Inhibition of Kinase Activity and In Vitro Downregulation of the Protein Kinases in Lung Cancer and Cervical Cancer Cell Lines and the Identified Known Anticancer Compounds of Ziziphus mucronata
Abstract
:1. Introduction
2. Results
2.1. GC-MS Analysis
2.2. In Vitro Cytotoxicity
2.3. Protein Kinase Activity of A549 and HeLa Cell Lines
2.4. Effect of Methanol Extract on the A549 and HeLa Kinase Profile
3. Discussion
4. Materials and Methods
4.1. Gas Chromatography–Mass Spectrometry Analysis
4.2. Cell Culture
4.3. MTT Assay
4.4. ADP-Glo Detection-Based Kinase Assays
4.5. Human Phosphokinase Antibody Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Committee on Diagnostic Error in Health Care; Board on Health Care Services; Institute of Medicine; The National Academies of Sciences, Engineering, and Medicine. Improving Diagnosis in Health Care; Balogh, E.P., Miller, B.T., Ball, J.R., Eds.; National Academies Press: Washington, DC, USA, 2015; p. 21794. ISBN 978-0-309-37769-0. [Google Scholar]
- Boyle, P.; International Agency for Research on Cancer, Weltgesundheitsorganisation (Eds.) World Cancer Report 2008; IARC Press: Lyon, France, 2008; ISBN 978-92-832-0423-7. [Google Scholar]
- Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis 2010, 31, 100–110. [Google Scholar] [CrossRef]
- Pravin, S.; Sudhir, A. Integration of 3D printing with dosage forms: A new perspective for modern healthcare. Biomed. Pharmacother. 2018, 107, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Amend, S.R.; Austin, R.H.; Gatenby, R.A.; Hammarlund, E.U.; Pienta, K.J. Updating the Definition of Cancer. Mol. Cancer Res. 2023, 21, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Cicenas, J.; Račienė, A. Anti-Cancer Drugs Targeting Protein Kinases Approved by FDA in 2020. Cancers 2021, 13, 947. [Google Scholar] [CrossRef] [PubMed]
- Hosfield, D.J.; Mol, C.D. Targeting inactive kinases: Structure as a foundation for cancer drug discovery. In Cancer Drug Design and Discovery; Elsevier: Amsterdam, The Netherlands, 2008; pp. 229–252. ISBN 978-0-12-369448-5. [Google Scholar]
- Gaji, R.Y.; Sharp, A.K.; Brown, A.M. Protein kinases in Toxoplasma gondii. Int. J. Parasitol. 2021, 51, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef] [PubMed]
- Cicenas, J.; Kvederaviciute, K.; Meskinyte, I.; Meskinyte-Kausiliene, E.; Skeberdyte, A.; Cicenas, J. KRAS, TP53, CDKN2A, SMAD4, BRCA1, and BRCA2 Mutations in Pancreatic Cancer. Cancers 2017, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Nandy, S.K.; Jyoti, A.; Saxena, J.; Sharma, A.; Siddiqui, A.J.; Sharma, L. Protein Kinase C (PKC) in Neurological Health: Implications for Alzheimer’s Disease and Chronic Alcohol Consumption. Brain Sci. 2024, 14, 554. [Google Scholar] [CrossRef] [PubMed]
- Tomuleasa, C.; Tigu, A.-B.; Munteanu, R.; Moldovan, C.-S.; Kegyes, D.; Onaciu, A.; Gulei, D.; Ghiaur, G.; Einsele, H.; Croce, C.M. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Sig. Transduct. Target. Ther. 2024, 9, 201. [Google Scholar] [CrossRef]
- Canovas, B.; Nebreda, A.R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell. Biol. 2021, 22, 346–366. [Google Scholar] [CrossRef]
- Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer 2018, 17, 48. [Google Scholar] [CrossRef]
- Chowdhury, I.; Dashi, G.; Keskitalo, S. CMGC Kinases in Health and Cancer. Cancers 2023, 15, 3838. [Google Scholar] [CrossRef]
- Li, J.; Gong, C.; Zhou, H.; Liu, J.; Xia, X.; Ha, W.; Jiang, Y.; Liu, Q.; Xiong, H. Kinase Inhibitors and Kinase-Targeted Cancer Therapies: Recent Advances and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 5489. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Yun, C.-H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 2016, 534, 129–132. [Google Scholar] [CrossRef]
- Singha, M.; Pu, L.; Srivastava, G.; Ni, X.; Stanfield, B.A.; Uche, I.K.; Rider, P.J.F.; Kousoulas, K.G.; Ramanujam, J.; Brylinski, M. Unlocking the Potential of Kinase Targets in Cancer: Insights from CancerOmicsNet, an AI-Driven Approach to Drug Response Prediction in Cancer. Cancers 2023, 15, 4050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 2009, 9, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Shalata, W.; Jacob, B.M.; Agbarya, A. Adjuvant Treatment with Tyrosine Kinase Inhibitors in Epidermal Growth Factor Receptor Mutated Non-Small-Cell Lung Carcinoma Patients, Past, Present and Future. Cancers 2021, 13, 4119. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; Giles, F.; Quintás-Cardama, A.; Cortes, J. Important Therapeutic Targets in Chronic Myelogenous Leukemia. Clin. Cancer Res. 2007, 13, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.; Wu, Y.-L.; Thongprasert, S.; Yang, C.-H.; Chu, D.-T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Thompson, H.J.; Lutsiv, T. Natural Products in Precision Oncology: Plant-Based Small Molecule Inhibitors of Protein Kinases for Cancer Chemoprevention. Nutrients 2023, 15, 1192. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.A.; Urban, S.; Roessner, U. A Historical Overview of Natural Products in Drug Discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef]
- Khan, H. Medicinal Plants in Light of History: Recognized Therapeutic Modality. J. Evid. Based. Complement. Altern. Med. 2014, 19, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Street, R.A.; Prinsloo, G. Commercially Important Medicinal Plants of South Africa: A Review. J. Chem. 2013, 2013, 205048. [Google Scholar] [CrossRef]
- Ji, H.; Li, X.; Zhang, H. Natural products and drug discovery: Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 2009, 10, 194–200. [Google Scholar] [CrossRef]
- Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G. The Biochemistry, Toxicology, and Uses of the Pharmacologically Active Phytochemicals: Alkaloids, Terpenes, Polyphenols, and Glycosides. J. Food Pharm. Sci. 2019, 7, 131–150. [Google Scholar] [CrossRef]
- Li, C.-Q.; Lei, H.-M.; Hu, Q.-Y.; Li, G.-H.; Zhao, P.-J. Recent Advances in the Synthetic Biology of Natural Drugs. Front. Bioeng. Biotechnol. 2021, 9, 691152. [Google Scholar] [CrossRef] [PubMed]
- Guerra, B.; Issinger, O.-G. Natural Compounds and Derivatives as Ser/Thr Protein Kinase Modulators and Inhibitors. Pharmaceuticals 2019, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, M. The Success of Natural Products in Drug Discovery. PP 2013, 4, 17–31. [Google Scholar] [CrossRef]
- Baier, A.; Szyszka, R. Compounds from Natural Sources as Protein Kinase Inhibitors. Biomolecules 2020, 10, 1546. [Google Scholar] [CrossRef]
- Mogonong, B.; Van Der Merwe, H.; Ramaswiela, T.; Maluleke, A.; Feig, G. Vegetation description around the savanna flux measurement site at Benfontein Nature Reserve, South Africa. S. Afr. J. Bot. 2023, 162, 353–359. [Google Scholar] [CrossRef]
- Mokgolodi, N.C.; Hu, Y.; Shi, L.; Liu, Y. Ziziphus mucronata: An underutilized traditional medicinal plant in Africa. For. Stud. China 2011, 13, 163. [Google Scholar] [CrossRef]
- Mongalo, N.I.; Mashele, S.S.; Makhafola, T.J. Ziziphus mucronata Willd. (Rhamnaceae): It’s botany, toxicity, phytochemistry and pharmacological activities. Heliyon 2020, 6, e03708. [Google Scholar] [CrossRef] [PubMed]
- Olajuyigbe, O.O.; Afolayan, A.J. Phenolic content and antioxidant property of the bark extracts of Ziziphus mucronata Willd. subsp. mucronata Willd. BMC Complement. Altern. Med. 2011, 11, 130. [Google Scholar] [CrossRef]
- Suroowan, S.; Pynee, K.B.; Mahomoodally, M.F. A comprehensive review of ethnopharmacologically important medicinal plant species from Mauritius. S. Afr. J. Bot. 2019, 122, 189–213. [Google Scholar] [CrossRef]
- Lolli, G.; Cozza, G.; Mazzorana, M.; Tibaldi, E.; Cesaro, L.; Donella-Deana, A.; Meggio, F.; Venerando, A.; Franchin, C.; Sarno, S.; et al. Inhibition of Protein Kinase CK2 by Flavonoids and Tyrphostins. A Structural Insight. Biochemistry 2012, 51, 6097–6107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- El-Khouly, O.A.; Henen, M.A.; El-Sayed, M.A.-A.; El-Messery, S.M. Design, synthesis and computational study of new benzofuran hybrids as dual PI3K/VEGFR2 inhibitors targeting cancer. Sci. Rep. 2022, 12, 17104. [Google Scholar] [CrossRef]
- Bendi, A.; Sirija, M.R.; Bhathiwal, A.S.; Chinmay; Chauhan, V.; Tiwari, A. Exploring the potential therapeutic role of benzofuran derivatives in cancer treatment. J. Mol. Struct. 2024, 1317, 139121. [Google Scholar] [CrossRef]
- Khodarahmi, G.; Asadi, P.; Hassanzadeh, F.; Khodarahmi, E. Benzofuran as a promising scaffold for the synthesis of antimicrobial and antibreast cancer agents: A review. J. Res. Med. Sci. 2015, 20, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, H.M.; Shehata, A.M.; Morsi, M.-A.A. Micropropagation and GC–MS analysis of bioactive compounds in bulbs and callus of white squill. Vitr. Cell. Dev. Biol.-Plant 2023, 59, 154–166. [Google Scholar] [CrossRef]
- Elgorban, A.M.; Bahkali, A.H.; Al Farraj, D.A.; Abdel-Wahab, M.A. Natural products of Alternaria sp., an endophytic fungus isolated from Salvadora persica from Saudi Arabia. Saudi J. Biol. Sci. 2019, 26, 1068–1077. [Google Scholar] [CrossRef]
- Thakur, R.S.; Ahirwar, B. A steroidal derivative from Trigonella foenum graecum L. that induces apoptosis in vitro and in vivo. J. Food Drug Anal. 2019, 27, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.M.M.; Maaty, D.A.M.; Al-Saraireh, Y.M. Phytochemical Analysis and Profiling of Antioxidants and Anticancer Compounds from Tephrosia purpurea (L.) subsp. apollinea Family Fabaceae. Molecules 2023, 28, 3939. [Google Scholar] [CrossRef]
- Akbari, S.; Didar, Z.; Vazifedoost, M.; Hajirostamloo, B.; Mohtashami, M. Antibiofilm Activity of Ginger (Zingiber officinale) Extracts In Vitro and Food Model. J. Food Process. Preserv. 2023, 2023, 5134332. [Google Scholar] [CrossRef]
- Matias, D.; Bessa, C.; Fátima Simões, M.; Reis, C.P.; Saraiva, L.; Rijo, P. Natural Products as Lead Protein Kinase C Modulators for Cancer Therapy. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 50, pp. 45–79. ISBN 978-0-444-63749-9. [Google Scholar]
- Feng, L.; Xu, F.; Qiu, S.; Sun, C.; Lai, P. Chemical Composition and Antibacterial, Antioxidant, and Cytotoxic Activities of Essential Oils from Leaves and Stems of Aeschynomene indica L. Molecules 2024, 29, 3552. [Google Scholar] [CrossRef] [PubMed]
- Albratty, M.; Alhazmi, H.A.; Meraya, A.M.; Najmi, A.; Alam, M.S.; Rehman, Z.; Moni, S.S. Spectral analysis and Antibacterial activity of the bioactive principles of Sargassum tenerrimum J. Agardh collected from the Red sea, Jazan, Kingdom of Saudi Arabia. Braz. J. Biol. 2023, 83, e249536. [Google Scholar] [CrossRef] [PubMed]
- Gazwi, H.S.S.; Omar, M.O.A.; Mahmoud, M.E. Phytochemical analysis, antioxidant capacities, and in vitro biological activities of the extract of seed coat as by-products of pea. BMC Chem. 2023, 17, 1. [Google Scholar] [CrossRef]
- Janowska, S.; Paneth, A.; Wujec, M. Cytotoxic Properties of 1,3,4-Thiadiazole Derivatives—A Review. Molecules 2020, 25, 4309. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhu, Y.; Ran, K.; Liu, Z.; Wang, N.; Feng, Q.; Zeng, J.; Zhang, L.; He, B.; Ye, T.; et al. Synthesis and biological evaluation of N-(4-phenylthiazol-2-yl)cinnamamide derivatives as novel potential anti-tumor agents. Med. Chem. Commun. 2015, 6, 1036–1042. [Google Scholar] [CrossRef]
- Padmavathi, V.; Prema Kumari, C.; Venkatesh, B.C.; Padmaja, A. Synthesis and antimicrobial activity of amido linked pyrrolyl and pyrazolyl-oxazoles, thiazoles and imidazoles. Eur. J. Med. Chem. 2011, 46, 5317–5326. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fang, Y.; Chen, X.; Tong, L.; Feng, F.; Zhou, Q.; Chen, S.; Ding, J.; Xie, H.; Zhang, A. Design, synthesis and pharmacological evaluation of 1,2,3,4-tetrahydrobenzofuro[2,3-c]pyridine derivatives as p21-activated kinase 4 inhibitors for treatment of pancreatic cancer. Acta Pharm. Sin. B, 2024; in press. [Google Scholar] [CrossRef]
- Chow, P.H.; Kourghi, M.; Pei, J.V.; Nourmohammadi, S.; Yool, A.J. 5-Hydroxymethyl-Furfural and Structurally Related Compounds Block the Ion Conductance in Human Aquaporin-1 Channels and Slow Cancer Cell Migration and Invasion. Mol. Pharmacol. 2020, 98, 38–48. [Google Scholar] [CrossRef]
- Greilberger, J.; Herwig, R.; Greilberger, M.; Stiegler, P.; Wintersteiger, R. Alpha-Ketoglutarate and 5-HMF: A Potential Anti-Tumoral Combination against Leukemia Cells. Antioxidants 2021, 10, 1804. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Tyagi, N.; Singh, M.; Kushwaha, H.R.; Sharma, R.K.; Shree, P.; Mittal, A.; Chopra, R.; Garg, M. Characterization, phytochemical profiling, antioxidant, and cytotoxicity of underutilized medicinal plants and composite flour. Food Chem. 2024, 456, 139985. [Google Scholar] [CrossRef]
- Hossain, M.; Habib, I.; Singha, K.; Kumar, A. FDA-approved heterocyclic molecules for cancer treatment: Synthesis, dosage, mechanism of action and their adverse effect. Heliyon 2024, 10, e23172. [Google Scholar] [CrossRef]
- Altinoz, M.A.; Ozpinar, A.; Seyfried, T.N. Caprylic (Octanoic) Acid as a Potential Fatty Acid Chemotherapeutic for Glioblastoma. Prostaglandins Leukot. Essent. Fat. Acids 2020, 159, 102142. [Google Scholar] [CrossRef] [PubMed]
- Shelton, J.; Lu, X.; Hollenbaugh, J.A.; Cho, J.H.; Amblard, F.; Schinazi, R.F. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem. Rev. 2016, 116, 14379–14455. [Google Scholar] [CrossRef] [PubMed]
- Swantara, M.D.; Rita, W.S.; Suartha, N.; Agustina, K.K. Anticancer activities of toxic isolate of Xestospongia testudinaria sponge. Vet World 2019, 12, 1434–1440. [Google Scholar] [CrossRef]
- Hasan, M.d.R.; Haque, M.M.; Hoque, M.d.A.; Sultana, S.; Rahman, M.M.; Ali Shaikh, M.d.A.; Sarker, M.d.K.U. Antioxidant activity study and GC-MS profiling of Camellia sinensis Linn. Heliyon 2024, 10, e23514. [Google Scholar] [CrossRef]
- Nisa, S.; Bibi, Y.; Masood, S.; Ali, A.; Alam, S.; Sabir, M.; Qayyum, A.; Ahmed, W.; Alharthi, S.; Santali, E.Y.; et al. Isolation, Characterization and Anticancer Activity of Two Bioactive Compounds from Arisaema flavum (Forssk.) Schott. Molecules 2022, 27, 7932. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Tyagi, S.; Tripathi, R. Hexadecanoic acid methyl ester, a potent hepatoprotective compound in leaves of Pistia stratiotes L. Appl. Biol. Chem. J. 2023, 4, 118–120. [Google Scholar] [CrossRef]
- Aldakheel, R.K.; Rehman, S.; Almessiere, M.A.; Khan, F.A.; Gondal, M.A.; Mostafa, A.; Baykal, A. Bactericidal and In Vitro Cytotoxicity of Moringa oleifera Seed Extract and Its Elemental Analysis Using Laser-Induced Breakdown Spectroscopy. Pharmaceuticals 2020, 13, 193. [Google Scholar] [CrossRef] [PubMed]
- Hawar, S.N.; Taha, Z.K.; Hamied, A.S.; Al-Shmgani, H.S.; Sulaiman, G.M.; Elsilk, S.E. Antifungal Activity of Bioactive Compounds Produced by the Endophytic Fungus Paecilomyces sp. (JN227071.1) against Rhizoctonia solani. Int. J. Biomater. 2023, 2023, 2411555. [Google Scholar] [CrossRef] [PubMed]
- Paudel, M.R.; Joshi, P.R.; Chand, K.; Sah, A.K.; Acharya, S.; Pant, B.; Pant, B. Antioxidant, anticancer and antimicrobial effects of In vitro developed protocorms of Dendrobium longicornu. Biotechnol. Rep. 2020, 28, e00527. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.H.; Ahmed, A.A.E.; Bashir, M.; Abdalgadir, H.; Khalid, A.; Abdalla, A.N.; Elzubier, M.E.; Almaimani, R.; Refaat, B.; Alzahrani, K.; et al. The anticancer properties, cell-cycle cytotoxicity and apoptosis of cissus rotundifolia, trema orientalis, and buddleja polystachya with ocular applications. Phytomed. Plus 2025, 5, 100651. [Google Scholar] [CrossRef]
- Dong, Y.; Nakagawa-Goto, K.; Lai, C.-Y.; Morris-Natschke, S.L.; Bastow, K.F.; Lee, K.-H. Antitumor agents 287. Substituted 4-amino-2H-pyran-2-one (APO) analogs reveal a new scaffold from neo-tanshinlactone with in vitro anticancer activity. Bioorg. Med. Chem. Lett. 2011, 21, 2341–2344. [Google Scholar] [CrossRef] [PubMed]
- Pratap, R.; Ram, V.J. 2H-Pyran-2-ones and their annelated analogs as multifaceted building blocks for the fabrication of diverse heterocycles. Tetrahedron 2017, 73, 2529–2590. [Google Scholar] [CrossRef]
- Prakash, O.; Kumar, R.; Parkash, V. Synthesis and antifungal activity of some new 3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl) chromones. Eur. J. Med. Chem. 2008, 43, 435–440. [Google Scholar] [CrossRef]
- Yuan, Z.; Duan, H.; Xu, Y.; Wang, A.; Gan, L.; Li, J.; Liu, M.; Shang, X. α-Tocospiro C, a novel cytotoxic α-tocopheroid from Cirsium setosum. Phytochem. Lett. 2014, 8, 116–120. [Google Scholar] [CrossRef]
- Sianipar, N.F.; Muflikhati, Z.; Mangindaan, D.; Assidqi, K. Anticancer Potential of Tocopherols-Containing Plants and Semi-Synthetic Tocopherols. Plants 2024, 13, 2994. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Iqbal, M.O.; Khan, H.; Ahmed, M.M.; Farooq, M.; Aadil, M.M.; Jamaludin, M.I.; Hazafa, A.; Tsai, W.-C. A Review of Twenty Years of Research on the Regulation of Signaling Pathways by Natural Products in Breast Cancer. Molecules 2022, 27, 3412. [Google Scholar] [CrossRef] [PubMed]
- Akiel, M.A.; Alshehri, O.Y.; Aljihani, S.A.; Almuaysib, A.; Bader, A.; Al-Asmari, A.I.; Alamri, H.S.; Alrfaei, B.M.; Halwani, M.A. Viridiflorol induces anti-neoplastic effects on breast, lung, and brain cancer cells through apoptosis. Saudi J. Biol. Sci. 2022, 29, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Farneti, B.; Khomenko, I.; Ajelli, M.; Wells, K.E.; Betta, E.; Aprea, E.; Giongo, L.; Biasioli, F. Volatilomics of raspberry fruit germplasm by combining chromatographic and direct-injection mass spectrometric techniques. Front. Mol. Biosci. 2023, 10, 1155564. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.A.; Cancellieri, M.A.; Chon, H.; Dagli, M.L.; Dekant, W.; Deodhar, C.; et al. RIFM fragrance ingredient safety assessment, cycloionone, CAS Registry Number 5552-30-7. Food Chem. Toxicol. 2024, 183, 114262. [Google Scholar] [CrossRef] [PubMed]
- El-fayoumy, E.A.; Shanab, S.M.M.; Gaballa, H.S.; Tantawy, M.A.; Shalaby, E.A. Evaluation of antioxidant and anticancer activity of crude extract and different fractions of Chlorella vulgaris axenic culture grown under various concentrations of copper ions. BMC Complement. Med. Ther. 2021, 21, 51. [Google Scholar] [CrossRef]
- Sakna, S.T.; Maghraby, Y.R.; Abdelfattah, M.S.; Farag, M.A. Phytochemical diversity and pharmacological effects of triterpenes from genus Ziziphus: A comprehensive review. Phytochem. Rev. 2023, 22, 1611–1636. [Google Scholar] [CrossRef]
- Buthelezi, M.N.; Tshililo, V.G.; Kappo, A.P.; Simelane, M.B.C. Phytochemical evaluation of Ziziphus mucronata and Xysmalobium undulutum towards the discovery and development of anti-malarial drugs. Malar J. 2024, 23, 141. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Seidel, V.; Izabela, M.; Monserrat-Mequida, M.; Sureda, A.; Ormazabal, V.; Zuniga, F.A.; Mangalpady, S.S.; Pezzani, R.; Ydyrys, A.; et al. Phenolic compounds as Nrf2 inhibitors: Potential applications in cancer therapy. Cell Commun. Signal. 2023, 21, 89. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Cartuche, L.; Cruz, D.; Ramírez, M.I.; Bailón, N.; Malagón, O. Antibacterial and cytotoxic activity from the extract and fractions of a marine derived bacterium from the Streptomyces genus. Pharm. Biol. 2015, 53, 1826–1830. [Google Scholar] [CrossRef] [PubMed]
- Majrashi, T.A.; Alshehri, S.A.; Alsayari, A.; Muhsinah, A.B.; Alrouji, M.; Alshahrani, A.M.; Shamsi, A.; Atiya, A. Insight into the Biological Roles and Mechanisms of Phytochemicals in Different Types of Cancer: Targeting Cancer Therapeutics. Nutrients 2023, 15, 1704. [Google Scholar] [CrossRef] [PubMed]
- Afrose, S.S.; Junaid, M.d.; Akter, Y.; Tania, M.; Zheng, M.; Khan, M.d.A. Targeting kinases with thymoquinone: A molecular approach to cancer therapeutics. Drug Discov. Today 2020, 25, 2294–2306. [Google Scholar] [CrossRef]
- Theivendren, P.; Kunjiappan, S.; Mariappa Hegde, Y.; Vellaichamy, S.; Gopal, M.; Rajan Dhramalingam, S.; Kumar, S. Importance of Protein Kinase and Its Inhibitor: A Review. In Biochemistry; Kumar Singh, R., Ed.; IntechOpen: London, UK, 2021; Volume 24, ISBN 978-1-83880-906-5. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef]
- Roux, P.P.; Blenis, J. ERK and p38 MAPK-Activated Protein Kinases: A Family of Protein Kinases with Diverse Biological Functions. Microbiol. Mol. Biol. Rev. 2004, 68, 320–344. [Google Scholar] [CrossRef]
- Bouali, N.; Hamadou, W.S.; Badraoui, R.; Lajimi, R.H.; Hamdi, A.; Alreshidi, M.; Adnan, M.; Soua, Z.; Siddiqui, A.J.; Noumi, E.; et al. Phytochemical Composition, Antioxidant, and Anticancer Activities of Sidr Honey: In Vitro and In Silico Computational Investigation. Life 2022, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.M.M.; Maaty, D.A.M.; Al-Saraireh, Y.M. Phytochemistry and Anticancer Effects of Mangrove (Rhizophora mucronata Lam.) Leaves and Stems Extract against Different Cancer Cell Lines. Pharmaceuticals 2022, 16, 4. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-Y.; Fu, C.-Y. Adenylate Kinase. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 18–23. [Google Scholar] [CrossRef]
- Nicholson, K.M.; Anderson, N.G. The protein kinase B/Akt signalling pathway in human malignancy. Cell. Signal. 2002, 14, 381–395. [Google Scholar] [CrossRef]
- Kamga-Simo, F.D.Y.; Kamatou, G.P.; Kgopa, A.H.; Mokgotho, M.P.; Shai, L.J. Evaluation of the Potential Hypoglycaemic Properties of Mimusops zeyheri Sond. and Aloe marlothii A.Berger, Two Plants Used by Traditional Healers in South Africa. Plants 2024, 13, 3323. [Google Scholar] [CrossRef] [PubMed]
No. | RT (min) | Name of the Compound | Molecular Formula | Molecular Weight (g/mol) | Pharmacological Actions |
1 | 04:60 | Benzofuran | C8H6O | 118.13 | Anticancer activity, anti-tumour, antimicrobial [42,43,44] |
2 | 11:63 | 7-Methyl-Z-tetradecen-1-ol acetate | C17H32O2 | 268.4 | Anticancer, anti-inflammatory [45] |
3 | 18:14 | 1-Heptatriacotanol | C37H76O | 536.0 | Antioxidant, anticancer, Anti-inflammatory, antimicrobial [46] |
4 | 09:87 | Ethyl iso-allocholate | C26H44O5 | 436.6 | Anti-tumour, anticancer, antioxidant [47,48] |
5 | 26:26 | Spiro[4.5]decan-7-one,1,8-dimethyl-8,9-epoxy-4-isopropyl | C15H24O2 | 236.35 | Anti-inflammatory, anticancer, antibacterial, antiarthritic properties [49] |
6 | 24:85 | Cryptofauronol | C15H26O2 | 238.37 | Antibacterial, antioxidant, cytotoxic activity, anticancer [50,51] |
7 | 26:26 | 17-Pentatriacontene | C35H70 | 490.9 | Antioxidant, inti-inflammatory, anticancer [52,53] |
8 | 05:45 | N-(thiazol-2-yl)cinnamamide | C12H10N2OS | 230.29 | Anti-tumour, anti-proliferation, antimicrobial, cytotoxic [54,55,56] |
9 | 06:22 | Ethyl spiro[2.3]hexane-1-carboxylate | C9H14O2 | 154.21 | Inhibits KRAS Activity, anti-proliferation [57] |
10 | 06:38 | 5-Hydroxymethylfurfural | C6H6O3 | 126.11 | Anticancer [58,59] |
11 | 06:56 | 2-Methyl-9-β-d-ribofuranosyl]hypoxanthine | C11H14N4O5 | 282.26 | Anticancer |
12 | 07:37 | 3-Deoxy-d-mannoic lactone | C6H10O5 | 162.14 | Antioxidant, cytotoxic [60] |
13 | 06:95 | Acetic acid, 2-propyltetrahydropyran-3-yl ester | C10H18O3 | 186.25 | Antioxidant, anticancer [61] |
14 | 08:59 | 4-Methyloctanoic acid | C9H18O2 | 158.24 | Anticancer [62] |
15 | 04:74 | 2-Vinyl-9-[β-d-ribofuranosyl]hypoxanthine | C12H14N4O5 | 294.26 | Anticancer activity [63] |
16 | 12:01 | 2-Pentadecanone, 6,10,14-trimethyl | C18H36O | 268.47 | Antibacterial, anti-inflammatory anticancer [64,65] |
17 | 13:55 | Hexadecanoic acid, methyl ester | C17H34O2 | 270.5 | Anticancer, cytotoxic, anti-tumour anti-inflammatory, antimicrobial antioxidant [66,67] |
18 | 15:12 | Hexanoic acid, pentadecyl ester | C21H42O2 | 326.63 | Antibacterial, anticancer [68,69] |
19 | 16:04 | E,E,Z-1,3,12-Nonadecatriene-5,14-diol | C19H34O2 | 294.5 | Anticancer, anti-inflammatory, antioxidant, cytotoxic [70,71] |
20 | 17:98 | 2H-Pyran-2-one, tetrahydro-6-undecyl | C16H30O2 | 254.4 | Anti-tumour, anticancer [72,73] |
21 | 09:41 | 2-(3-Hydroxy-2-pentylcyclopentyl)acetohydrazide | C12H24N2O2 | 228.33 | Antifungal, anticancer [74] |
22 | 23:95 | α-Tocospiro A | C29H50O4 | 462.7 | Cytotoxic, antiproliferation, anticancer [75,76] |
23 | 26:06 | Viridiflorol | C15H26O | 222.37 | Cytotoxic, anticancer [77,78] |
24 | 27:29 | Cycloionone | C13H20O | 192.3 | Cytotoxic, antimicrobial [79,80] |
25 | 15:45 | 6,9,12,15-Docosatetraenoic acid, methyl ester | C23H38O2 | 346.5 | Anticancer, antioxidant, antimicrobial [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sambo, T.; Mathe, E.; Shai, L.; Mapfumari, S.; Gololo, S. Inhibition of Kinase Activity and In Vitro Downregulation of the Protein Kinases in Lung Cancer and Cervical Cancer Cell Lines and the Identified Known Anticancer Compounds of Ziziphus mucronata. Plants 2025, 14, 395. https://doi.org/10.3390/plants14030395
Sambo T, Mathe E, Shai L, Mapfumari S, Gololo S. Inhibition of Kinase Activity and In Vitro Downregulation of the Protein Kinases in Lung Cancer and Cervical Cancer Cell Lines and the Identified Known Anticancer Compounds of Ziziphus mucronata. Plants. 2025; 14(3):395. https://doi.org/10.3390/plants14030395
Chicago/Turabian StyleSambo, Themba, Emelinah Mathe, Leswheni Shai, Sipho Mapfumari, and Stanley Gololo. 2025. "Inhibition of Kinase Activity and In Vitro Downregulation of the Protein Kinases in Lung Cancer and Cervical Cancer Cell Lines and the Identified Known Anticancer Compounds of Ziziphus mucronata" Plants 14, no. 3: 395. https://doi.org/10.3390/plants14030395
APA StyleSambo, T., Mathe, E., Shai, L., Mapfumari, S., & Gololo, S. (2025). Inhibition of Kinase Activity and In Vitro Downregulation of the Protein Kinases in Lung Cancer and Cervical Cancer Cell Lines and the Identified Known Anticancer Compounds of Ziziphus mucronata. Plants, 14(3), 395. https://doi.org/10.3390/plants14030395