv/Fm | Maximal efficiency of PSII photochemistry |
ψPSII | efficiency of PSII photochemistry |
qP | Photochemical quenching coefficient |
VIP | variable importance in projection |
References
- Sun, J.; He, L.; Li, T. Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress. PLoS ONE 2019, 14, e0220340. [Google Scholar] [CrossRef] [PubMed]
- Hitti, Y.; MacPherson, S.; Lefsrud, M. Separate effects of sodium on germination in saline-sodic and alkaline forms at different concentrations. Plants 2023, 12, 1234. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, Y.; Chen, X.G.; Song, J.L.; Guo, Z.Q.; Li, K.P.; Zhang, K.W. Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Mol. Breed. 2018, 38, 19. [Google Scholar] [CrossRef]
- Guo, R.; Shi, L.; Yan, C.; Zhong, X.; Gu, F.; Liu, Q.; Xia, X.; Li, H. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol. 2017, 17, 41. [Google Scholar] [CrossRef]
- Sharif, I.; Aleem, S.; Farooq, J.; Rizwan, M.; Younas, A.; Sarwar, G.; Chohan, S.M. Salinity stress in cotton: Effects, mechanism of tolerance and its management strategies. Physiol. Mol. Biol. Plants 2019, 25, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.J.; Negrao, S.; Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.S.; Zhao, X.Q.; Li, M.; Huang, L.Y.; Xu, J.L.; Zhang, F.; Cui, Y.R.; Fu, B.Y.; Li, Z.K. Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. J. Exp. Bot. 2016, 67, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef]
- Allakhverdiev, S.I.; Murata, N. Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth. Res. 2008, 98, 529–539. [Google Scholar] [CrossRef]
- Ibrahim, W.; Qiu, C.W.; Zhang, C.; Cao, F.; Shuijin, Z.; Wu, F. Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance. Physiol. Plant. 2019, 165, 155–168. [Google Scholar] [CrossRef]
- Nie, W.J.; Gong, B.; Chen, Y.Y.; Wang, J.L.; Wei, M.; Shi, Q.H. Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Sci. Hortic. 2018, 235, 413–423. [Google Scholar] [CrossRef]
- Zhou, Y.; Diao, M.; Chen, X.J.; Cui, J.X.; Pang, S.Q.; Li, Y.Y.; Hou, C.Y.; Liu, H.Y. Application of exogenous glutathione confers salinity stress tolerance in tomato seedlings by modulating ions homeostasis and polyamine metabolism. Sci. Hortic. 2019, 250, 45–58. [Google Scholar] [CrossRef]
- Shafiq, H.; Shani, M.Y.; Ashraf, M.Y.; De Mastro, F.; Cocozza, C.; Abbas, S.; Ali, N.; Zaib-Un-Nisa; Tahir, A.; Iqbal, M.; et al. Copper oxide nanoparticles induced growth and physio-biochemical changes in maize (Zea mays L.) in saline soil. Plants 2024, 13, 1080. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; An, M.; Wang, K.; Fan, H.; Shi, J.; Chen, K. Effects of organic polymer compound material on K+ and Na+ distribution and physiological characteristics of cotton under saline and alkaline stresses. Front. Plant. Sci. 2021, 12, 636536. [Google Scholar] [CrossRef]
- Chuamnakthong, S.; Nampei, M.; Ueda, A. Characterization of Na+ exclusion mechanism in rice under saline-alkaline stress conditions. Plant. Sci. 2019, 287, 110171. [Google Scholar] [CrossRef]
- Liu, X.; Su, S. Growth and physiological response of Viola tricolor L. to NaCl and NaHCO3 Stress. Plants 2023, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Hou, X.; Liang, X. Response mechanisms of plants under saline-alkali stress. Front. Plant. Sci. 2021, 12, 667458. [Google Scholar] [CrossRef]
- Reginato, M.A.; Turcios, A.E.; Luna, V.; Papenbrock, J. Differential effects of NaCl and Na2SO4 on the halophyte Prosopis strombulifera are explained by different responses of photosynthesis and metabolism. Plant Physiol. Biochem. 2019, 141, 306–314. [Google Scholar] [CrossRef] [PubMed]
- An, M.J.; Wang, H.J.; Fan, H.; Ippolito, J.A.; Meng, C.M.; E, Y.L.; Li, Y.B.; Wei, C.Z. Effects of modifiers on the growth, photosynthesis, and antioxidant enzymes of cotton under cadmium toxicity. J. Plant. Growth. Regul. 2019, 38, 1196–1205. [Google Scholar] [CrossRef]
- Hamani, A.K.M.; Li, S.; Chen, J.; Amin, A.S.; Wang, G.; Shen, X.; Zain, M.; Gao, Y. Linking exogenous foliar application of glycine betaine and stomatal characteristics with salinity stress tolerance in cotton (Gossypium hirsutum L.) seedlings. BMC Plant. Biol. 2021, 21, 146. [Google Scholar] [CrossRef]
- Kolomeichuk, L.V.; Efimova, M.V.; Zlobin, I.E.; Kreslavski, V.D.; Murgan, O.K.; Kovtun, I.S.; Khripach, V.A.; Kuznetsov, V.V.; Allakhverdiev, S.I. 24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants. Photosynth. Res. 2020, 146, 151–163. [Google Scholar] [CrossRef]
- Parvin, K.; Nahar, K.; Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Mohsin, S.M.; Fujita, M. Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems. Plant. Physiol. Biochem. 2020, 150, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, K.J.; Farquhar, G.D.; Lloyd, J. Photosynthesis-nitrogen relationships in tropical forest tree species as affected by soil phosphorus availability: A controlled environment study. Funct. Plant. Biol. 2014, 41, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zeng, F.; Song, P.; Sun, B.; Wang, Q.; Wang, J. Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves. J. Plant. Physiol. 2022, 272, 153669. [Google Scholar] [CrossRef]
- Rastogi, A.; Yadav, S.; Hussain, S.; Kataria, S.; Hajihashemi, S.; Kumari, P.; Yang, X.; Brestic, M. Does silicon really matter for the photosynthetic machinery in plants? Plant. Physiol. Biochem. 2021, 169, 40–48. [Google Scholar] [CrossRef]
- Wang, Y.; Jie, W.; Peng, X.; Hua, X.; Yan, X.; Zhou, Z.; Lin, J. Physiological adaptive strategies of oil seed crop ricinus communis early seedlings (cotyledon vs. true leaf) under salt and alkali stresses: From the growth, photosynthesis and chlorophyll fluorescence. Front. Plant. Sci. 2019, 9, 1939. [Google Scholar] [CrossRef] [PubMed]
- Murata, N.; Nishiyama, Y. ATP is a driving force in the repair of photosystem II during photoinhibition. Plant. Cell. Environ. 2018, 41, 285–299. [Google Scholar] [CrossRef]
- Yildiztugay, E.; Ozfidan-Konakci, C.; Kucukoduk, M.; Turkan, I. Flavonoid naringenin alleviates short-term osmotic and salinity stresses through regulating photosynthetic machinery and chloroplastic antioxidant metabolism in phaseolus vulgaris. Front. Plant. Sci. 2020, 11, 682. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Islam, M.S.; Antu, U.B.; Islam, M.M.; Rajput, V.D.; Mahiddin, N.A.; Paul, J.R.; Ismail, Z.; Ibrahim, K.A.; Idris, A.M. Nanocellulose: A novel pathway to sustainable agriculture, environmental protection, and circular bioeconomy. Int. J. Biol. Macromol. 2025, 285, 137979. [Google Scholar] [CrossRef]
- Chen, Z.B.; Liu, M.Z.; Ma, S.M. Synthesis and modification of salt-resistant superabsorbent polymers. React. Funct. Polym. 2005, 62, 85–92. [Google Scholar] [CrossRef]
- Antunes, A.C.; Acunha, T.D.S.; Perin, E.C.; Rombaldi, C.V.; Galli, V.; Chaves, F.C. Untargeted metabolomics of strawberry (Fragaria × ananassa ’Camarosa’) fruit from plants grown under osmotic stress conditions. J. Sci. Food. Agric. 2019, 99, 6973–6980. [Google Scholar] [CrossRef]
- Han, M.; Cui, R.; Wang, D.; Huang, H.; Rui, C.; Malik, W.A.; Wang, J.; Zhang, H.; Xu, N.; Liu, X.; et al. Combined transcriptomic and metabolomic analyses elucidate key salt-responsive biomarkers to regulate salt tolerance in cotton. BMC Plant. Biol. 2023, 23, 245. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Guo, R.; Jiao, Y.; Jin, X.; Zhang, H.; Shi, L. Comparison of salt tolerance in soja based on metabolomics of seedling roots. Front. Plant. Sci. 2017, 8, 1101. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, X.; Li, T.; Zhong, M.; Song, J.; Wang, H.; Cui, J. Cotton straw biochar and compound Bacillus biofertilizer reduce Cd stress on cotton root growth by regulating root exudates and antioxidant enzymes system. Front. Plant. Sci. 2022, 13, 1051935. [Google Scholar] [CrossRef] [PubMed]
- Rea, P.A. Plant ATP-binding cassette transporters. Annu. Rev. Plant. Biol. 2007, 58, 347–375. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.K.; Kwon, M.; Ko, J.H.; Yi, H.; Hwang, M.G.; Chang, S.; Cho, M.H. Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant. Physiol. 2004, 134, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Knaupp, M.; Mishra, K.B.; Nedbal, L.; Heyer, A.G. Evidence for a role of raffinose in stabilizing photosystem II during freeze-thaw cycles. Planta 2011, 234, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Ingrisano, R.; Tosato, E.; Trost, P.; Gurrieri, L.; Sparla, F. Proline, cysteine and branched-chain amino acids in abiotic stress response of land plants and microalgae. Plants 2023, 12, 3410. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Hoffmann, T.; Kempf, B.; Xie, X.; Smits, S.H.J.; Bremer, E. Plant-derived compatible solutes proline betaine and betonicine confer enhanced osmotic and temperature stress tolerance to Bacillus subtilis. Microbiology 2014, 160, 2283–2294. [Google Scholar] [CrossRef]
- Chin, T.; Sano, M.; Takahashi, T.; Ohara, H.; Aso, Y. Photosynthetic production of itaconic acid in Synechocystis sp. PCC6803. J. Biotechnol. 2015, 195, 43–45. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, P.; Wang, Y.; Tao, K. Itaconate: A metabolite regulates inflammation response and oxidative stress. Oxid. Med. Cell. Longev. 2020, 2020, 5404780. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Chen, P.; Jian, H.; Sun, L.; Lv, X.; Wei, H.; Wang, H.; Hu, T.; Ma, L.; Fu, X.; et al. A Comprehensive Identification and Function Analysis of Serine/Arginine-Rich (SR) Proteins in Cotton (Gossypium spp.). Int. J. Mol. Sci. 2022, 23, 4566. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Wang, X.; Chang, D.; Wang, S.; Hong, D.; Fan, H.; Wang, K. Application of compound material alleviates saline and alkaline stress in cotton leaves through regulation of the transcriptome. BMC Plant. Biol. 2020, 20, 462. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysi, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Schoefs, B.; Darko, E.; Rodermel, S. Photosynthetic pigments, photosynthesis and plastid ultrastructure in RbcS antisense DNA mutants of tobacco (Nicotiana tabacum). Z. Naturforsch C J. Biosci. 2001, 56, 1067–1074. [Google Scholar] [CrossRef]
- Liu, X.; Mak, M.; Babla, M.; Wang, F.; Chen, G.; Veljanoski, F.; Wang, G.; Shabala, S.; Zhou, M.; Chen, Z.H. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley. Front. Plant. Sci. 2014, 5, 634. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant. Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Alonso, A.; Marsal, S.; Julià, A. Analytical methods in untargeted metabolomics: State of the art in 2015. Front. Bioeng. Biotechnol. 2015, 3, 23. [Google Scholar] [CrossRef] [PubMed]
Group of Compounds | Metabolite Name | CK-Y vs. P-Y | CK-J vs. P-J | CK-Y vs. CK-J | P-Y vs. P-J | ||||
---|---|---|---|---|---|---|---|---|---|
Log2(FC) | p-Value | Log2(FC) | p-Value | Log2(FC) | p-Value | Log2(FC) | p-Value | ||
Carbohydrates | D-raffinose | −2.83 | 1.4 × 10−3 | - | - | - | - | - | - |
D-xylonic acid | 1.34 | 3.2 × 10−2 | - | - | - | - | −1.04 | 7.3 × 10−2 | |
D-saccharic acid | - | - | 1.34 | 4.4 × 10−2 | - | - | 0.72 | 6.2 × 10−2 | |
Threonic acid | - | - | −0.8 | 6.5 × 10−2 | - | - | - | - | |
Hexitol | - | - | 0.42 | 6.6 × 10−2 | - | - | - | - | |
D-(-)-Erythrose | - | - | - | - | 0.66 | 1.3 × 10−2 | - | - | |
1-O-Arsonopentofuranose | - | - | - | - | 0.51 | 5.0 × 10−2 | - | - | |
D-Xylulosonic acid | - | - | - | - | −3.98 | 8.7 × 10−2 | - | - | |
Amino acids | L-Pyroglutamic acid | 0.6 | 3.00 × 10−2 | - | - | 1.73 | 1.10 × 10−2 | - | - |
DL-glutamic acid | 0.62 | 4.00 × 10−2 | - | - | 0.89 | 9.30 × 10−2 | - | - | |
N-Acetyl-L-glutamic acid | 0.64 | 4.20 × 10−2 | - | - | 0.73 | 8.00 × 10−2 | - | - | |
DL-phenylalanine | 1.11 | 2.50 × 10−2 | −0.61 | 8.40 × 10−3 | 0.89 | 8.70 × 10−4 | −0.83 | 5.90 × 10−2 | |
L-proline | 1.11 | 4.50 × 10−2 | - | - | 1.11 | 1.20 × 10−4 | - | - | |
D-(-)-Glutamine | 1.3 | 4.00 × 10−2 | - | - | 2.18 | 1.70 × 10−2 | - | - | |
Portulacaxanthin I | 1.36 | 8.50 × 10−4 | - | - | - | - | - | - | |
APM | −0.43 | 7.30 × 10−2 | 0.67 | 6.80 × 10−2 | -0.65 | 1.20 × 10−2 | - | - | |
Oxaceprol | 0.47 | 9.00 × 10−2 | - | - | - | - | - | - | |
L-phenylalanine | 1.31 | 5.90 × 10−2 | −0.94 | 1.70 × 10−2 | 0.59 | 1.50 × 10−2 | −0.82 | 5.60 × 10−2 | |
Tetrahydrodipicolinate | - | - | 0.93 | 8.90 × 10−2 | - | - | - | - | |
betaine | - | - | - | - | 0.38 | 4.90 × 10−2 | - | - | |
N-Undecanoylglycine | - | - | - | - | 0.8 | 5.00 × 10−2 | - | - | |
2-Hydroxyphenylalanine | - | - | - | - | 1.18 | 4.00 × 10−2 | - | - | |
L-glutamic acid | - | - | - | - | 1.54 | 9.40 × 10−3 | - | - | |
Amdinocillin | - | - | - | - | - | - | 4.86 | 5.60 × 10−2 | |
Fatty acids | Methyl 2-Undecynoate | 0.91 | 2.00 × 10−2 | −0.72 | 3.20 × 10−2 | 0.62 | 5.70 × 10−2 | −1.01 | 1.30 × 10−2 |
Itaconic acid | −0.82 | 6.90 × 10−2 | 0.95 | 3.00 × 10−2 | −1.08 | 2.70 × 10−2 | 0.7 | 9.10 × 10−2 | |
Trans-2-Dodecenoylcarnitine | 1 | 9.50 × 10−2 | - | - | - | - | - | - | |
Isoleukotoxin diol | - | - | −1.86 | 3.60 × 10−2 | - | - | - | - | |
Eicosapentanoic acid | - | - | 1.04 | 2.20 × 10−2 | −1.27 | 5.80 × 10−3 | - | - | |
Arachidonic acid | - | - | 1.29 | 3.70 × 10−2 | −1.24 | 1.80 × 10−3 | - | - | |
Furoic acid | - | - | 0.86 | 5.40 × 10−2 | −0.85 | 1.20 × 10−2 | - | - | |
Butanoate | - | - | - | - | 0.59 | 3.70 × 10−2 | - | - | |
Cyprodenate | - | - | - | - | 0.68 | 1.10 × 10−3 | - | - | |
Nonanoic acid | - | - | - | - | 0.96 | 3.10 × 10−2 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, M.; Zhu, Y.; Chang, D.; Wang, X.; Wang, K. Metabolic and Photosynthesis Analysis of Compound-Material-Mediated Saline and Alkaline Stress Tolerance in Cotton Leaves. Plants 2025, 14, 394. https://doi.org/10.3390/plants14030394
An M, Zhu Y, Chang D, Wang X, Wang K. Metabolic and Photosynthesis Analysis of Compound-Material-Mediated Saline and Alkaline Stress Tolerance in Cotton Leaves. Plants. 2025; 14(3):394. https://doi.org/10.3390/plants14030394
Chicago/Turabian StyleAn, Mengjie, Yongqi Zhu, Doudou Chang, Xiaoli Wang, and Kaiyong Wang. 2025. "Metabolic and Photosynthesis Analysis of Compound-Material-Mediated Saline and Alkaline Stress Tolerance in Cotton Leaves" Plants 14, no. 3: 394. https://doi.org/10.3390/plants14030394
APA StyleAn, M., Zhu, Y., Chang, D., Wang, X., & Wang, K. (2025). Metabolic and Photosynthesis Analysis of Compound-Material-Mediated Saline and Alkaline Stress Tolerance in Cotton Leaves. Plants, 14(3), 394. https://doi.org/10.3390/plants14030394